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Abstract. In the paper, several modifications to the conventional learning algo-
rithms of the Hierarchical Temporal Memory (HTM) – a biologically inspired large-
scale model of the neocortex by Numenta – have been proposed. Firstly, an alter-
native spatial pooling method has been introduced, which makes use of a random
pattern generator exploiting the Metropolis-Hastings algorithm. The original infe-
rence algorithm by Numenta has been reformulated, in order to reduce a number of
tunable parameters and to optimize its computational efficiency. The main contri-
bution of the paper consists in the proposal of a novel temporal pooling method –

the pair-wise explorer – which allows faster and more reliable training of the HTM
networks using data without inherent temporal information (e.g., static images).
While the conventional temporal pooler trains the HTM network on a finite seg-
ment of the smooth Brownian-like random walk across the training images, the
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proposed method performs training by means of the pairs of patterns randomly

sampled (in a special manner) from a virtually infinite smooth random walk. We
have conducted a set of experiments with the single-layer HTM network applied
to the position, scale, and rotation-invariant recognition of geometric objects. The
obtained results provide a clear evidence that the pair-wise method yields signifi-
cantly faster convergence to the theoretical maximum of the classification accuracy
with respect to both the length of the training sequence (defined by the maximum
allowed number of updates of the time adjacency matrix – TAM) and the number of
training patterns. The advantage of the proposed explorer manifested itself mostly
in the lower range of TAM updates where it caused up to 10% relative accuracy im-
provement over the conventional method. Therefore we suggest to use the pair-wise
explorer, instead of the smooth explorer, always when the HTM network is trained
on a set of static images, especially when the exhaustive training is impossible due
to the complexity of the given task.

Keywords: Hierarchical temporal memory (HTM), temporal pooler, rapid learn-
ing, image explorer, position, scale, and rotation-invariant pattern recognition
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1 INTRODUCTION

Hierarchical Temporal Memory (HTM), introduced by [1, 2, 3] and distributed as
a free software packageNuPIC by Numenta, Inc. [4, 5], is a recent development in the
field of hierarchical Bayesian networks, which is ambitious in many, yet unresolved
artificial intelligence problems. Promising results have been achieved in applications
of HTM to various pattern recognition/classification problems in machine vision,
voice recognition, etc. [6, 7, 8, 9, 10]. Up to now, most applications in machine vision
have only dealt with the situation in which all recognized objects had position and
scale within the network’s field of view (retina). Application of HTM to problems
requiring the position, scale, and rotation-invariant recognition represents another
challenging step in a development of its functions. The prerequisite of a successful
classifier in this domain, distinguished by extreme variability of a potential input,
is to find an appropriate set of object features, which are sufficiently robust against
expected transformations, but still provide sufficient specificity. Moreover, it is very
important to use an appropriate and effective training algorithm, requiring neither
too large training set nor unfeasibly long training process.

In the HTM model, an essential source of invariance are temporal groups which
unite similar or otherwise related patterns. These groups are formed in course of the
training in all network nodes in a phase called a temporal pooling. When dealing with
static images, a traditional approach to the temporal pooling [4, 5] utilizes pattern
sequences, also referred to as temporal sequences, which are generated by a smooth
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traversal (exploration) of the training images. However, this method often suffers
from a slow convergence, causing that HTM requires quite long training process to
deliver reasonable performance.

In the paper, we propose an alternative approach to the temporal pooling in
the context of static image processing, that allows faster and more efficient training
of the HTM networks. In order to demonstrate this ability, we conducted a set of
experiments accounting for the position, scale, and rotation-invariant recognition of
simple geometric objects. We considered objects such as rectangles, triangles, or
circles (represented by smooth contours in gray-scale images, see Figure 1) in which
the efficiency of both the traditional and proposed temporal pooling methods could
be quantitatively compared.

Fig. 1. Examples of simple geometric objects, which were used for testing both the tra-
ditional and proposed temporal pooling methods. The objects are presented in the
context of a single-layer HTM network, which in this case consisted of 8 × 8 grid
of nodes, each receiving input from its own receptive field – a local patch of 8 × 8
pixels. Note that all considered geometric objects were represented only as contours,
therefore the gray-scale values (ranging from white = 0 to black = 1) could be seen
as local outputs of a smooth edge detector applied to standard gray-scale images.

2 DESCRIPTION OF THE HTM MODEL

As proposed in [1, 2, 4], the HTM network forms a tree-shaped hierarchy of layers
consisting of basic operational units called nodes. Each HTM node works in two
modes – learning and inference. In the learning phase the node performs two oper-
ations – spatial pooling and temporal pooling. Once these two steps are finished, the
node can be switched to the inference mode.

Although, in principle, each node could be trained by its own pattern sequence
and consequently could contain a unique learned information, in practice, all nodes
at the same hierarchy level are considered as equivalent. Such an assumption comes
from the fact that in case of position, scale, and rotation-invariant recognition, any
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pattern seen by any node in course of the training can later be observed by some
other node at the same level; nevertheless, it should be recognized equally well.
Therefore it is only natural to treat all nodes within one layer identically regarding
their learned information. This, moreover, simplifies the whole training process
significantly, as only one node needs to be trained at each network level, while the
rest share the same learned information.

2.1 Spatial Pooling

In the course of spatial pooling, input patterns of each node are being quantized
into representative clusters. All those clusters are characterized by their quantization
centers (one for each cluster), which altogether form a codebook of spatial patterns
approximating the input data. In the Numenta implementation of the spatial pooler,
usually some kind of a smooth image explorer is used for collecting representative
patterns. Their method depends strongly on an appropriate choice of the quantiza-
tion parameter maxDistance, that specifies the radius of the quantization clusters.
Such an approach suffers from several weaknesses which were addressed in [11].

In this study, we applied a different spatial pooling method that does not depend
on any other parameters but the codebook size. This method randomly selects a re-
quired number of image patterns of a given size (e.g., 8×8 pixels) from the available
training images which are afterward considered as the quantization centers. In order
to construct the codebook out of patterns contained in the training images, trying
to eliminate presence of irrelevant patterns (e.g., the empty pattern), one needs to
define a suitable relative measure of the pattern relevance. Hereinafter, we call this
function a pattern likelihood. Intuitively, the higher the likelihood of some pattern,
the higher should be the probability of its presence in the codebook, and vice versa.

For generating the codebook via given pattern likelihood function, we adopted
a well-known Metropolis-Hastings (M-H) algorithm [12, 13]. This algorithm is
a Markov chain Monte Carlo method for drawing samples s from any probability
distribution, requiring only a likelihood function L(s) proportional to the desired
probability density P (s). The algorithm generates a Markov chain of random states
(samples), in which acceptance of each new state st+1 depends only on the pre-
vious accepted state st and a random factor α drawn from the uniform distribution
U(0, 1). Furthermore, the algorithm also requires a proposal density Q(s′|st), which
serves for proposing new candidate states s′ with respect to the current state st.

The proposal is accepted, i.e., st+1 = s′, if and only if α < L(s′)Q(st|s′)
L(st)Q(s′|st)

. Otherwise,

the current state is retained for the next step, i.e., st+1 = st. If the proposal density
is a symmetric function, Q(s′|st) = Q(st|s′), it can be omitted from the calculation,
which leads to the simplified acceptance condition α < L(s′)/L(st). The proposal
process followed by accepting or rejecting the patterns is repeated until the required
number of states is generated.

For the purpose of this study, we applied the M-H algorithm, so that the gene-
rated states s have been identified with the positions within the training images, i.e.,
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s = (x, y, i), where x and y stand for the coordinate of a particular pixel within ith

training image. The proposal density Q(s′|st) has been defined as an independent
uniform distribution over all coordinates within the training images that implies the
symmetry of this function. Therefore the simplified acceptance condition depending
solely on the likelihood function could have been used. Most importantly, we defined
the likelihood function as follows:

L(s) = L(x, y, i) = E(X(x, y, i)2)k, (1)

where X(x, y, i) is a pattern extracted from the coordinate (x, y) of ith training
image, E(·) is the arithmetic mean over all elements of pattern X(·), and k is
a tunable exponent (in our case, k = 4 worked well). It should be noted that
Equation (1) is specifically designed for sparse input images containing contour
objects, as shown in Figure 1. In such kind of images, each pixel value provides
information about the presence or absence of the object’s contour at that particular
position, which gives in fact the relevance of individual pixels. Therefore, one is
entitled to derive the total pattern relevance directly from the absolute pixel values.
An example of the codebook generation process by means of the proposed M-H-
based method is demonstrated in Figure 2.

Fig. 2. The figure demonstrates the principle of the codebook generation by means of the
M-H algorithm. In each step of the algorithm, a single image coordinate is proposed,
drawn randomly from an independent uniform distribution (left). Afterward, some of
the proposed coordinates are accepted, if the M-H acceptance rule is met (middle).
The codebook of image patterns is then constructed by extracting the local image
patches (e.g., of 8 × 8 pixels) appearing at the accepted coordinates (right). Note
that duplicate patterns are not accepted in the codebook.

2.2 Temporal Pooling

Once the spatial pooling is over, the HTM learning continues with the temporal
pooling. In this step, the collected quantization centers are grouped according to
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their temporal coherence within the training sequence of patterns. The resulting
disjunctive subsets of the codebook patterns are called temporal groups.

The HTM theory postulated several conditions which are to be satisfied by any
pattern sequence used for training HTM networks. The most crucial is the condition
of a smooth translation of objects within the networks retina, meaning that the
position, rotation, scale, or illumination of objects alter smoothly in time.1 Up to
now, when dealing with static images containing no inherent temporal information
(unlike video streams), the temporal pooling has been accomplished using some
sort of a smooth traversal of the training images, in course of which a sequence
of image patterns has been generated. Hereinafter, we refer to this type of image
exploration as a smooth explorer. Typical smooth explorers proceeded either along
straight lines (e.g., image rows or columns), or performed a smooth Brownian-like
random walk (see Figure 3, left). The generated pattern sequence then serves for
estimating the temporal statistics that reflect temporal coherence of the codebook
patterns.

The concept of the smooth image exploration, however, can be implemented
in various ways, which may result in significantly different temporal groups in
terms of their invariance. Usually, the reason is that different temporal pooling
approaches may provide differently accurate temporal statistics, though based on
the same training data (images). Since the temporal learning is a key element
of the HTM invariance, an efficient temporal pooling algorithm is essential for its
proper functionality. The construction of a novel, more efficient temporal pooler
has been the main objective of our research and it will be described in details in
Section 3.

2.3 Inference

In the inference mode, each HTM node produces a vector of beliefs for all memorized
temporal groups, given an arbitrary input patternX. Afterward, the resulting belief
vectors from all nodes in the same network layer are passed to the next (superior)
layer as inputs.

The first step in producing the node’s output belief vector is a spatial inference,
in which the beliefs for all the codebook patterns are calculated. In the original Nu-
menta formulation of the spatial inference, the belief P (Ci|X) is estimated according
to a Gaussian function

P (Ci|X) = exp
−‖Ci −X‖2

σ2
, (2)

1 Be aware that such a condition does not imply generation of pattern sequences, which
are smooth in terms of inter-frame Euclidean distances. The patterns, which appear
nearby in time, usually look perceptually similar; nevertheless, their L2 distances are not
necessarily small.
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Fig. 3. An illustration of the function of the smooth explorer (left) and a novel pair-wise
explorer (right). The smooth explorer used in this study has been implemented
via a Brownian-like random walk (thin curves) in the course of which a presence of
a nonempty pattern at the consecutive positions is being evaluated. If the valid pat-
tern is detected at some position, the pattern sequence used for the temporal pooling
is initiated (black spots connected by thick curves). The sequence is terminated by the
first occurrence of the empty pattern. An example of the resulting pattern sequence
is shown below the image. Black squares stand for interruptions of the sequence due
to the empty patterns. On the contrary, the illustration of the pair-wise explorer

shows a more efficient image traversal given a constant number of TAM updates.
Namely, the pairs of patterns are sampled from a virtually infinite random walk,
which hypothetically crosses each training image coordinate in each direction infinite
number of times. Each generated pair of patterns can be seen as an extremely short
fragment of the infinite temporal sequence, which produces a single TAM update of
a unit increment. Note that both explorers are asymptotically equivalent, although
the pair-wise explorer captures the infinite training sequence in a more efficient way,
and therefore requires fewer TAM updates to provide sufficiently accurate temporal
statistics.

where Ci is the ith codebook pattern, X is the inferred input pattern and σ is
a tuning parameter. The parameter σ should be chosen in such a way that the
belief values close to 1 are assigned to the codebook patterns similar to X, while
the dissimilar patterns receive the values close to 0. Afterward, to support a dis-
crimination between similar and dissimilar patterns, the principle of strong lateral
inhibition called “winner-takes-all” is applied to the spatial belief vector. According
to this rule, only a constant number (typically 1) of components with the largest
beliefs are preserved, while the remaining components are set to 0.



908 S. Štolc, I. Bajla, K. Valent́ın, R. Škoviera

After the spatial inference is finished, a temporal inference takes place. In this
step, the beliefs for all memorized temporal groups Gj are calculated as a sum of all
spatial beliefs for the codebook patterns Ci, which constitute this temporal group:

P (Gj |X) =
∑

Ci∈Gj

P (Ci|X). (3)

The vector consisting of beliefs for all temporal groups represents an output of the
HTM node in the inference mode.

It should be noted that in many practical applications when one operates in
high-dimensional vector spaces, the use of the Gaussian-like spatial inference (see
Equation (2)) is not necessary and can be replaced by a simpler and a more ef-
ficient method. The objection against the Gaussian function in high-dimensional
spaces consists in impossibility to find any value of the parameter σ, that would
provide a reasonable discrimination between similar and dissimilar patterns [11].
Theoretically, if the data (i.e., patterns) are assumed to be approximately normally
distributed within the d-dimensional vector space, then L2 distances between arbi-
trary pairs of data points should follow χ distribution with d degrees of freedom. It
follows from the nature of χ distribution that the higher the data dimensionality,
the smaller is its coefficient of variation, meaning that the vector data become more
and more concentrated around some nonzero distance. As the Gaussian inference
function corresponds with a special case of χ distribution with exactly 2 degrees of
freedom, it is only capable of an accurate discrimination between close and distant
patterns in low-dimensional vector spaces. In high-dimensional spaces (such as, e.g.
d = 64, 256, or more), in which the data points tend to concentrate at a certain
distance from each other, the Gaussian function becomes eventually too flat with
respect to the actual distance distribution and, regardless of the σ value, provides
almost equal beliefs for any activated codebook pattern. Therefore, the parameter
σ has almost no influence on the final inference performance.

Exploiting this knowledge, we have reformulated the original spatial inference
method, in order to dispose of the useless parameter σ and to simplify the method
from the computational point of view. As the Gaussian function is monotonically
decreasing with respect to L2 distance of patterns, one can be sure that the codebook
patterns which are closest to the inferred pattern in terms of L2 distance would also
receive the highest belief values. It is clear from the above reasoning, that all these
beliefs will be almost equal, the parameter σ influences only the absolute value
of this constant. Therefore we took the liberty of assigning the belief of 1 to the
required number of the nearest codebook patterns and assigning 0 to the remaining
ones:

P (Ci|X) =

{

1 if Ci ∈ NN(X, k),

0 otherwise,
(4)

where NN(X, k) is a set of k nearest codebook patterns to the inferred pattern X.
In this study, we considered k = 1.
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2.4 Supervised Classification

The HTM model, as described so far, consists of only HTM nodes, which are trained
in an entirely unsupervised manner. However, such a network alone cannot be di-
rectly applied to any classification task, where objects are categorized into a prede-
fined set of classes. To enable this functionality for the HTM model, a supervised
classifier is typically placed at the very top of the HTM hierarchy. This classifier is
responsible for mapping between predefined object categories/classes and the belief
vectors generated by the topmost HTM nodes during the inference. In the literature,
one can find various supervised classifiers such as k-Nearest Neighbor (k-NN) [14]
or Support Vector Machines (SVM) [7] being used for this purpose.

In order to investigate qualities of the two temporal pooling algorithms, regard-
less of the capabilities of any particular supervised classifier, we restricted ourselves
to the k-NN approach (with k = 1). The classification accuracy provided by this
method could then be used as a relative measure suitable for the comparison of
different temporal pooling algorithms. This claim is supported by the fact that the
generalization power of k-NN solely depends on the distribution of different data
categories within the input space, which, in our case, was the space of belief vectors
produced by the topmost HTM level. It should be noted that the structure of this
space was entirely dependent on the capabilities of the employed temporal pooling
algorithm provided that all other parameters of the model remained constant. If the
temporal pooler worked efficiently during the training, the data within the generated
belief vector space would be well organized and the classification accuracy achieved
by k-NN would always be higher than in the case of less efficient temporal pooler
method.

Since each HTM node at the topmost network level provides its own belief vector,
one needs to combine all these vectors to a single belief vector in order to perform
a supervised classification. In this study, we explored two alternative approaches to
the construction of the joint belief vector out of the set of subordinate belief vectors.

Spatially specific features – The resulting belief vector is created by a simple
concatenation of the belief vectors produced by all the topmost HTM nodes.
This approach is spatially specific, since the final vector implicitly preserves
information about positions where (in which node) particular temporal groups
were found activated. Obviously, for the geometrically transformed input im-
ages, the spatial specificity may cause the decrease of the classification accuracy

(CA), especially in cases when the classifier is trained on a small number of
sample images.

Bag of features – The resulting belief vector is calculated as the element-wise
sum of all individual belief vectors coming from the HTM nodes. Afterward,
the accumulated belief vector is normalized to the unit length. As the spatial
information is deliberately discarded in this case and only some sort of common
statistics is being kept, the classification performance should be improved in
the recognition problems, where the position invariance is required. On the
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other hand, when applying this approach to the classification tasks with a high
number of similar categories, the classifier’s specificity, and consequently also its
accuracy, might be reduced due to the inability to exploit spatial relationships
characteristic for the classified objects.

3 ALTERNATIVE APPROACH TO TEMPORAL POOLING

PROVIDING MORE ACCURATE TEMPORAL STATISTICS

As already claimed, the main drawback of the Numenta-like smooth explorer is
a slow convergence to the theoretical maximum of CA with respect to the length
of the training sequence. When the problem domain is large, pattern sequences
produced by the smooth explorer need to be rather long to capture the data in its
entirety, assuring sufficiently accurate temporal statistics.2

Let us now describe in more detail how the temporal pooling using the smooth
explorer actually works and what is the reason for its slow convergence. When pro-
cessing the training sequence, codebook patterns, which occur nearby in the sequence
(representing a virtual temporal sequence), generate increments of a structure called
the time adjacency matrix (TAM)3. Each increment of TAM, which takes place in
the course of training, has an individual strength given by the update function
defined as follows[4, 5]:

U(d) =

{

TM − d+ 1 if 0 < d ≤ TM ,

0 otherwise,
(5)

where d ∈ N is the temporal distance between the two processed patterns (i.e.,
the number of temporal transitions separating given two patterns in the training
sequence) and TM is the parameter transition memory, which defines the maximum
temporal distance between any two patterns which generate nonzero increment of
TAM. It should be noted that in each training step depending on the parameter TM ,
TAM is being updated multiple times with a different weights given by Equation (5).
Obviously, using such an approach, the same computational effort is put to the
higher-weighted updates which carry out large TAM increments, as well as to the
lower-weighted ones. Considering the fact that there is usually quite a large amount
of useful (pseudo)temporal information stored in the training images which can only
be unveiled by a rather long smooth training sequence, collecting the accurate TAM
values usually takes considerable number of processing steps, since most of them are
spent on the less important TAM updates.

2 Note that the overtraining effect does not apply to the temporal pooling. The longer
training sequence is taken, the more stable and accurate temporal statistics is collected.

3 TAM is a square matrix, where each row and column corresponds to a single codebook
pattern. Thus, each coordinate in TAM has a unique association with a particular pair of
codebook patterns. In our experiments, TAM was always updated symmetrically.
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To overcome this drawback of the smooth explorer, we propose a novel method of
the temporal learning, the so-called pair-wise explorer. Instead of generating smooth
random walks through images, our explorer performs the HTM training using pairs
of patterns sampled from a virtually infinite random walk, which hypothetically
crosses each coordinate of all training images in each direction, infinite number of
times. These pairs of patterns are randomly sampled from the training images, such
that distances d̂ of their coordinates follow the probability distribution P (d̂) propor-
tional to the update function U(d) (see Equation (5)), given a reasonable conversion

between d̂ and d (e.g., d =
⌈

d̂
⌉

, where ⌈·⌉ stands for the round up operator). Each

generated pair of patterns can be seen as an extremely short fragment of the infinite
temporal sequence, which produces exactly one TAM update of a unit increment.
The whole training is finished when the requested number of the TAM updates (i.e.,
processing steps) is undertaken. An example of such a training process is shown in
Figure 3, right.

We argue that the pair-wise explorer helps the HTM to converge faster to the
theoretically accurate TAM, especially in case of a limited number of TAM updates
(which is a common constraint regarding the computational complexity). The al-
gorithm generates fewer patterns with the low temporal coherence, and therefore
fewer lower-weighted TAM updates are performed.

Once the temporal learning is over, the requested number of temporal groups is
generated by means of the agglomerative hierarchical clustering (AHC). We achieved
good results using the UPGMA4 linkage and the dissimilarity measure Di,j given as:

Dij =







1−
TAMij

√

max
i

(TAMij) max
j

(TAMij)
if i 6= j,

0 otherwise.
(6)

4 CLASSIFICATION EXPERIMENTS WITH SIMPLE

GEOMETRIC OBJECTS

In order to investigate and compare properties of the pair-wise and the smooth
explorer, we conducted experiments with the position, scale, and rotation-invariant
recognition of geometric primitives of three classes – circles, triangles, and rectangles.
Instances of these three classes, denoted by their contour lines, were arbitrarily
scaled, rotated and translated within the network’s retina represented as a gray-
scale image of 64× 64 pixels (similarly as in [11, 8, 3]; see Figure 1).

The explored HTM network consisted of a single layer of non-overlapping nodes,
each looking at the patch of 8× 8 pixels of the retina. In accordance with the image
size and types of the used patterns, we set the codebook size to 512, the requested
temporal group count to 64, and the transition memory parameter TM to 4. The
level of CA has been investigated with respect to two variable parameters: the num-
ber of training images, varied from 10 to 300 per each object class, and the number

4 Unweighted Pair Group Method with Arithmetic Mean (UPGMA)
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of the TAM updates, ranging between 1 024 and 32 768. These numbers represented
the length of training of the HTM network for both temporal pooling methods,
serving thereby as a unified evaluation basis. The number of testing images was set
to 300 per class. In order to minimize the influence of randomly generated sets of
images used for training and testing, each CA estimate was evaluated 10 indepen-
dent times for every combination of the variable parameters, each time with newly
generated training and testing sets. For final evaluation, the average CA values have
been used.

For the sake of verification of the positive effect of the temporal pooling, which
is a crucial part of the HTM model, the supervised (k-NN) classification has been
accomplished restricting itself to various intermediate products of the HTM infer-
ence. Firstly, to account for the CA baseline, the classification has been performed
in the source image space, where the obtained accuracy can only grow with an in-
creased number of training samples. Secondly, to examine the isolated influence of
the vector quantization accomplished by the spatial pooler, the k-NN classifier has
been applied to the belief vectors produced by the spatial pooler as if they were
outputs of the HTM nodes; and finally, the ultimate classification took advantage
of the full-fledged HTM inference which includes both the spatial and the temporal
inference step. If the HTM parameters were specified correctly and the temporal
pooling had a definite positive impact on the invariant classification, the final CA
should be significantly higher than the accuracy obtained in the image space or the
one assuming only the spatial inference. Furthermore, we expected that the pair-
wise explorer is capable of providing a considerably higher CA compared with the
smooth explorer, given an equal number of TAM updates.

5 RESULTS

First of all, let us concentrate on the verification of the HTM network functionality,
if it yielded a desired improvement of the invariant recognition of the geometric
primitives. Since the pair-wise explorer is nothing else but a more efficient imple-
mentation of the same learning concepts as used by the smooth explorer, these two
approaches should converge to the identical results, provided a sufficient number of
TAM updates. An overview of the recognition rates obtained by k-NN performed
in different classification spaces can be found in Table 1. Comparing the columns
corresponding with the pair-wise and the smooth explorer, one can see that the
obtained recognition rates are almost equal. This observation strongly supports the
asymptotic equivalence of these methods. Furthermore, in all the evaluated cases,
the CA values obtained in the image space and the CA values for HTM that used
just the spatial pooler are inferior to those when also the temporal pooler was in-
cluded. The actual CA gain due to using the temporal pooler ranged between 5 and
26% for the spatially-specific-features approach and between 18 and 35% for the
bag-of-features approach, depending on the number of training images per object
class.
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In Figure 4, the recognition rates obtained by the pair-wise and the smooth
explorer are presented with respect to both the number of TAM updates and the
number of training images per object class. In this view, one can clearly see that the
proposed pair-wise explorer outperforms the smooth explorer in the vast majority
of evaluated parameter combinations. As expected, the advantage of the pair-wise
explorer is most visible in the initial range of TAM updates, where the increase in
accuracy is much larger than produced by the smooth explorer. This behavior is
clearly documented by the course of the accuracy ratio between the pair-wise and
the smooth explorer (see Figure 5 and Table 2). Regardless of the approaches to the
construction of the joint belief vector used for classification – the spatially specific
features and the bag of features, the predominance of our method peaked when
TAM updates took values 2 896 and 4 096, yielding up to 10% relative accuracy
improvement over the conventional method.

Spatially specific features Bag of features

Number of
trn. images
per class

Image
space

Spatial
pooler

Pair-wise
explorer

Smooth
explorer

Spatial
pooler

Pair-wise
explorer

Smooth
explorer

10 0.378 0.354 0.428 0.424 0.417 0.679 0.654

20 0.398 0.366 0.475 0.472 0.440 0.741 0.724

40 0.439 0.396 0.549 0.542 0.481 0.792 0.781

60 0.477 0.419 0.600 0.594 0.496 0.818 0.806

80 0.510 0.436 0.641 0.632 0.518 0.825 0.815

100 0.540 0.452 0.674 0.663 0.531 0.847 0.830

150 0.594 0.495 0.722 0.708 0.557 0.858 0.839

200 0.637 0.514 0.771 0.769 0.576 0.873 0.857

250 0.671 0.536 0.795 0.793 0.578 0.879 0.872

300 0.701 0.558 0.814 0.808 0.595 0.887 0.879

Table 1. An overview of the recognition rates obtained by k-NN performed in different
classification spaces, given the number of training images. The “image space” co-
lumn gives the accuracy values of k-NN applied in the source image space excluding
the influence of the HTM network. Two columns labeled “spatial pooler” contain
accuracy values obtained when k-NN used the spatial belief vectors only. Finally,
the remaining columns contain the results of the pair-wise and the smooth explorer,
obtained for the maximum number of TAM updates (i.e., 32 768).

It should be noted that in the presented experiment of the position, scale, and
rotation-invariant recognition of simple geometric objects, the bag-of-features ap-
proach provides a considerably higher classification accuracy than the spatially spe-
cific features. Such a result can be explained by the position invariance that is
inherent to the bag-of-features approach (see Section 2: Supervised classification).
As this approach only preserves common statistics about the beliefs for the temporal
groups over several HTM nodes, the unwelcome consequence might be a decrease of
the classifiers specificity, typically resulting in a low recognition rate. Nevertheless,
considering the fact that the performance of the bag-of-features approach always
exceeded the performance of the spatially specific features, we conclude that the
mentioned reduction of the specificity did not actually take place in our experi-
ments.
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Fig. 4. The plots demonstrate that the pair-wise method outperforms the Numenta-like
smooth method in terms of faster convergence, mostly in the lower range of TAM up-
dates. The gray surface in the background represents CA achieved by k-NN classifier
performed in the input data space.
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Fig. 5. The CA ratios of the pair-wise explorer over the smooth explorer. The dashed
lines represent trials with different numbers of training examples while the solid line

is their arithmetic mean.
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Number of
TAM updates

Spatially specific
features

Bag of
features

1 024 1.047 1.010

1 448 1.064 1.031

2 048 1.086 1.052

2 896 1.104 1.077

4 096 1.104 1.071

5 793 1.092 1.055

8 192 1.071 1.051

11 585 1.046 1.035

16 384 1.028 1.030

23 170 1.014 1.017

32 768 1.004 1.013

Table 2. The actual numerical values of the CA ratio of the two examined temporal pooling
methods. The provided numbers are averages over the ratios obtained for different
numbers of training images. The maxima of the accuracy ratio are emphasized.

6 CONCLUSIONS

In the paper, the functions of the single-layer HTM network with non-overlapping
nodes have been explored with regard to the problem of the geometric object recog-
nition, invariant to the position, scale, and rotation transformations.

Firstly, we have introduced essentials of the HTM theory and described pecu-
liarities of our implementation of the HTM network. An alternative spatial pooling
method has been introduced which makes use of a random pattern generator based
on the Metropolis-Hastings algorithm. We have also reformulated the original HTM
inference algorithm proposed by Numenta, in order to reduce a number of tunable
parameters and to optimize its computational efficiency.

The main contribution of the paper consists in the proposal of a novel tempo-
ral pooling method – the pair-wise explorer. The obtained results show that, in
contrast to the conventional smooth explorer, our method yields significantly faster
convergence to the theoretical maximum classification accuracy with respect to both
the length of the training sequence (defined by the maximum allowed number of
TAM updates) and the number of training samples. The advantage of the pair-wise
explorer manifests itself in all evaluated cases, though the most pronounced accu-
racy gain has been obtained in the lower range of TAM updates. In this range,
up to 10% relative accuracy improvement over the conventional method has been
achieved. These results justify the conclusion that the proposed pair-wise tempo-
ral pooling method is more accurate and reliable, especially when applied to the
large complex problems where the exhaustive training is not feasible. Therefore
we suggest to use our method, instead of the smooth explorer, always when the
HTM network is trained on a set of static images which lack of inherent temporal
information.
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