
Computing and Informatics, Vol. 31, 2012, 531–549

GENERALIZED MANEUVERS IN ROUTE PLANNING
FOR COMPUTING AND INFORMATICS

Petr Hliněný, Ondrej Morǐs

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic
e-mail: {hlineny, xmoris}@fi.muni.cz

Abstract. We study an important practical aspect of the route planning problem
in real-world road networks – maneuvers. Informally, maneuvers represent various

irregularities of the road network graph such as turn-prohibitions, traffic light de-
lays, round-abouts, forbidden passages and so on. We propose a generalized model
which can handle arbitrarily complex (and even negative) maneuvers and extend
traditional Dijkstra’s Algorithm in order to solve route planning queries in this
model without prior adjustments of the underlying road network graph. Finally,
we also briefly evaluate practical performance of our approach (as compared to
ordinary Dijkstra on an amplified network graph).

Keywords: Route planning, road network, maneuver, restriction, prohibition

Mathematics Subject Classification 2010: 68, 68R10; 05C85

1 INTRODUCTION

Since mass introduction of GPS navigation devices, the route planning problem, has
received considerable attention. This problem is in fact an instance of the well-known
single pair shortest path (SPSP) problem in graphs representing real-world road
networks. However, it involves many challenging difficulties compared to ordinary
SPSP. Firstly, classical algorithms such as Dijkstra’s [5], A* [7] or their bidirectional
variants [12] are not well suited for route planning despite their optimality in wide
theoretical sense. It is mainly because graphs representing real-world road networks
are so huge that even an algorithm with linear time and space complexity cannot
be feasibly run on typical mobile devices.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics, SAS,...

https://core.ac.uk/display/267941671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

532 P. Hliněný, O. Morǐs

Secondly, these classical approaches disregard certain important aspects of real-
world road networks, namely route restrictions, traffic regulations, or actual traffic
info. Hence a route found by such classical algorithms might not be optimal or not
even feasible. Additional attributes are needed in this regard.

The first difficulty has been intensively studied in the past, and complexity
overheads of classical algorithms have been largely improved by using various pre-
processing approaches. Two sorts of advanced techniques have emerged and become
popular. The first one prunes the search of Dijkstra’s or A* algorithms using prepro-
cessed information. The second sort of techniques exploits a road network structure
with levels of hierarchy. There are also many other techniques and combinations,and
we refer a reader to Cherkassky et al. [2], Delling et al. [3, 4], and Schultes [13].

In this paper, we focus on the second mentioned sort of issues – route restrictions,
traffic regulations, traffic info, etc. – as it is still receiving significantly less attention
in the aforementioned mainstream research.

1.1 Related Work

The common way to model required additional attributes of road networks is with
so-called maneuvers (see Definition 1). Unfortunately, maneuvers do not seem to be
in the center of interest of route planning research papers: they are often assumed to
be encoded into the underlying graph of a road network, or they are addressed only
partially with rather simple types of restriction attributes such as turn-penalties and
path prohibitions, or they are considered from a very specific point of view.

Basically, there are two research directions for modeling maneuvers – either ma-
neuvers are encoded into the underlying road network graph using artificial vertices
and edges, or a query algorithm is adjusted in order to handle maneuvers during
queries. The first research direction, seemingly simplest and commonly used, can
be applied without respect to used query algorithm since it makes a road network
graph maneuver-free and therefore there is no need to adjust the queries in any
way [9, 11, 16, 17, 15], and there is not much to improve nowadays. The problem
is that it can significantly increase the size of the resulting graph [15]. For instance,
replacing a single turn-prohibition can add up to eight new vertices in place of one
original [6]. A solution like this one thus conflicts with the aforementioned graph-
size issue. Another noticeable approach [1] uses so-called dual graph representation
instead of the original one, where allowed turns are modeled by dual edges. We
remark that although this solution works much better for prohibited turns mod-
eling, it is impossible to model the other types of restrictions, for instance traffic
lights delays, in dual graphs. On the other hand, the second research direction –
adjustment of a query algorithm – is not used very often and there is a lot of space
for possible improvements. Although there are a few known approaches [10, 14, 18],
they solve only simple types of maneuvers such as, for instance, turn penalties and
turn prohibitions [10, 6] or forbidden paths [14, 18].

To summarize, a sufficiently general approach for arbitrarily complex maneuvers
seems to be missing in the literature despite its practical importance.

Generalized Maneuvers in Route Planning 533

1.2 Our Contribution

Firstly, we introduce a formal model of a generic maneuver – from a single vertex
to a long self-intersecting walk – with either positive or negative effects (penalties);
being enforced, recommended, not recommended or even prohibited. Our model
can capture virtually any route restriction, most traffic regulations and even some
dynamic properties of real-world road networks.

Secondly, we integrate this model into Dijkstra’s algorithm, rising its worst-case
time complexity only slightly (depending on a structure of maneuvers). The under-
lying graph is not modified at all and no preprocessing is needed. Even though our
idea is fairly simple and relatively easy to understand, it is novel in the respect that
no comparable solution has been published to date. Furthermore, some important
added benefits of our algorithm are as follows:

• It can be directly used bidirectionally with any alternation strategy using an ap-
propriate termination condition; it can be extended also to the A* algorithm by
applying a “potential function to maneuver effects”.

• Many route planning approaches use Dijkstra or A* in the core of their query
algorithms, and hence our solution can be incorporated into many of them (for
example, those based on a reach, landmarks or various types of separators) quite
naturally under additional assumptions.

• Our algorithm tackles maneuvers “on-line” – that is no maneuver is processed
before it is reached. And since the underlying graph of a road network is not
changed (no vertices or edges are removed or added), it is possible to add or
remove maneuvers dynamically even during queries to some extent.

2 MANEUVERS: BASIC TERMS

A (directed) graph G = (V, E) is a pair of a finite set V of vertices and a finite
multiset E ⊆ V × V of edges (self-loops and parallel edges are allowed). The vertex
set ofG is referred to as V (G), its edge multiset as E(G). A subgraph H of a graphG

is denoted by H ⊆ G.
A walk P ∈ G is an alternating sequence of vertices and edges (u0, e1, u1, . . . ,

ek, uk) ⊆ G such that ei = (ui−1, ui) for i = 1, . . . , k, the multiset of all edges of
a walk P is denoted by E(P). A subwalk Q ⊆ P is Q = (ui, ei+1, . . . , ej, uj) for any
0 ≤ i ≤ j ≤ k. A concatenation P1. P2 of walks P1 = (u0, e1, u1, . . . , ek, uk) and
P2 = (uk, ek+1, uk+1, . . . , el, ul) is the walk (u0, e1, u1, . . . , ek, uk, ek+1, . . . , el, ul). If
P2 = (u, f, v) represents a single edge, we write P1. f . If edges are clear from the
graph, then we write a walk simply as (u0, u1, . . . , uk).

Informally, a walk Q = (u0, e1, . . . , ek, uk) is a prefix of another walk P =
(u0, e1, . . . , ek, uk, . . . , el, ul) if Q is a subwalk of P starting with the same sequence
of vertices and edges, and analogically with suffix. The prefix set of a walk P =
(u0, e1, . . . , ek, uk) is Prefix (P) = {(u0, e1, . . . , ei, ui)| 0 ≤ i ≤ k}, and analogically

534 P. Hliněný, O. Morǐs

Suffix(P) = {(ui, ei+1, . . . , ek, uk)| 0 ≤ i ≤ k}. So, a prefix (suffix) of a walk P is
defined as a member of Prefix (P) (Suffix(P)), and it is nontrivial if i ≥ 1 (i < k,
resp.).

The weight of a walk P ⊆ G with respect to a weighting w : E(G) 7→ R of G is
defined as

∑

e∈E(P) w(e) and denoted by |P |w. A distance from u to v in G, δw(u, v)

is the minimum weight of a walk P = (u, . . . , v) ⊆ G over all such walks and P

is then called optimal (with respect to weighting w). If there is no such walk then
δw(u, v) =∞. A path is a walk without repeating vertices and edges. However, we
remark in advance that in the presence of maneuvers an optimal walk need not be
a path (Figure 1).

Virtually any route restriction or traffic regulation in a road network, such as
turn-prohibitions, traffic lights delays, forbidden passages, turn-out lanes, suggested
directions or car accidents by contrast, can be modeled by maneuvers – walks having
extra (either positive or negative) “cost effects”. Formally:

Definition 1 (Maneuvers). A maneuver M of G is a walk in G that is assigned
a penalty ∆(M)∈R∪∞. A set of all maneuvers of G is denoted byM.

Remark 1. A maneuver with a negative or positive penalty is called negative or
positive, respectively. Furthermore, there are two special kinds of maneuvers – the
restricted ones of penalty 0 and the prohibited ones of penalty ∞.

Obviously, if a route contains some maneuvers, its cost is influenced by their
penalties. This cost effect of a maneuver is formalized as follows:

Definition 2 (Penalized weight). Let G be a graph with a weighting w and a set
of maneuversM. The penalized weight of a walk P ⊆ G containing the maneuvers
M1, . . . ,Mr ∈M as subwalks is defined as |P |Mw = |P |w +

∑r

i=1∆(Mi).

In Remark 1 we are mentioning several different types of maneuvers depending
on their penalty. The intended meaning of these types in route planning is as follows.

• If a driver enters a restricted maneuver, s/he must pass it completely (cf. Defi-
nition 3); s/he must obey the given direction(s) regardless of the cost effect.
Examples are headings to be followed or specific round-abouts.

• By contrast, if a driver enters a prohibited maneuver, s/he must not pass it com-
pletely. S/he must get off it before reaching its end, otherwise it makes his/her
route infinitely bad. Examples are forbidden passages or temporal closures.

• Finally, if a driver enters a positive or negative maneuver, s/he is not required to
pass it completely; but if s/he does, then this will increase or decrease the cost of
his/her route accordingly. Negative maneuvers make his/her route better (more
desirable) and positive ones make it worse. Examples of positive maneuvers
are, for instance, traffic lights delays, lane changes, or left-turns. Examples of
negative ones are turn-out lanes, shortcuts, or implicit routes.

Generalized Maneuvers in Route Planning 535

c

a

b

d e

f

Fig. 1. A road network containing five maneuvers: M1 = (a, ab, b, bc, c) with ∆(M1) =∞
(prohibited left turn), M2 = (a, ab, b, bf, f) with ∆(M2) = 1 (right turn traffic lights
delay), M3 = (b, bd, d, db, b), M4 = (d, de, e, ed, d) and M5 = (e, ef, f, fe, e) with
∆(M3) = ∆(M4) = ∆(M5) = ∞ (forbidden U-turns). All edges have weight 1. The
penalized weight of the walk (a, ab, b, bc, c) is 2+∞, the penalized weight of the walk
(a, ab, b, bf, f, fe, e, ed, d, db, b, bd, c) is 6+1. Therefore the optimal walk (with respect
to the penalized weight) from a to c is (a, ab, b, bd, d, de, e, ef, f, fb, b, bc, c) with the
penalized weight 6 + 0.

Consider two walks Q1, Q2. We say that Q2 overhangs Q1 if a nontrivial prefix
of Q2 is a suffix of Q1 (particularly, E(Q1) ∩ E(Q2) 6= ∅). Furthermore, Q1, Q2 are
divergent if, up to symmetry between Q1, Q2, a nontrivial prefix of Q2 is contained
in Q1 but the whole Q2 is not a subwalk of Q1 and Q2 does not overhang Q1.

a b c d e a b c d

divergent e1

e2

overhanging

Definition 3 (Valid walks). Let G,w,M be as in Definition 2. A walk P in G is
valid if and only if |P |Mw < ∞ and, for any restricted maneuver M ∈ M, it holds
that if a nontrivial prefix of M is a subwalk of P , then whole M is a subwalk of P
or M overhangs P (in other words, M is not divergent with P).

We finally get to the summarizing definition. A structure of a road network is
naturally represented by a graph G such that the junctions are represented by V (G)
and the roads by E(G). The chosen cost function (for example travel time, distance,
expenses) is represented by a non-negative weighting w : E(G) 7→ R

+
0 assigned

to G, and the additional attributes such as traffic regulations are represented by
maneuvers as above. The least natural requirements on a reasonable road network
are then contained in the next definition:

Definition 4. Let G be a graph with a non-negative weighting w andM a set of
maneuvers in G. Then a road network is defined as the triple (G,w,M). Further-
more, it is called proper if the following three conditions are satisfied:

536 P. Hliněný, O. Morǐs

i. no two restricted maneuvers inM are divergent,

ii. no two negative maneuvers inM overhang one another, and

iii. for all N ∈M, ∆(N) ≥ −|N |M\{N}
w (that is, for every walk P in G, |P |Mw ≥ 0).

Motivation for the required properties i.–iii. in Definition 4 is of both natural
and practical character: as for i., it simply says that no two restricted maneuvers
are in a conflict (that is no route planning deadlocks). Point ii. concerning only
non-overhanging negative maneuvers is needed for a fast query algorithm, and it
is indeed a natural requirement (to certain extent, overhanging maneuvers can be
modeled without overhangs). We remark that other studies usually allow no neg-
ative maneuvers at all. Finally, iii. states that no negative maneuvers can result
in a negative overall cost of any walk – another very natural property. In informal
words, a negative penalty of a maneuver somehow “cannot influence” suitability of
a route before entering and after exiting the maneuver.

Within a road network, only valid walks (Definition 3) are allowed further on,
and the distance from u to v in a road network (G,w,M), denoted by δMw (u, v), is
the minimum penalized weight (Definition 2) of a valid walk P = (u, . . . , v) ⊆ G.
Such a walk P is then called optimal with respect to the penalized weight. If there is
no such walk, then δMw (u, v) =∞ (see Figure 1).

2.1 Strongly Connected Road Network

The traditional graph theoretical notion of strong connectivity also needs to be
refined – it must suit our road networks to dismiss possible route planning traps
now imposed by maneuvers.

First, we need to define a notion of a “context” of a vertex (position) v in
a road network; capturing all maneuvers one has started, but not yet finished,
before reaching v. Precisely, it is a maximal walk in G ending at v such that it is
a proper prefix of a maneuver in M, or ∅ otherwise. The set of all such walks for
the vertex v is denoted by XM(v). For example, on the road network depicted in
Figure 1, XM(b) = {(a, b), ∅}. More formally:

Definition 5 (Context). LetM be a set of maneuvers over a graph G. We define

XM(v)
def

=
{

X ∈ Prefix<(M) |(v) ∈ Suffix(X)
}

∪ {∅}, where

Prefix<(M)
def

= Prefix (M) \ {M}, Prefix<(M)
def

=
⋃

M∈M
Prefix<(M).

This XM(v) is the maneuver-prefix set at v, that is the set of all proper prefixes of
walks fromM that end right at v, including the mandatory empty walk. An element
of XM(v) is called a context of the position v within the road network.

The reverse graph GR of G is a graph on the same set of vertices with all of the
edges reversed. Let (G,w,M) be a road network, a reverse road network is defined
as (GR, wR,MR), where wR : E(GR) 7→ R

+
0 , ∀(u, v) ∈ E(GR) : wR(u, v) = w(v, u)

Generalized Maneuvers in Route Planning 537

and MR = {MR|M ∈ M}, ∀MR ∈ MR : ∆(MR) = ∆(M). Traditional graph
connectivity is then extended to our road networks as follows:

Definition 6. A road network (G,w,M) is strongly connected if, for every pair of
edges e = (u′, u), f = (v, v′) ∈ E(G) and for each possible context X = X1 · e ∈
XM(u) of u in G and each one of v in GR, that is Y R = Y R

1 . fR ∈ XMR(v), there
exists a valid walk starting with X and ending with Y .

We remark that Definition 6 naturally corresponds to strong connectivity in
an amplified road network modeling the maneuvers within underlying graph.

3 ROUTE PLANNING QUERIES WITH MANEUVERS

At first, let us recall classical Dijkstra’s algorithm [5]. It solves the SPSP1 problem,
a graph G with a non-negative weighting w for a pair s, t ∈ V (G) of vertices.

• The algorithm maintains, for all v ∈ V (G), a (temporary) distance estimate of
the shortest path from s to v found so far in d[v], and a predecessor of v on that
path in π[v].

• The scanned vertices, that is those with d[v] = δw(s, v), are stored in the set T ;
and the reached but not yet scanned vertices, that is those with ∞ > d[v] ≥
δw(s, v), are stored in the set Q.

• The algorithm work as follows: it iteratively picks a vertex u ∈ Q with minimum
value d[u] and relaxes all the edges (u, v) leaving u. Then u is removed from Q

and added to T . Relaxing an edge (u, v) means to check if a shortest path
estimate from s to v may be improved via u; if so, then d[v] and π[v] are
updated. Such v is added into Q if is not there already.

• The algorithm terminates when t is scanned or when Q is empty.

Time complexity depends on the implementation of Q; such as it is O(|E(G)|+
|V (G)| log |V (G)|) with the Fibonacci heap.

3.1 M-Dijkstra’s Algorithm: Overview

In this section, we will briefly sketch the core ideas of our natural extension of
Dijkstra’s algorithm. We refer a reader to Algorithm 1 for a full-scale pseudocode
of thisM-Dijkstra’s algorithm.

1. Every vertex v ∈ V (G) scanned during the algorithm, is considered together with
its context X ∈ XM(v) (Definition 5); that is as a pair (v,X). The intention is
for X to record how v has been reached in the algorithm, and the same v can
obviously be reached and scanned more than once, with different contexts. For

1 Single Pair Shortest Path: Given a graph and two vertices, find a shortest path from
one to another.

538 P. Hliněný, O. Morǐs

instance, b can be reached with the empty or (a, b) contexts in the road network
depicted in Figure 1.

2. Temporary distance estimates are stored in the algorithm as d[v,X] for such
vertex-context pairs (v,X). At each step the algorithm selects a next pair (u, Y)
such that it is minimal with respect to the following partial order ≤M.

Remark 2. Partial order ≤M:

(v1, X1) ≤M (v2, X2)
def

⇐⇒

(

d[v1, X1] < d[v2, X2] ∨

(d[v1, X1] = d[v2, X2] ∧X1 ∈ Suffix(X2))
)

.

3. Edge relaxation from a selected vertex-context pair (u, Y) respects all maneuvers
related to the context Y (there can be more such maneuvers). If one of them
is restricted, then only its unique (cf. Definition 4, i.) subsequent edge is taken,
cf. Algorithm 1, RestrictedDirection. Otherwise, every edge f = (u, v) is
relaxed such that the distance estimate at v – together with its context as derived
from the concatenation (Y. f) – is (possibly) updated with the weight w(f) plus
the sum of penalties of all the maneuvers in (Y. f) ending at v, cf. Algorithm 1,
Relax.

4. If an edge being relaxed is the first one of a negative maneuver, a specific process
is executed before scanning the next vertex-context pair. See below.

3.2 Processing Negative Maneuvers

Note that the presence of a maneuver of negative penalty may violate the basic
assumption of ordinary Dijkstra’s algorithm; that relaxing an edge never decreases
the nearest temporary distance estimate in the graph. An example of such a violation
can be seen in Figure 2, for instance, at vertex v5 which would not be processed in its
correct place by ordinary Dijkstra’s algorithm. That is why a negative maneuver M
must be processed byM-Dijkstra’s algorithm at once – whenever its starting edge
is relaxed, cf. Algorithm 1, ProcessNegative.

Suppose that an edge f = (u, v) is relaxed from a selected vertex-context pair
(u,X) and there is a negative maneuver M = (v0, f1, v1, . . . , vn−1, fn, vn), u = v0,
v = v1 starting with f (that is f = f1), processing M works as follow:

1. Vertex-context pairs (vi, Xi), 0 ≤ i ≤ n along M are scanned one by one towards
the end of M . The other vertices leaving these vi are ignored.

2. Scanned vertex-context pairs are added to Q and their distance estimates are
updated, but none of them is added into T . They must be properly scanned
during the main loop of the algorithm.

3. This process terminates when the end (vn, Xn) is reached or the distance estimate
of some (vi, Xi) bounces to ∞ (that is there is a prohibited maneuver ending
at vi) or when some restricted maneuver forces us to get off M (and thus M

cannot be completed).

Generalized Maneuvers in Route Planning 539

1

5

5

1
1

1 1

w5

x2

s

x1

v3 v4 v5

w3w1

1

w2

1

v2

1

v1

u = v0 = w0

w4

1 1

∆(M3) = −1

∆(M4) = ∞

∆(M2) = 0

∆(M1) = −5

Fig. 2. A road network containing two negative maneuvers, M1 = (v0, . . . , v5) and M3 =
(w0, . . . , , w5), a restricted maneuver M2 = (v2, v3, v4), and a prohibited maneuver
M4 = (w2, w3, w4). When u is being processed (with its implicit context), x1, x2 and

v1, w1 are relaxed normally. Furthermore, negative maneuver processing is executed
for both M1 and M3. As a result, v5 will be immediately reached and inserted to Q
with distance estimate equal to that of u which is less than those of x1, x2 (5 from u)
and of v1, w1 (1 from u). On the other hand, w5 will not be reached in the process
because the distance estimate of w4 bounces to ∞ while handling M4.

Remark 3. Let us now get back to the condition ii. in Definition 4. Why do we
need to forbid negative maneuvers overhanging each other to achieve faster queries
algorithm?

Consider negative overhanging maneuvers M1 and M2. When ProcessNega-

tive is executed on M1 (while relaxing its first edge) and it reaches M2, another
ProcessNegative must be started for M2. The problem occurs when the first
edge of M2 is reached later again, for instance, with a different context or a better
distance estimate. In such case ProcessNegative must be executed again for M2.
If there are many long chains of overhanging maneuvers, this might heavily decrease
the overall performance of the algorithm.

We believe that this problem can be efficiently solved by taking advantage of
a suitable utilization of relative distance estimates in a combination with more ad-
vanced queues – pairing heaps [19]. However, further implementation details are
out of scope of this paper and they are left for future research. Notice also that
any overhanging could be encoded into the road network by introducing auxiliary
vertices and edges. We also remark that negative maneuvers overhanging is indeed
very rare in practice – recall that negative maneuvers usually represent turn-out
lanes, recommended turns or shortcuts. These kinds of maneuvers are usually short
in practice and it is almost useless to tie them together. It would be very surprising
for us to see such overhanging for more than two maneuvers in practice.

3.3 M-Dijkstra’s Algorithm: Pseudocode and Analysis

As sketched in the previous parts, we now present a full formal pseudocode of our
variant of Dijkstra’s Algorithm respecting maneuvers from a setM; see Algorithm 1.

540 P. Hliněný, O. Morǐs

Algorithm 1 M-Dijkstra’s Algorithm

Input: A proper road network (G,w,M) and vertices s, t ∈ V (G).
Output: A valid walk from s to t in G optimal with respect to the penalized weight.

M-Dijkstra(G,w,M, s, t)

1: for all v ∈ V (G), X ∈ XM(v) do /* Initialization. */
2: d[v,X]←∞; π[v,X]← ⊥
3: done

4: d[s, ∅]← 0; Q← {(s, ∅)}; T ← ∅
5: if (s) ∈ M then d[s, ∅]← d[s, ∅] + ∆(s) fi

/* The main loop starts at (s, ∅) and terminates when either all reachable vertex-
context pairs have been scanned or when t is reached with some of its contexts. */

6: while Q 6= ∅ ∧ [6 ∃X ∈ XM(t) s.t. (t,X) ∈ T] do

7: (u,X)← min≤M
(Q); Q← Q \ {(u,X)} /* Recall ≤M (Remark 2) */

8: F ← RestrictedDirection(u,X) /* Possible restricted dir. from u. */
9: if F = ∅ then F ← {(u, v) ∈ E(G) | v ∈ V (G)} fi

10: for all f = (u, v) ∈ F do

11: Relax(u,X, f, v)
12: for all M = (u, f, v, . . .) ∈M s.t. ∆(M) < 0 ∧ |E(M)| > 1 do

13: ProcessNegative (X,M)
14: done /* Negative man. starting with f are processed separately. */
15: done

16: T ← T ∪ {(u,X)}
17: done

18: ConstructWalk (G, d, π) /* Use “access” information stored in π[v,X]. */

Relax (u,X, f, v) /* Relaxing an edge f from vertex u with context X. */

1: δ ← w(f) +
∑

N∈N ∆(N) where N =M∩ Suffix (X. f)

2: X ′ ← LongestPrefix(X.f) /* see Algorithm 2 */
3: if d[u,X] + δ < d[v,X ′] then
4: Q← Q ∪ {(v,X ′)}; d[v,X ′]← d[u,X] + δ; π[v,X ′]← (u,X)
5: fi

ProcessNegative(X, M = (v0, e1, . . . , en, vn))

1: i← 1; X0 ← X ; F ← ∅ /* Relaxing sequentially all the edges of M . */
2: while i ≤ n ∧ d[vi−1, Xi] <∞∧ F = ∅ do
3: Relax(vi−1, Xi−1, ei, vi)
4: Xi ← LongestPrefix(Xi−1.ei) /* see Algorithm 2 */
5: F ← RestrictedDirection(vi, Xi) \ {ei+1}
6: i← i+ 1
7: done

Generalized Maneuvers in Route Planning 541

Algorithm 2 Supplementary routines for Algorithm 1

LongestPrefix (P) : a walk P ′ ⊆ G

/* The longest (proper) prefix of some maneuver contained as a suffix of P : */

1: P ′ ← max⊆
[

(Suffix (P) ∩ Prefix<(M)) ∪ {∅}
]

2: return P ′

RestrictedDirection(u,X) : F ⊆ E(G)

/* Looking for edge f leaving u that follows in a restrict. man. in context X.*/

1:
F ← {f = (u, v) ∈ E(G) | ∃ restricted R ∈ M :

E(X) ∩E(R) 6= ∅ ∧ Suffix(X. f) ∩ Prefix (R) 6= ∅}
2: return F

After that, it remains to argue about correctness of our algorithm and its time com-
plexity. Assuming validity of crucial Definition 4 ii. in a proper road network,
correctness ofM-Dijkstra’s Algorithm 1 can be argued analogously to a traditional
proof of Dijkstra’s algorithm. Hereafter, the time complexity overhead of our algo-
rithm depends solely on the number of vertex-context pairs, or better expressed, on
the number of maneuvers per vertex.

Theorem 1. Let a proper road network (G,w,M) and vertices s, t ∈ V (G) be
given. M-Dijkstra’s algorithm (Algorithm 1) computes a valid walk from s to t

in G optimal with respect to the penalized weight, in time O
(

c2M|E(G)|+ cM|V (G)|
log(cM|V (G)|)

)

where cM = maxv∈V (G) |{M ∈ M| v ∈ V (M)}| is the maximum
number of maneuvers per vertex.

Proof. We follow a traditional proof of ordinary Dijkstra’s algorithm with a simple
modification – instead of vertices we consider vertex-context pairs as in Definition 6
and in Algorithm 1.

For a walk P let χ(P) = max⊆
[

(Suffix(P) ∩ Prefix<(M)) ∪ {∅}
]

denote the
context of the endvertex of P with respect to maneuversM. Let Px stand for the
prefix of P up to a vertex x ∈ V (P). The following invariant holds at every iteration
of the algorithm:

I. For every (u,X) ∈ T , the final distance estimate d[u,X] equals the smallest
penalized weight of a valid walk P from s to u such that X = χ(P). Every
vertex-context pair directly accessible from a member of T belongs to Q.

II. For every (v,X ′) ∈ Q, the temporary distance estimate d[v,X ′] equals the small-
est penalized weight of a walk R from s to v such that X ′ = χ(R) and, moreover,
(x, χ(Rx)) ∈ T for each internal vertex x ∈ V (R) (except vertices reached during
ProcessNegative, if any).

This invariant is trivially true after the initialization. By induction we assume
it is true at the beginning of the while loop on line 6, and line 7 is now being
executed – selecting the pair (u,X) ∈ Q. Then, by minimality of this selection,

542 P. Hliněný, O. Morǐs

(u,X) is such that the distance estimate d[u,X] gives the optimal penalized weight
of a walk P from s to u such that X = χ(P). Hence the first part I. of the invariant
(concerning T , line 16) will be true also after finishing this iteration.

Concerning the second claim II. of the invariant, we have to examine the effect
of lines 8–15 of the algorithm. Consider an edge f = (u, v) ∈ E(G) starting in u,
and any walk R from s to v such that χ(Ru) = X. Since χ(R) must be contained
in X. f by definition, it is χ(R) = X ′ as in Relax, line 2,. Furthermore, every
maneuver contained in R and not in Ru must be a suffix of X. f by definition. So
the penalized weight increase δ is correctly computed in Relax, line 1. Therefore,
Relax correctly updates the temporary distance estimate d[v,X ′] for every such f .
Finally, any negative maneuver starting from u along f is correctly reached towards
its end w on line 13, its distance estimate is updated by successive relaxation of its
edges and, by Definition 4, ii. and iii., this distance estimate of w and its context is
not smaller than d[u,X]; thus the second part of claimed invariant remains true.

Validity of a walk is given by line 8 – RestrictedDirection, that is enforc-
ing entered restricted maneuvers; and line 1 in Relax – δ grows to infinity when
completing prohibited maneuvers, “if” condition on line 3 in Relax is then false
and therefore prohibited maneuver cannot be contained in an optimal walk.

Lastly, we examine the worst-case time complexity of this algorithm. We as-
sume G is efficiently implemented using neighborhood lists, the maneuvers in M
are directly indexed from all their vertices and their number is polynomial in the
graph size (and hence log(cM|V (G)|) = O

(

log |V (G)|
)

), and that Q is implemented
as Fibonacci heap.

• The maximal number of vertex-context pairs that may enter Q is

m = |V (G)|+
∑

M∈M

(|M | − 1) ≤ cM · |V (G)|,

and time complexity of all the Fibonacci heap operations is O(m logm) =
O(cM|V (G)| log |V (G)|).

• Every edge of G starting in u is relaxed at most those many times as there are
contexts in XM(u), and edges of negative maneuvers are relaxed one more time
during ProcessNegative. Thus the maximal overall number of relaxations is

r =
∑

u∈V (G)

|XM(u)| · out-deg(u) + q ≤ (cM + 1) · |E(G)|

where q is the number of edges belonging to negative maneuvers.

• The operations in Relax on line 1, LongestPrefix as well as Restricted-

Direction can be implemented in time O(cM).

The claimed runtime bound follows. �

Notice that, in real-world road networks, the number cM of maneuvers per vertex
is usually quite small and independent of the road network size, and thus it can be

Generalized Maneuvers in Route Planning 543

bounded by a reasonable minor constant. Although road networks in practice may
have huge maneuver sets, particular maneuvers do not cross or interlap too much
there. For example, cM = 5 in the current OpenStreetMaps of Prague.

3.4 Route Planning Example

In this section, we will demonstrate M-Dijkstra’s algorithm on a road network
containing maneuvers. Consider the road network depicted below with a weighting
representing travel times. There are five illustrative maneuvers (their edges are
depicted by dotted lines): a traffic jam detour (M1), a forbidden passage (M2),
a traffic light left turn delay (M3), a traffic light delay (M4) and a direct to be
followed (M5).

l

p

fa

m

r

k

o

d

t

e

h

i

s

g

c

b

n

j

G

Road network (G,w,M), where

• G is depicted on the left,

• ∀e ∈ E(G) : w(e) = 1,

• M = {M1,M2,M3,M4,M5}

M1 = (b, c, d, e, f)

∆(M1) = −3

M2 = (b, r, l)

∆(M2) = ∞

M3 = (g, h, s)

∆(M3) = 5

M4 = (s)

∆(M4) = 9

M5 = (i, j, k, l)

∆(M5) = 0

544 P. Hliněný, O. Morǐs

The goal of out driver is to get from a tom as fast as possible. Classical Dijkstra’s
algorithm finds P1 = (a, b, r, l, m) with |P1|w = 4, but unfortunately |P1|Mw =∞ and
hence P1 is unacceptable for our driver – it contains a forbidden passage (M2). On
the other hand, M-Dijkstra’s algorithm finds P2 = (a, b, c, d, e, f, g, h, i, j, k, l, m)
with |P2|Mw = 9 and P2 is optimal w.r.t. the penalized weight. Its steps are outlined
in subsequent Table 1 and Figure 3.

Step (u,X) (line 7) d[u,X] Q (line 16)

1 [a, ∅] 0 [b, ∅]
2 [b, ∅] 1 [c, (b, c)]; [t, ∅], [r, (b, r)]
3 [c, (b, c)] 2 [t, ∅]; [r, (b, r)]; [d, (b, c, d)]; [e, (b, c, d, e)]; [f, ∅]
4 [t, ∅] 2 [(r, (b, r)]; [d, (b, c, d)]; [e, (b, c, d, e)]; [f, ∅]
5 [r, (b, r)] 2 [d, (b, c, d)]; [e, (b, c, d, e)]; [f, ∅]; [l, ∅]
6 [f, ∅] 2 [g, ∅]; [s, ∅]; [d, (b, c, d)]; [e, (b, c, d, e)]; [l, ∅]
7 [d, (b, c, d)] 3 [g, ∅]; [s, ∅]; [e, (b, c, d, e)]; [l, ∅]
8 [g, ∅] 3 [h, (g, h)]; [s, ∅]; [e, (b, c, d, e)]; [l, ∅]
9 [e, (b, c, d, e)] 4 [h, (g, h)]; [s, ∅]; [l, ∅]
10 [h, (g, h)] 4 [i, ∅]; [s, ∅]; [l, ∅]
11 [i, ∅] 5 [j, (i, j)]; [s, ∅]; [l, ∅]
12 [j, (i, j)] 6 [k, (i, j, k)]; [s, ∅]; [l, ∅]
13 [k, (i, j, k)] 7 [s, ∅]; [l, ∅]
14 [l, ∅] 8 [m, ∅]; [s, ∅]
15 [m, ∅] 9 [s, ∅]

Table 1. State of selected data structures during the steps of Algorithm 1. The sec-
ond column shows a vertex-context pair chosen at the beginning of the while-
loop, i.e. min≤M

(Q). The third column shows its final distance estimate, i.e.
d[u,X] = δMw (a, u) and, finally, the last column depicts elements of the queue Q at
the end of the while-loop.

3.5 Experimental Results

In this section, we briefly examine the performance of the proposed algorithm. The
prototype of the M-Dijkstra’s algorithm is written in C. Publicly available road
networks are taken from TIGER/Line 20102 and from 9th DIMACS Implementation
Challenge3. We are using directed edges, i.e. every traffic lane is represented by
one edge. The compilation was done by gcc 4.5.1 with -O2, and the queries were
executed on 1GHz AMD Athlon(tm) 64 X2 Dual Core Processor 4 800+ with 2GB
of memory running GNU/Linux kernel 2.6.35.14. Notice that the data used contain
a considerable amount of errors, are planarized and contain no maneuvers data. For
this reason, we have generated various types of maneuver by ourselves.

2 http://www.census.gov/geo/www/tiger/tgrshp2010/tgrshp2010.html
3 http://www.dis.uniroma1.it/~challenge9/

Generalized Maneuvers in Route Planning 545

b(1)a(0) b(1)

r(2)

a(0)

c(2)

t(2) a(0)

r(2)

b(1) f(2)t(2)

d(3)c(2) e(4)

r(2)

b(1) f(2)

c(2)

t(2)

d(3) e(4)

a(0) b(1) f(2)

r(2)

l(∞)

c(2) d(3) e(4)

t(2)a(0) f(2)

r(2)

l(∞)

c(2) d(3)

t(2)

e(4)

g(3)

b(1)a(0)

s(12)

l(∞)

r(2)

b(1) f(2)

h(4)

g(3)

t(2)

c(2) d(3) e(4)

a(0)

s(12) r(2)

l(∞)

f(2)b(1)

i(5)

h(4)

g(3)

t(2)

d(3)c(2) e(4)

a(0)

s(10)
h(4)

r(2)

l(∞)

f(2)b(1)

i(5)

j(6)

g(3)

t(2)

d(3)c(2)

a(0)

e(4)

s(10)

i(5)

b(1) f(2)

e(4)

r(2)

l(∞)

h(4)

j(6)k(7)

g(3)

t(2)

c(2) d(3)

a(0)

s(10)

l(8)

r(2)

b(1) f(2)

e(4)

i(5)

h(4)

g(3)

d(3)

t(2)

c(2)

a(0)

j(6)k(7)

s(10)

a(0) b(1) t(2) f(2)

g(3)

h(4)
r(2)

m(9)

k(7) j(6)

i(5)

c(2) d(3) e(4)

s(10)

l(8)

Fig. 3. A computation of an optimal walk with respect to the penalized weight from a to m
in G. Numbers represent the distance from the start a. Black vertices are reached
or scanned and black edges were relaxed. Dotted edges represent maneuver edges.

Step 7 has no figure since it has the same figure as 6, analogously for 8.

546 P. Hliněný, O. Morǐs

First, we did the basic evaluation by comparing our M-Dijkstra’s algorithm
to the other two modification of Dijkstra’s algorithm mentioned in Section 1.1 –
one by Kirby and Potts [10] and another by Gutierrez and Medaglia [6]. We were
using only turn prohibitions as these two algorithms used in our comparison cannot
handle more complex maneuvers. We performed 1 000 random queries and then
took the average values. The same basic implementation of Dijkstra’s algorithm
was used in all three algorithm. Results were very similar, the average numbers
of scanned elements and running times were the same in average. Moreover, with
rather small number of generated turn prohibitions, results were even comparable to
the maneuver-free version of Dijkstra’s algorithm. All these results were expected
because turn prohibitions are the simplest types of maneuvers and cannot influence
the performance of evaluated algorithms too much.

Although it would be more interesting to compare our algorithm with differ-
ent approaches on road network with more complex route restrictions, there are
no comparable algorithms unfortunately. Therefore we compared our algorithm to
ordinary maneuver-free Dijkstra’s algorithm executed on a road network with al-
ready encoded maneuvers. Results of this basic evaluation indicate a very good
performance of our algorithm.

Algorithm Road Network Size Scanned Elements Time (ms)

MD 651 543/1 710 124 321 287 2 776

D∗ 1 117 114/2 256 870 527 385 3 939

Table 2. A comparison of ourM-Dijkstra’s algorithm (MD) with the classical maneuver-
free Dijkstra’s algorithm (D*) on the same road network but with all maneuvers
encoded into it. There are 50 000 maneuvers generated with average length 5, out
of them a quarter are negative maneuvers. Overhanging on more than one edge was
avoided. We randomly chose 1 000 pairs of vertices (of the original road network)

and computed optimal walks with respect to the (penalized) weight. Below we list
average values for numbers of scanned vertices and running times of algorithms.
We also remark that encoding maneuvers into the road network was algorithmically
non-trivial as well as time consuming (approx. 27 minutes).

4 CONCLUSION

We have introduced a novel generic model of maneuvers that is able to capture
almost arbitrarily complex route restrictions, traffic regulations and even some dy-
namic aspects of the route planning problem. It can model anything from single
vertices to long self-intersecting walks as restricted, negative, positive or prohibited
maneuvers. We have shown how to incorporate this model into Dijkstra’s algorithm
so that no adjustment of the underlying road network graph is needed. The running
time of the proposed Algorithm 1 is only marginally larger than that of ordinary
Dijkstra’s algorithm (Theorem 1) in practical networks.

Generalized Maneuvers in Route Planning 547

Our algorithm can be relatively straightforwardly extended to a bidirectional
algorithm by running it simultaneously from the start vertex in the original network
and from the target vertex in the reversed network. A termination condition must
reflect the fact that chained contexts of vertex-context pairs scanned in both direc-
tions might contain maneuvers as subwalks. Furthermore, since the A* algorithm
is just an ordinary Dijkstra’s algorithm with edge weights adjusted by a potential
function, our extension remains correct for A* if the road network is proper (Defini-
tion 4, namely iii.) even with respect to this potential function. Finally, we would
like to highlight that, under reasonable assumptions, our model can be incorporated
into many established route planning approaches.

Acknowledgments

We want to thank reviewers of both this article and our original paper submitted
to MEMICS ’11 [20], who took the time to carefully read what we wrote and make
corrections, additions, suggestions, and improvements to our original words.

This research has been supported by the grant of Czech Science Foundation
No. P202/11/0196.

REFERENCES

[1] Anez, J.—De La Barra, T.—Perez, B.: Dual Graph Representation of Trans-
port Networks. Transportation Research Part B: Methodological, Vol. 30, 1996, No. 3,

pp. 209–216.

[2] Cherkassky, B.–Goldberg, A.W.—Radzik, T.: Shortest Paths Algorithms:
Theory and Experimental Evaluation. Mathematical Programming, Vol. 73, 1996,
No. 2, pp. 129–174.

[3] Delling, D.—Wagner, D.: Time-Dependent Route Planning. In: Robust and
Online Large-Scale Optimization, LNCS, pp. 207–230, Springer 2009.

[4] Delling, D.—Sanders, P.—Schultes, D.—Wagner, D.: Engineering Route
Planning Algorithms. In Algorithmics of Large and Complex Networks, Lecture Notes
in Computer Science, pp. 117–139, Springer, Berlin, Heidelberg 2009.

[5] Dijkstra, E.: A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, Vol. 1, 1959, pp. 269–271.

[6] Gutierrez, E.—Medaglia, A.: Labeling Algorithm for the Shortest Path Problem
with Turn Prohibitions with Application to Large-Scale Road Networks. Annals of
Operations Research, 157:169–182, 2008, 10.1007/s10479-007-0198-9.

[7] Hart, P. E.—Nilsson, N. J.—Raphael, B.: Correction to “A Formal Basis for
the Heuristic Determination of Minimum Cost Paths”. SIGART, Vol. 1, 1972, No. 37,
pp. 28–29.

[8] Hliněný, P.—Morǐs, O.: Scope-Based Route Planning. In ESA ’11: Proceedings of
the 19th Conference on Annual European Symposium, pp. 445–456, Springer Verlag,
Berlin Heidelberg 2011, arXiv:1101.3182 (preprint).

548 P. Hliněný, O. Morǐs

[9] Jiang, J.—Han, G.—Chen, J.: Modeling Turning Restrictions in Traffic Network

for Vehicle Navigation System. In Proceedings of the Symposium on Geospatial The-
ory, Processing, and Applications 2002.

[10] Kirby, R. F.—Potts, R.B.: The Minimum Route Problem for Networks with

Turn Penalties and Prohibitions. Transportation Research, Vol. 3, 1969, pp. 397–408.

[11] Pallottino, S.—Scutellà, M.G.: Shortest Path Algorithms in Transportation
Models: Classical and Innovative Aspects. Technical report, Univ. of Pisa 1997.

[12] Pohl, I. S.: Bi-Directional and Heuristic Search in Path Problems. Ph.D. thesis,
Stanford University, Stanford (CA), USA, 1969.

[13] Schultes, D.: Route Planning in Road Networks. Ph.D. thesis, Karlsruhe Univer-
sity, Karlsruhe (Germany), 2008.

[14] Villeneuve, D.—Desaulniers, G.: The Shortest Path Problem with Forbidden
Paths. European Journal of Operational Research, Vol. 165, 2005, No. 1, pp. 97–107.

[15] Winter, S.: Modeling Costs of Turns in Route Planning. GeoInformatica, Vol. 6,
2002, pp. 345–361. 10.1023/A:1020853410145.

[16] Ziliaskopoulos, A.K.—Mahmassani, H. S.: A Note on Least Time Path Compu-
tation Considering Delays and Prohibitions for Intersection Movements. Transporta-
tion Research Part B: Methodological, Vol. 30, 1996, No. 5, pp. 359–367.

[17] Ahuja, R.K.—Orlin, J. B.—Pallottino, S.—Scutellà, M.G.: Minimum
Time and Minimum Cost-Path Problems in Street Networks with Periodic Traffic
Lights. Transportation Science, Vol. 36, 2002, No. 5, pp. 326–336.

[18] Ahmed, M.—Lubiw, A.: Shortest Paths Avoiding Forbidden Subpaths. In Pro-
ceedings of the 26th International Symposium on Theoretical Aspects of Computer
Science (STACS), 2009, pp. 63–74.

[19] Elmasry, A.: Pairing Heaps with O(log logN) Decrease Cost. In Proceedings
of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms – SODA ’09,
pp. 471–476.

[20] Hliněný, P.—Morǐs, O.: Generalized Maneuvers in Route Planning. In
MEMICS ’11: Selected LNCS Proceedings of the 7th Annual Doctoral Workshop on
Mathematical and Engineering Methods in Computer Science, pp. 155–166, Springer,
Berlin Heidelberg 2012, ArXiv:1101.3182 (preprint).

Petr Hlin�en�y received his Ph.D. degree in algorithms, combi-
natorics, and optimization from Georgia Institute of Technology,
Atlanta, USA in 1999, and in discrete mathematics from Charles
University, Prague, CZ in 2000. Currently he is an Associate
Professor at Faculty of Informatics, Masaryk University, Brno,

Czech Republic. His research interests are in and topological
graph theory, and in parameterized complexity theory.

Generalized Maneuvers in Route Planning 549

Ondrej Mori

�

s received his Master degree in computer sys-

tems from the Faculty of Informatics, Masaryk University, Brno,
Czech Republic in 2010. Since September 2010, he is a Ph.D.
student of Petr Hliněný and his research is aimed at route plan-
ning and algorithm engineering. Apart from this, he is also inter-
ested in parameterized algorithms and structural graph theory.

