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Abstract. Many multimedia applications require transmission of streaming video
from a server to a client across an internetwork. In many cases loss may be unavoid-
able due to congestion or heterogeneous nature of the network. We explore how
discard policies can be used in order to maximize the quality of service (QoS) per-
ceived by the client. In our model the QoS of a video stream is measured in terms
of a cost function, which takes into account the discarded frames. In this paper we
consider online policies for selective frame discard and analyze their performance by
means of competitive analysis. In competitive analysis the performance of a given
online policy is compared with that of an optimal offline policy. In this work we

present competitive policies for a wide range of cost functions, describing the QoS
of a video stream.
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1 INTRODUCTION

The emergence of high-speed networks facilitates many multimedia applications that
rely on the efficient transfer of compressed video. Such applications include stream-
ing video broadcasts, distance learning, shopping services, etc. However, compressed
video, especially variable-bit-rate (VBR) video, typically exhibits significant bursti-
ness on multiple time scales, owing to the encoding schemes and the content variation

∗ A preliminary version of this paper appeared at SIROCCO 2001.
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between and within video scenes [6], [9]. This burstiness complicates the design of
efficient transport mechanisms for such media. In a network where resources such
as bandwidth and buffering capacity are constrained there is a need for an efficient
video delivery system that can achieve high resource utilization and maximize the
QoS perceived by the user.

In reality both network bandwidth and buffering capacity are likely to be limited.
Under such circumstances there may be a situation in which a feasible transmission
schedule is impossible, i.e., any transmission necessarily incurs loss of data. In this
case instead of being denied service, clients may choose lower quality video streams
with occasional frame loss. This is a natural situation in today’s Internet where
the network may not have sufficient bandwidth to support the peak rate of a video
stream, or available bandwidth may fall below the requirement at the middle of
a video transmission. A naive approach is to discard frames with no awareness of
the video stream properties. As a result, the QoS perceived by the user may degrade
drastically, even for small amounts of loss (e.g. tail drop of consecutive frames). In
this paper we study intelligent selective frame discard policies, which take into ac-
count the application-specific properties in its decisions to discard particular frames,
minimizing the QoS degradation.

Previous work. Recently a number of packet discarding schemes incorporating
application-specific information have been proposed. In [12] appears a simple
strategy called Frame-Induced Packet Discarding, in which upon detection of
loss of a threshold number of packets belonging to a video frame, the network
attempts to discard all the remaining packets of that frame. In [8] the problem of
optimizing the quality of the transmitted video for a given cost function has been
considered with leaky bucket constraints. Our work differs from theirs in that
we are trying to optimize the QoS perceived by the user, rather than minimizing
loss in general. In [24] offline algorithms for optimal selective frame discard have
been considered. The notion of selective frame discard at the server has been
introduced and the optimal selective frame discard problem using a QoS-based
cost function has been defined. Unlike [24], we deal with online problem, when
no information regarding the video stream is known a priori. Dropping schemes
of MPEG frames are studied in [1, 23, 7].

Competitive analysis. We measure the performance of our algorithms using com-
petitive analysis [18, 2]. In competitive analysis the performance of an online
policy is compared with that of an optimal offline policy, which knows in advance
the entire sequence of frame arrivals. Competitive analysis is a natural approach
for Internet traffic, which is unpredictable and chaotic [19]. The advantage of
competitive analysis is that a uniform performance guarantee is provided on all
input sequences.

Our work. In this paper we study competitive online policies for intelligent selec-
tive frame discard at time of buffer overflow. We consider video streams without
inter-frame dependencies and assume that frames have a fixed size. In order to
measure the QoS perceived by the user we define a so called well-behaved cost
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function reflecting the playback discontinuity at the client. The cost of a dis-
carded frame depends either on the distance to the closest discarded frame or
on the position within a sequence of consecutive discarded frames it participates
in. The QoS level function is the sum of the costs of the discarded frames. We
consider various video stream settings, and our main result is that the competi-
tive ratio of the Greedy Policy is bounded by a constant for all of these settings.
At the end we show how our drop policy can deal with MPEG video streams
having complex inter-frame dependencies.

Related work. In [11] the problem of smoothing real-time streams has been con-
sidered. Competitive analysis of jitter control online algorithms appears in [10].
Recently, several bandwidth smoothing techniques have been introduced to re-
duce the server and network resource requirements for transmitting pre-recorded
video [4, 5, 15, 14]. These techniques are based on prior knowledge of the frame
sizes of the entire video. In contrast, interactive video applications, such as video
conferencing, typically have limited knowledge of the arrival sequence. Online
smoothing techniques of live video streams have been presented in [17, 13].

The rest of this paper is organized as follows. Summary of results is presented
in Section 2. Section 3 contains the model description. The Greedy Policy is defined
in Section 4. Section 5 contains the analysis of the Greedy Policy. We show how our
drop policy can be extended to handle MPEG video streams in Section 6. Section 7
contains concluding remarks.

2 SUMMARY OF RESULTS

In this section we give a brief overview of our main results while the formal defi-
nitions and proofs are deferred to the following sections. We analyze the natural
Greedy Policy by means of global and local QoS metrics. The Greedy Policy always
minimizes the loss incurred by a discarded frame, i.e., it always discards a frame that
incurs the minimal cost with regards to the current state of the sequence. A formal
definition of this policy is given later.

In our model each discarded frame has a non-zero cost given by a cost func-
tion. A cost function should provide measure of playback discontinuity, i.e., QoS
degradation perceived by the user. We take two main aspects into consideration:
the length of a sequence of consecutive discarded frames and the distance between
two adjacent, but non-consecutive discarded frames. We define a family of well-
behaved cost functions as follows. We require the cost of a single discarded frame
to be bounded from below by L and from above by U (L and U are some positive
constants). Similarly, the cost of a discarded frame at position l within a sequence
of consecutive discarded frames is bounded by L′ · l from below and by U ′ · l from
above (again L′ and U ′ are some positive constants). Intuitively a well-behaved
cost function is a convex function monotonically decreasing on the distance between
two non-consecutive discarded frames and increasing on the position of a discarded
frame within a sequence.
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We assume that the video stream is regulated by a leaky bucket. We consider
moderate and large values of burst parameter σ (exact definition will be given later)
defined with respect to the buffer capacity M (in frames). Notice that for σ ≤ M
there is no loss since the maximal burst could be completely accommodated by the
buffer. Moderate and large values of burst parameter correspond to σ ≤ 5

4
M and

σ > 5
4
M , respectively. We choose this threshold because for σ ≤ 5

4
M the Greedy

Policy does not discard consecutive frames.
The first set of our results deals with the competitive ratio of the Greedy Policy

with regards to the global QoS metric, that is the sum of the costs of all the dis-
carded frames under a well-behaved cost function. Our main result is presented in
Table 1: for any sequence of frames, the competitive ratio of the Greedy Policy is
min

(

L/U, LL′

(12L+L′)U ′

)

.

Moderate σ L/U

Large σ LL′

(12L+L′)U ′

Table 1. Greedy competitive ratio (general cost)

Notice that in presence of large bursts the competitive ratio of the Greedy Policy
linearly depends on the ratio between the constants. This is despite the fact that
the cost of a sequence of discarded frames depends quadratically on its length.

The next set of results deals with local QoS metrics that may be viewed as
“worst-case noise” metrics. We consider the main criteria affecting the playback
discontinuity at the client: the minimal distance between two adjacent discarded
frames and the maximal length of a sequence of consecutive discarded frames. We
denote by dOPT the minimal distance between two adjacent discarded frames pro-
duced by any competitive online policy (to be defined later) and by lOPT the maximal
length of a sequence of consecutive discarded frames created by an optimal offline

policy. Table 2 compares the minimal distance between two adjacent discarded
frames produced by the Greedy Policy with dOPT for moderate values of the burst
parameter and the minimal length of a sequence of consecutive discarded frames
created by the Greedy Policy with lOPT for large values of the burst parameter.

Minimal Distance (moderate σ) dOPT/2− 1

Maximal Length (large σ) 4lOPT + 3

Table 2. Worst-case noise metrics

3 MODEL DESCRIPTION

We consider a system with a single FIFO buffer delivering a video stream. We
assume that the buffer can hold exactly M frames (we assume that all frames have
the same size). Frames may arrive to the buffer at any time and send events are
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synchronized with time. We divide time into slots so that during each slot one
video frame is sent. A buffer policy has to decide for each incoming frame whether
it should be either rejected or accepted subject to the buffer capacity constraints.
A frame in the buffer may be also preempted by the policy. However, all the frames
must be sent in FIFO order.

Now we describe the traffic-shaping policy, i.e., the regulation of the rate at
which a flow is allowed to inject packets into the QoS network. We consider leaky
bucket traffic-shaping mechanism in which only a fixed amount of traffic is admitted
to the network. Excess traffic is held in a queue until either it can be accommodated
or must be discarded. A (σ, ρ) leaky bucket model with a burst parameter σ and
a rate parameter ρ, during time interval of length t, has at most ρ · t + σ packet
arrivals. Our results vary with the size of σ.

Definition 3.1. A (σ, ρ)-source is a source that generates stream that is shaped by
a (σ, ρ) leaky bucket policer.

In our model each frame has the corresponding cost. The cost of a frame depends
on the positions of previously discarded frames. The goal is to design a policy that
minimizes the total cost incurred. Next we give a formal definition of the notation
used. We start with a notation for a sequence of frames.

Definition 3.2. A sequence of frames is denoted by S. The start and the finish
time of S are denoted by tstart and tfinal, respectively.

Next we set the notation to indicate lost frames.

Definition 3.3. The loss indicator Xf (t) corresponds to whether frame f was dis-
carded at time t, i.e., Xf (t) is 1 if f is discarded prior to time t and 0 otherwise.

Now we define the parameters which determine the cost of a discarded frame.

Definition 3.4. Let d(f, t) be the distance between a frame f and the closest dis-
carded frame preceding f at time t, or 0 if there is no such frame. Let pos(f, t)
be the position of a frame f within a sequence of consecutive discarded frames at
time t, or 0 if f does not participate in such a sequence, i.e., if the previous and the
following frames to f are not discarded at time t.

Once we have the necessary notation we can define the structure of the cost
function.

Definition 3.5. The cost of a discarded frame f at time t is denoted by cφ1,φ2
(f, t).

If d(f, t) > 0 then cφ1,φ2
(f, t) = φ1(d(f, t)), otherwise cφ1,φ2

(f, t) = φ2(pos(f, t)).

We define the cost incurred by a policy over a sequence of frames as the sum of
the costs of discarded frames.

Definition 3.6. The cost of a policy A while scheduling S is the sum of the costs
of the discarded frames, i.e., LA(S) =

∑

f Xf (t
final)cφ1,φ2

(f, tfinal).
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Now we introduce a class of well-behaved cost functions. In order to provide
measure of playback discontinuity, a cost function should take two aspects into
consideration: the length of a sequence of consecutive discarded frames and the
spacing between two adjacent, but non-consecutive discarded frames (see [15]). The
motivation behind the definition is as follows. For a single discarded frame the QoS
degradation is minor while for sequences of consecutive discarded frames it is signi-
ficant. Therefore, we would like the cost of a single discarded frame to be bounded
by constant and the cost of a discarded frame within a sequence to be bounded by
a constant factor of its position within a sequence of discarded frames (notice that
the cost of a lost block would depend quadratically on its length). The cost of a frame
within a sequence must be at least as high as the cost of a single discarded frame since
it is always preferable, with respect to the video stream QoS, to drop a frame whose
neighbors are not discarded. The QoS perceived by the user degrades as the distance
between two discarded frames decreases or the length of a lost block increases. So we
require a cost function to be monotonically increasing with: (1) decreasing distance
between two non-consecutive discarded frames (2) increasing position of a discarded
frame within a sequence of consecutive discarded frames. The best QoS is achieved
when the loss is distributed as evenly as possible over the whole sequence. Therefore,
the cost function should be minimal in this case. We require that the cost function
is convex because the minimum of a convex function is established when all dropped
frames are evenly spaced.

Definition 3.7. We say that a cost function cφ1,φ2
is well-behaved iff there exist

positive constants L, U , L′ and U ′, 0 < L ≤ U ≤ L′ ≤ U ′, satisfying the following
constraints with respect to φ1:

1. ∀d : L ≤ φ1(d) ≤ U (bounded cost)

2. if x < y then φ1(x) > φ1(y) (φ1 is anti-monotone)

3. ∀x, y : φ1((x+ y)/2) ≤ (φ1(x) + φ1(y))/2 (φ1 is convex)

and with respect to φ2:

1. ∀l : L′ · l ≤ φ2(l) ≤ U ′ · l (bounded average-cost)

2. if x > y then φ2(x) > φ2(y) (φ2 is monotone)

3. ∀x, y : φ2((x+ y)/2) ≤ (φ2(x) + φ2(y))/2 (φ2 is convex).

For instance, a well-behaved cost function c with L = 1, U = 2 and L′ = U ′ = 2
might assign a cost to a discarded frame f as follows. If the frame is the l-th frame
within a sequence of consecutive discarded frames then c(f) = 2l. Otherwise, the
cost is defined based on its distance to the previous discarded frame d, and given
by the formula c(f) = 1 + 1/

√
d. This cost function has been extensively studied

in [20].
To analyze the performance of the Greedy Policy we introduce the following

definitions.
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Definition 3.8. Let the lost set of a policy at time t be the set of discarded frames
that arrived during the time interval [t−M + 1, t]. Let the frame set of a policy at
time t be the union of its lost set at time t and the frames in the buffer at time t.
Let a lost block be a maximal sequence of consecutive discarded frames.

Now we turn to define competitive analysis. In competitive analysis (see [18]) the
performance of an online policy is compared with that of the optimal policy (OPT ),
which knows in advance the entire sequence of frame arrivals. The competitive ratio
is the minimum over all input sequences of the ratio between the cost incurred by
OPT and the the cost incurred by the given online policy. More formally:

Definition 3.9. A policy A is c-competitive if for every sequence of frames S,
c · LA(S) ≤ LOPT (S). (Note that 0 ≤ c ≤ 1). If c > 0 we also say that A is
competitive.

Notice that a competitive online policy must not discard a frame from the input
sequence S if OPT does not discard any frame from S.

4 GREEDY POLICY

We define a natural “Greedy Policy”. The state of the policy depends on the previous
decisions of the policy to discard particular frames.

Greedy Policy. Each time when the buffer is full and a frame arrives the policy
discards a frame that minimizes the sum of the increase in cost of previously
discarded frames plus the cost of the discarded frame itself.

4.1 Examples

Intuitively, when the Greedy Policy selects a frame to be discarded, the decision
is optimized locally with respect to the current state of the system. On the other
hand, OPT optimizes its decision globally with respect to the entire schedule. We
study the performance of the Greedy Policy scheduling moderate and large bursts.
Let us consider a system consisting of a buffer that is able to hold 3 frames. We
define the schedule of a policy to be the sequence of arrive and send events (if any)
for a stream of video frames.

Moderate bursts. For moderate bursts the Greedy Policy does not drop adjacent
frames, as we prove later. Suppose that at time 0 the buffer is empty and a burst
of 3 frames arrives. During the following t time units one frame is sent by the
Greedy Policy and one frame arrives. Finally, at time t a burst of 4 frames
arrives. In this case the Greedy Policy would drop 3 frames among the last six
frames because its buffer is full. At the same time OPT would evenly distribute
the loss over the whole sequence, which can be done since the buffer is not empty
throughout this time interval. The resulting video streams appear on Figure 1
(dropped frames are marked by ×).
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Fig. 1. Outcoming video streams of Greedy and OPT (moderate bursts)

Large bursts. In presence of massive bursts both OPT and the Greedy Policy
are forced to drop consecutive frames. In this case the loss of OPT is uniformly
divided between lost blocks while the Greedy Policy may create larger lost blocks.
However, they are balanced later by future discards. Suppose that at time 0 the
buffer is empty and a burst of 3 frames arrives. During the following t time
units one frame is sent by the Greedy Policy and one frame arrives. Finally, at
time t a burst of 8 frames arrives. Notice that the Greedy Policy would have its
buffer full and OPT would have its buffer empty at this time. Now the Greedy
Policy and OPT would discard 7 and 5 frames, respectively. The resulting video
streams are shown in Figure 2.
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Fig. 2. Outcoming video streams of Greedy and OPT (large bursts)

5 ANALYSIS OF GREEDY POLICY

In this section we analyze the performance of the Greedy Policy. The following
definition introduces the worst-case noise produced by an optimal offline policy for
the case of moderate and large bursts.
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Definition 5.1. Let the minimal distance between two neighboring discarded fra-
mes produced by any policy when k frames are lost during time interval of length s be
denoted by dOPT (k, s). Let the maximal length of a lost block produced by any policy
when k frames are lost during time interval of length s be denoted by lOPT (k, s)

1.

5.1 Moderate Burst Size

We consider video streams generated by a (σ, ρ) source with σ ≤ 5
4
M . We show

that the competitive ratio of the Greedy Policy is at least L/U . To establish the
competitive ratio we introduce an estimation of the optimal minimal distance be-
tween discarded frames. Then we derive the cost of the loss of the Greedy Policy
using this estimation. In particular we demonstrate that the distance between two
discarded frames under the Greedy Policy is at least half the estimation minus one,
and show that it is almost optimal distance for a competitive online policy (up to
a factor of 2). First we need some auxiliary lemmas.

Observation 5.1. When the number of frames lost in a time interval of s time
units is k, the optimal minimal distance satisfies dOPT (k, s) ≤ ⌈M+s

k−1
⌉.

The observation holds since during s time units at most M + s frames could be
accepted. By the monotonicity and the convexity properties of φ1, the cost func-
tion is minimized when the discarded frames are equally distributed, i.e., when the
minimal distance between two discarded frames is maximized. A simple combina-
torial argument shows that the maximum is achieved when discarded frames divide
the M+s accepted frames into k−1 balanced parts. The following lemma compares
the performance of the Greedy Policy to dOPT .

Lemma 5.2. When frames are scheduled according to the Greedy Policy and the
size of the lost set is bounded by k, then the minimal distance between two adjacent
discarded frames is at least dOPT (k, 0)/2− 1.

Proof. Suppose by way of contradiction that the Greedy Policy discards a frame
violating the condition of the lemma. Let the size of the lost set at this time be
m ≤ k − 1. We assume that frames in the lost set are enumerated starting from
the end of the sequence. Let d0 denote the number of accepted frames in the buffer
preceding the most recent discarded frame in the lost set, let di denote the distance
between the i-th and i + 1-th discarded frames in the lost set, and let dm denote
the number of accepted frames in the buffer succeeding the latest discarded frame
in the lost set.

The Greedy Policy always tries to maximize the resulting minimal distance
between two discarded frames by definition of well-behaved cost function. If the

1 When there are no adjacent frames discarded in the time interval, then lOPT (k, s) = 1;
when the maximum lost block in the time interval consists of two adjacent frames, then
lOPT (k, s) = 2; etc.
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condition of the lemma is violated, then the following holds. The distance between
any pair of adjacent discarded frames is at most dOPT (k, 0)− 2 and d0 is not greater
than dOPT (k, 0)/2−1. If it is not the case the Greedy Policy would have been able to
discard a frame without having the minimal distance falling below dOPT (k, 0)/2−1.

Observe that the buffer is full and each of the frames currently in the buffer takes
part in exactly one of the above distances. Thus, the sum of distances bounds M ,
and we have

M ≤
m
∑

i=0

di ≤ d0 + (m− 1)(dOPT (k, 0)− 2) + dm.

If there exists a discarded frame not in the lost set then m ≤ k − 2 and dm ≤
dOPT (k, 0)− 2. In this case we obtain

d0 + (m− 1)(dOPT (k, 0)− 2) + dm

≤ dOPT (k, 0)/2− 1 + (k − 3)(dOPT (k, 0)− 2) + dOPT (k, 0)− 2

≤ (k − 1)(dOPT (k, 0)− 2).

If all the discarded frames belong to the lost set then dm ≤ dOPT (m, 0)/2− 1 and
m ≤ k − 1. In this case we get

d0 + (m− 1)(dOPT (k, 0)− 2) + dm

≤ dOPT (k, 0)/2− 1 + (k − 2)(dOPT (k, 0)− 2) + dOPT (k, 0)/2− 1

≤ (k − 1)(dOPT (k, 0)− 2).

Consequently,

dOPT (k, 0) ≥ M
k−1

+ 2,

which contradicts Observation 5.1. 2

The following claim states that the Greedy Policy does not discard consecutive
frames for the case of moderate bursts.

Claim 5.3. For any sequence generated by a (σ, ρ)-source with σ ≤ 5
4
M , the Greedy

Policy does not discard consecutive frames.

Proof. Observation 5.1 and Lemma 5.2 imply that the minimal distance between
two adjacent discarded frames is at least 1. 2

In the next theorem we show that the Greedy Policy is L/U -competitive. Notice
that the Greedy Policy schedules a maximum number of frames.

Theorem 5.4. For any sequence generated by a (σ, ρ)-source with σ ≤ 5
4
M , the

competitive ratio of the Greedy Policy is at least L/U .

Proof. By Claim 5.3, the Greedy Policy incurs cost of at most U per frame whereas
OPT discards the same number of frames with cost of at least L. 2
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Next we show that there exists a sequence of frames such that no online policy
could improve the dOPT (M/4, 0) distance estimation while OPT is able to discard
frames which are arbitrarily far apart. The intuition behind the proof is that no
online policy can discard frames at time of underflow while being competitive. That
means that a competitive online policy might receive a burst of maximum size
when its buffer is full, while OPT could smoothly distribute the discarded frames
throughout the entire sequence.

Theorem 5.5. There exists an input sequence generated by a (σ, ρ)-source with σ ≤
5
4
M so that any online policy discards frames at distance of at most dOPT (M/4, 0)

while in OPT the distance between any two discarded frames is arbitrarily large.

Proof. Suppose that frames are scheduled according to an online policy A. We
construct a sequence of frames so that, on the one hand, OPT either does not
discard any frame or the distance between two discarded frames is arbitrarily large
and, on the other hand, A either discards at least one frame or discards M/4 frames
that are very close.

Consider the following scenario. At time ts = 0 the buffer is empty andM frames
arrive. Then during sufficiently long scheduling period till time tf one frame arrives
every time unit. The online policy A cannot discard any of these frames without
being 0-competitive.

A burst of M/4 frames arrives at the end of the period (at time tf ). Note that
since A did not discard any frame its buffer is full. Henceforth, A necessarily discards
M/4 frames when the burst arrives at time tf . According to Observation 5.1 the
optimal distance between two discarded frames is dOPT (M/4, 0). However, OPT
could have evenly distributed the M/4 discarded frames until time tf and accept all
the burst of M/4 frames. Therefore, the distance between two discarded frames is
dOPT (M/4, tf − ts), which can be made arbitrarily large. 2

The following is an immediate consequence of Theorem 5.5.

Corollary 5.6. The competitive ratio of any online policy is at most L/U .

5.2 Large Burst Size

We consider video streams generated by a (σ, ρ)-source with σ > 5
4
M . This is an

interesting case for bursty VBR video streams. Notice that now the Greedy Policy
may be forced to discard consecutive frames. In a similar spirit to the distance
between discarded frames, we obtain bounds on the lengths of lost blocks. The
problem here is that the dependence of a cost of such a sequence on its length is
not linear but quadratic. This means that the cost of loss may increase drastically
when σ increases.

Nevertheless, it turns out that in this case OPT also suffers large loss. We
establish that the competitive ratio of the Greedy Policy is LL′

(12L+L′)U ′
. In order to

show this we introduce an estimation of the optimal maximal length of a lost block.



540 A. Kesselman, Y. Mansour

Then we derive the cost of the loss of the Greedy Policy and OPT in terms of
this estimation. Moreover, we show that the length of a lost block produced by the
Greedy Policy is at most larger by factor of 4 than the lower bound for OPT . Before
we prove the main theorem we show a few lemmas. The following observation states
the value of lOPT .

Observation 5.7. When the number of frames lost throughout a time interval
of s time units is k, then the maximal length of a lost block satisfies lOPT (k, s) =
⌈ k
M+s+1

⌉.

The observation holds since during s time units at most M + s frames could be
accepted. A simple combinatorial argument shows that any schedule will have a lost
block of size at least

⌈

k
M+s+1

⌉

.

Lemma 5.8. When frames are scheduled according to the Greedy Policy and the
size of the lost set is bounded by k, then the maximal length of a lost block is at
most 2lOPT (k, 0) + 1.

Proof. Suppose by way of contradiction that the Greedy Policy discards a frame
that arrived at time t and violates the condition of the lemma. The Greedy Policy
always maintains the minimal possible length of the maximal lost block by definition
of a well-behaved cost function. Therefore, if the condition of the lemma is violated
then we have the following.

The cumulative size of the lost blocks in the lost set adjacent to an accepted
frame in the buffer is at least 2lOPT (k, 0)+ 1. If it is not the case the Greedy Policy
would have been able to discard a frame without creating a lost block of length
greater than 2lOPT (k, 0)+1 (it would have discarded the frame between the two lost
blocks instead of discarding the frame which violates the condition of the lemma).
When we consider lost blocks adjacent to the accepted frames in the buffer, each
lost block is counted at most twice. In addition we have a lost block of length at
least 2lOPT (k, 0)+1 that is adjacent to the most recent accepted frame solely. Thus,

the sum of the lengths of all the lost blocks is at least
(

M−1
2

+ 1
)

(2lOPT (k, 0)+1) =
M+1
2

(2lOPT (k, 0) + 1).
However, the size of the lost set is upper bounded by k; therefore

k ≥ M + 1

2
(2lOPT (k, 0) + 1),

implying that

lOPT (k, 0) ≤
k

M + 1
− 1

2
,

which contradicts Observation 5.7. 2

For simplicity we assume in the sequel that lOPT (k, s) =
k

M+s+1
.
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Observation 5.9. The cost of k discarded frames divided into lost blocks of length l
under a well-behaved function is bounded from below by L′ · l+1

2
k and from above

by U ′ · l+1
2
k.

Proof. Consider a lost block of length l and let us denote the i-th frame within
the block by fi. By the definition of a well-behaved cost function, the cost of fi is
bounded from below and from above by L′ · i and U ′ · i, respectively. Thus, summing
over all frames in the block we get

L′ · l(l + 1)

2
≤

l
∑

i=1

φ2(fi) ≤ U ′ · l(l + 1)

2
.

Since there are k/l such blocks, the total cost is at least L′ · l+1
2
k and at most U ′ · l+1

2
k.
2

The next lemma shows that for large bursts OPT unavoidably pays the cost of
producing sizable lost blocks.

Lemma 5.10. When frames are scheduled according to the Greedy Policy and the
size of the lost set is k > M then OPT discards at least k−M frames from the lost
set and pays cost of at least L′(lOPT (k −M,M) + 1)(k −M)/2.

Proof. The lost set contains frames that arrived during the last M time units.
Observe that the number of frames accepted throughout this time interval by the
Greedy Policy and by OPT may differ by at most M frames, i.e., OPT is able to
accept M additional frames if its buffer is empty at the beginning of the interval.
The lemma follows by Observation 5.7 and Observation 5.9. 2

The next proof uses a technique of “k-matching” between loss of the Greedy
Policy and OPT . In k-matching the lost blocks of the online policy are divided into
disjoint sets that are matched to sets of frames lost by OPT so that each frame lost
by OPT appears in at most k such sets. The lost blocks of the Greedy Policy are
matched either by 1-matching or by 3-matching. Evidently, the competitive ratio of
the Greedy Policy is at least the minimum of the minimum ratio of 1-matched sets
and one third of the minimum ratio among 3-matched sets.

Theorem 5.11. For any sequence generated by a (σ, ρ)-source with σ > 5
4
M , the

competitive ratio of the Greedy Policy is at least LL′

(12L+L′)U ′
.

Proof. We divide the schedule of the Greedy Policy into intervals of length M .
Let us consider lost sets at the last time moment of every interval. Note that each
discarded frame belongs to exactly one of these sets. First we identify and match
the lost sets of the Greedy Policy that participate in 3-matching. Having finished
with 3-matching, the remaining lost sets participating in 1-matching are arbitrarily
matched to sets of the same cardinality formed from the remaining unmatched
frames lost by OPT . Notice that both Greedy Policy and OPT lose the same
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number of frames. Thus, there always remains a sufficient number of remaining
unmatched frames lost by OPT for 1-matching provided that 3-matched online lost
sets have cardinality smaller than their offline counterparts.

We bound the cost of a lost set of the processed interval by determining the
maximal length of a lost block to which the frames from the interval’s lost set could
belong. Suppose that we process the i-th interval [Mi,M(i + 1)). Let k be the
cardinality of the lost set of the interval (i.e. lost set at time M(i + 1) − 1) and
let tmax be the time within the interval, M(i − 1) ≤ tmax < M(i + 1), in which
the cardinality kmax of the lost set is maximal. Clearly, frames from the lost set
could belong to the maximal lost block whose length is given by the estimation of
Lemma 5.8 at time tmax, that is 2lOPT (kmax, 0) + 1. We define a threshold value of
T = C ·M , for a constant C. The relation between T and kmax determines the type
of matching used. Finally, we choose the constant C so as to optimize the obtained
competitive ratio. We consider two cases.

(1) If kmax > C ·M then the lost set of the current interval takes part in 3-matching.
We match the lost set to a set of kmax − M frames that were necessarily lost
by OPT during time interval [tmax −M − 1, tmax]. This is indeed a 3-matching
since each of the offline lost frames could participate in at most three such sets,
that is the matched set of the interval and the corresponding matched sets of
the adjacent intervals.

Lemma 5.10 implies that the cost incurred by OPT is at least

L′(lOPT (kmax −M,M) + 1)(kmax −M)/2.

At the same time by Observation 5.9 the cost incurred by the Greedy Policy is
at most

U ′(lOPT (kmax, 0) + 1)k ≤ U ′(lOPT (kmax, 0) + 1)kmax.

Hence, the ratio between the cost of the offline and the corresponding online lost
sets is

L′(lOPT (kmax −M,M) + 1)(kmax −M)/2

U ′(lOPT (kmax, 0) + 1)kmax

=
L′((kmax −M)/(2M + 1) + 1)(kmax −M)/2

U ′(kmax/(M + 1) + 1)kmax

=
L′ kmax+M+1

2M+1
(kmax −M)/2

U ′ kmax+M+1
M+1

kmax

=
L′(M + 1)(kmax −M)

2U ′(2M + 1)kmax

>
L′(M + 1)(kmax −M)

2U ′(2M + 2)kmax

=
L′(kmax −M)

4U ′kmax

=
L′

4U ′
(1−M/kmax) >

L′

4U ′
(1− 1/C) =

(C − 1)L′

4CU ′
.
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(2) If kmax ≤ C ·M then the lost set of the current interval takes part in 1-matching.
By Observation 5.7 the optimal maximal length of a lost block is at most C.
Applying Lemma 5.8 we obtain that the maximal length of a lost block of dis-
carded frames for the Greedy Policy is at most 2C + 1. Therefore, according to
Observation 5.9 the cost of the lost set is upper-bounded by (C + 1)U ′k. The
ratio is kept above L

(C+1)U ′
since each lost frame has cost at least L.

The competitive ratio of the Greedy Policy is the minimum of the ratio of
1-matched sets and one third the ratio of 3-matched sets. To derive the opti-
mal C we equate these ratios:

(C − 1)L′

12CU ′
=

L

(C + 1)U ′
,

C2 − 12L

L′
C − 1 = 0,

C =
6L

L′
+

√

(
6L

L′
)2 + 1 ≈ 12L

L′
.

Therefore, the optimized competitive ratio is L

( 12L
L′

+1)U ′
= LL′

(12L+L′)U ′
.

2

Next we show that the length of a lost block created by the Greedy Policy is at
most four times the optimal length of a lost block of OPT plus three.

Lemma 5.12. For any input sequence S the length of the maximal lost block sa-
tisfies lGREEDY (S) ≤ 4 · lOPT (S) + 3.

Proof. By Lemma 5.8 the maximal length of a lost block produced by the Greedy
Policy is at most 2lOPT (k, 0)+1 when the size of the lost set is k. At the same time by
Lemma 5.10 the optimal length of a lost block in this case is at least lOPT (k−M,M).
The theorem follows since

2lOPT (k, 0) + 1 ≤ 4lOPT (k −M,M) + 3.

2

We conclude with the following general theorem.

Theorem 5.13. For any sequence of frames, the competitive ratio of the Greedy
Policy is at least min(L/U, LL′

(12L+L′)U ′
).

6 MPEG VIDEO STREAMS

In this section we discuss how to schedule MPEG video streams employing the
Greedy Policy. In processing a video stream, the MPEG encoder produces three
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types of frames. The first type, I , are called intra coded frames. These are the
simplest type of frame containing a coded representation of a still image to provide
the decoder a starting point for decoding the next group of frames. P frames are
the next type, called predicted frames. When decoding, they are created from
information contained within the previous P or I frame. The last type of frame is
the most common type, the B or bi-directional frame. B-frames are both forward
and backward predicted and they are constructed from the previous and the next P
or I frame. Finally, the encoder breaks up a sequence into Groups of Pictures
(GOPs), with an I-frame at the beginning of each GOP, e.g. IBBPBBPBBPBB.

We can extend the cost of a frame to include the cost of all the dependent frames.
This means that the cost of I frame will include the cost of dropping the whole GOP
while the cost of P frame will subsume the cost of dropping the dependent B frames.
In addition, the cost function could be modified to assign weights to frames with
respect to their types. As a result, the Greedy Policy would first drop B frames. If
that action is not sufficient, the Greedy Policy drops P frames as well, and in the
worst case, it would drop all B and P frames as well as some I-frames. Observe
that the Greedy Policy always tries to optimize the global QoS, while drop filters
proposed earlier optimize only the local QoS within GOPs.

7 CONCLUSION

In this work we study competitive online buffering policies for video transmission
across internetwork with leaky bucket constraints. First we consider video encoding
schemes with independent frames. To measure the QoS we define a well-behaved cost
function reflecting the playback discontinuity at the client. For moderate and large
burst parameters we derived the competitive ratio of the Greedy Policy. In addition
to the global QoS function we consider local metrics, such as the minimal distance
between two discarded frames and maximal length of a sequence of consecutive
discarded frames. The Greedy Policy is shown to be competitive with regard to
these metrics as well. Then we demonstrate how our model can be extended to
process MPEG video streams with complex inter-frame dependencies.

The proposed policy may be used for managing current Internet routers that
wish to provide QoS. Some interesting future directions include studying more so-
phisticated cost functions and performing simulations in which performance of online
dropping policies is estimated more properly using a global QoS function.
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