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Abstract. A process functional paradigm is based on applications of processes and
functions instead of assignments. The imperative computation and the functional
evaluation are clearly separated in a well-balanced manner, providing the strong

feedback about the implementation to a user. In this paper we present the unified
approach to explicit and implicit environments in PFL – an experimental process
functional language, as a uniform basis for approved implementation extensible by
additional specification. PFL environmental concept is the generalized implemen-
tation substance, which can be found in many programming languages exploiting
the large variety of programming paradigms. Environment variables do not occur in
expressions, being still visible to a programmer either in PFL textual form or in an
equivalent form of control driven data flow graphs. The approach is promising for
reasoning about the functional correctness and predicting the behavior of systems.
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1 INTRODUCTION

The role of the state in systems is crucial. In the past, combining imperative and
functional paradigms to exploit the benefits of both — the ability to manipulate the
state preserving at the same time functional semantics — has result to two categories
of functional languages, able to manipulate the state [17, 1, 2, 3, 16, 21, 22, 27].

The first category comprises languages that have assignments used in expressions
in an explicit form, such as SML [17] or Scheme [1]. Such languages are characterized
as environment-based [23], since environment variables occur in expressions.

The second category comprises languages, such as Clean [2, 3] or Haskell [22],
that hide assignments to a user, performing them implicitly, abstracting from en-
vironment variables. Clean and Haskell are imperative functional languages, since
they are functional languages, manipulating the state in a hidden way to a user.
They are often classified as being not environment-based languages, since they use
the lazy evaluation mechanism based on the graph reduction.
PFL — an experimental process functional language [9, 10, 11, 12, 13] inte-

grates both imperative and functional paradigms since we have found them essen-
tial as those being associated with the physical resources of underlying computer
architectures. Therefore PFL origins are rather in imperative functional program-
ming languages, than in some more abstract multi-paradigmatic languages, such
as Oz [4, 20, 24].

Our essential idea is to make the strong boundary between the specification
and implementation, concentrating at the first stage to balancing the abstraction
with respect to the development of “the most abstract” implementation language.
Rather than determining fixed strategy for a single programming language it is more
interesting for us and it is far more flexible for constructing the systems to derive
this strategy on the basis of both specification and architecture resources.

A PFL program consists of a set of recursive functions and processes and the
main expression. A pure function is just a specific process, such that it does not
affect a variable environment and both arguments and value of pure functions are of
data types, not however of unit type () (as it is in Haskell, for example). On the other
hand, a process is a function, such in which at least one argument is bound statically
to an environment variable, or at least one argument or value is control (of unit
type). Syntactically, there is no difference between process and function definitions.
They differ just by their type definitions that either contain environment variables
and/or unit types (in case of a process), or not (in case of a function). Hence, type
definitions for processes are obligatory, while type definitions for pure functions are
optional.

There are no assignments in PFL available. Evaluating the main expression, the
program is executed, similarly as it is in functional languages Haskell and Gofer [8].
On the other hand, the variable environments comprising cells of memory are visible
to a programmer via type definitions of processes.

We do not use in PFL source program neither low level functional constructs,
such as LET strict or lambda non-strict expressions, nor such abstractions as mo-
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nads [26, 27], since we do not want to hide the imperative actions to a user making
them functional; we just want to separate them from purely functional grains to
provide the transparent and strong feedback about mapping a problem to target
architecture to a user.

The state is changed by applications of processes and may be monitored using
graphic interface strongly bound to the source program visualizing the flow of data
in environments. As we hope, the well-balanced structure of PFL is promising for
reasoning about the functional correctness and predicting statically the behaviour
of the systems using the approaches for Petri nets [6, 7] in the future.

This paper deals neither with the reasoning, nor with the detailed description
of PFL language. Here we present the unified approach to explicit and implicit
environments, using process functional paradigm, concentrating technically more on
giving the PFL language shape than the semantics. For the purpose of explanation,
the sequential evaluation of arguments of processes by value, i.e. the eager evaluation
is supposed.

It is not to say that such categorization of environments is standard, we just
have found them simply existing. The difference between them is as follows. Ex-
plicit environment is formed by a set of new variables (memory cells) defined by
a programmer, i.e. explicitly in type definitions of processes. Implicit environment
is formed by a selected subset of the set of memory cells, being comprised in a struc-
tured value (such as tuple, or array). Such value is accessed via lambda variable in
a function body, and each sub-cell may be used as an environment variable for each
local process. Thus, structured values provide potential opportunity for affecting
their sub-cells by local processes in the same manner, as if these cells were explicitly
defined. It is not so hard to see that restricting just to implicit environment, object
concept of a language is impossible. Object environment is associated with abstract
typing and with explicit environments [13]. The motivation for the categorization
above is simple uniform structure of PFL as an implementation language.

Special remarks to sharing the environment variables are introduced in conclu-
sion with respect to further work.

In Section 2 we present the essential concept of an environment variable as
a mutable abstract type representing a memory cell, able to store and retrieve the
values, when activated by process application.

Section 3 provides a brief introduction to static binding of an environment to
a process (unshared case), as well as an informal operational semantics of process
application with respect to state change, restricted however to sequential eager eva-
luation, as mentioned above.

The extension of the explicit environment concept to the implicit one is intro-
duced in Section 4.
PFL examples would be more explanatory, if all supported by the equivalent

form of control driven dataflow graphs. Unfortunately, this is impossible due to
limited scope of the paper. Control driven dataflow [11] is rather akin to Petri
nets execution [6, 7] than to data or demand driven dataflow, exploited in dataflow
architectures [25]. PFL programs are introduced in mathematical form i.e. instead
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of ->, if, x, [], . . . the notation →, if , x, [ ], . . . is used. On the other hand, since
curly brackets { and } are PFL language symbols, the brackets [ and ] are used for
(mathematical) sets, whenever required.

2 ENVIRONMENTAL APPLICATION

The notion of a variable in a purely functional language is mathematical; a variable v
is a value of the type T , i.e. v : T .

On the other hand, an imperative variable is a memory cell used to store values.
The environment is the mapping from variables to values, as follows:

env = V ar→ V al. (1)

The value of an environment variable v is accessed by the application (env v),
and a new value m is assigned to v by [v 7→ m]. According to definition (1), each
environment variable is a passive element of the computation, which is accessed
and/or updated by active elements, such as assignment operations.

Suppose now that the variable is not just a cell, but it is a “more active” entity,
which may be applied, when defined as the overloaded mapping:

v :
∼

T→ T . (2)

Such mappings are related to the theory of mutable abstract types [5].
From the functional point of view, the mapping (2) has two instances (3); the

identity, which means the update of an environment (1) variable, and a “constant”,
which means the access of a value in an environment (1) variable:

the update

{
v : T → T
v x = x

the access

{
v : ()→ T
v () = env v.

(3)

Hence, the variable v may be applied either to expressions of data type T or

unit type (), i.e. of the type
∼

T . The application rule for an environment variable is
as follows.

v :
∼

T→ T m :
∼

T

v m : T
(4)

However, the application (4) is not functional, but rather environmental, since
the operational semantics is still related to an environment (1). Moreover, it may
be performed just implicitly, i.e. by a process application, since this is the only
way in von Neumann computers, how it may be activated. A single argument pro-
cess is translated (see Section 3) into lambda abstraction (λx.e), and environmental
application is its argument. Then the operational semantics of environmental appli-
cation (v m) is dependent on the type of an expression m. The update of a variable v
by an expression m of data type T , is performed as follows:
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Eval[[(λx.e) (v m)]] env = Eval[[e[(env v)/x]]] [v 7→ m] env, if m : T . (5)

On the other hand, the access to an environment variable is performed, if an
environment variable v is applied to an expression m of unit type:

Eval[[(λx.e) (v m)]] env = Eval[[e[(env v)/x]]] env, if m : (). (6)

According to (4), (5) and (6), if v :
∼

T→ T , then x : T , i.e. lambda variable x
bound to an environment variable v cannot be of the type (). In PFL we strongly
distinct the control value () (known as unit value in functional languages), of unit
type () from data values of the type T . When applying an environment variable
to an expression evaluated to the control value (), provided that an environment
variable was not initialized, then v () = ⊥, i.e. x = ⊥. The detection of such
inappropriate applications of environment variables to control values is the matter
of a sophisticated type checking, highly parametrised by the separated evaluation
strategy, providing the transparent feedback to a user bound to the PFL source
program.

Environmental applications are easily and efficiently implemented using built-
in LETENV operation — a hidden access/update operation executed before an
argument value is used in a process application [9].

As shown below, a variable environment is derived in the form of the set of
mappings (2), instead of mappings (1).

3 DERIVING AND OPERATING THE ENVIRONMENT

Although internally the environment variables are applied to expressions, being ar-
guments of processes, they never occur in expressions of PFL source form. Instead
of that, environment variables are bound statically to processes by type definitions
of processes. In this way the state is determined by the semantics of process appli-
cations exclusively, being not affected by an inapproriate occurence of environment
variables elsewhere in expressions. We may even say that adding the semantics
of process application is the only step needed when adopting a non-deterministic
implementation language into a deterministic programming language.

For the purpose of explanation, as a sample of the process application semantics,
below the leftmost innermost order of evaluation will be assumed, i.e. such in which
the arguments of processes are evaluated sequentially and eagerly.

In contrast to a function definition, each process definition comprises the type
definition. In general, an m-argument process definition is as follows.

f :: T1 → . . .→ Tm →
∼

T
f x1 . . . xm = e

(7)
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where m ≥ 0, T ::= v T | v {R} T |
∼

T ,
∼

T ::= () | T , T ::= T → T | {R} →
T | TD T . . . T

︸ ︷︷ ︸

u

| T P , {R} is n-dimensional range {R} ::= {TR
1 , . . . , TR

n }, TR
i

are range types — enumerated algebraic types, characters, integers, or their finite
subranges in the form cLi . . c

U
i , corresponding to lower and upper bounds of an array,

cLi , c
U
i : TR

i , TD is an algebraic data type of the arity u ≥ 0, T P is a primitive data
type or the type variable, v is an environment variable, and () is unit type.

A process argument type is T . A process value type is T , such that does not

contain an environment variable v, i.e. it is
∼

T . A pure function arguments and/or
value are of the type T .

To prevent misunderstanding, the source “type expression” (v T ) is a syntactic

shortcut for (v :
∼

T→ T ). Similarly, the “type expression” (v {R} T ) is a syntactic

shortcut standing for (v {i} :
∼

T→ T ), such that {i} ∈ {R}. Thus, if v is an array,
then (v {i}) is an environment variable for an i-th item of this array.

Example 3.1 illustrates the translation step, in which the environment is derived.
At the same time, we will show how the sequential process applications are operated
using scalar environment variable u, algebraic data environment variable v and array
environment variable w. As shown later, provided that u, v and w are not lambda
variables, they all belong to explicit environment. For example, this comes into
account if process f is defined in global (main program) scope marked by s = 0.

Example 3.1.

Let us define an algebraic type C and a PFL process f :

data C = Red | Green | Blue

f :: a→ u a→ v C → w {Bool, 2 . . 5} a→ a
f x y c i = x+ y + i, if c = Red

= x+ y − i, otherwise.

The control driven data flow graph for the above definition is introduced in
Figure 1. Notice the different input arcs — a thick white arc is data arc, a thick
gray arc is spatial arc addressing the array element in the form of an offset computed
with respect of element type, and a thin black arc is control arc. Corresponding to

the type
∼

T , input arc of environment variables is either data or control arc, depending
on data or unit type of incoming argument. In addition to the process definition in
Example 3.1, the direct control inputs and control output of a process expression
are allowed, which results to PFL ability for expressing any imperative program, as
shown in [10].

At the first stage, the type environment is derived

[u :
∼

a→ a, v :
∼

C→ C, w : {Bool, 2 . . 5} → (
∼

a→ a),
f : a→ a→ C → a→ a]

(8)
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u v
w

w{True, 5}

ef

x y c i

ef = x+ y + i, if c = Red
= x+ y − i, otherwise

Fig. 1. The definition of the process f

marking u, v and w as the environment variables, and transforming the type defi-
nition of f . The aim of the derivation above is to disconnect environment variables
and (seemingly) pure function definition. For example, source shortcut (u a) for

the second argument type implies environment variable u of the type
∼

a→ a and
functional argument of the type a. Since w is an array, it is a spatial mapping of the

type {Bool, 2 . . 5} → (
∼

a→ a), i.e. a variable cell affected such as (w {False, 3}) is

of the type (
∼

a→ a). The derivation is more complicated, if an environment variable
is shared by multiple processes, since then its type is derived by unification.

In general, for all applications of the process f , the argument types are unified.
As a result, the type environment (8) is derived being specialized to a monomor-
phic one. Omitting the detailed representation of such monomorphic types, let the
derived monomorphic type environment be as follows:

[u :
∼

Int→ Int, v :
∼

C→ C, w : {Bool, 2 . . 5} → (
∼

Int→ Int),
f : Int→ Int→ C → Int→ Int]

Then the variable environment Es in the scope s, equal to the scope of the
process f , is derived, in the form:

Es = [u :
∼

Int→ Int, v :
∼

C→ C,w : {Bool, 2 . . 5} → (
∼

Int→ Int)].

Suppose now the application (f 3 5 Red ({False, 3} 6)) occurs somewhere in
an expression, such that f is accessible. Notice that it contains no environment
variable. This application is translated into the following form:
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(f 3 (u 5) (v Red) (w {False, 3} 6)).

The result of the application in the run time is as follows:

[u 7→ 5, v 7→ Red, w{False, 3} 7→ 6] 14,

where the environmental mappings preceding the evaluation are enclosed in brackets,
and the result of purely functional evaluation is 14.

Suppose the source form of application application (f 2 ()Blue ({False, 3} ())) –
translated into (f 2 (u ()) (v Blue) (w {False, 3} ())) is evaluated subsequently to
the preceding application. It yields the result

[u 7→ 5, v 7→ Blue, w{False, 3} 7→ 6] 1,

as shown in Figure 2.

u v
w

ef

5 Blue

6

1

Fig. 2. The result of application (f 2 () Blue ({False, 3} ()))

While the fourth argument is evaluated in the Example 3.1, two subsequent
expressions were internally evaluated: (w {False, 3} 6) and (w {False, 3} ()). Con-
stant index expression {False, 3} was used here to illustrate the update and the
subsequent access of the same ({False, 3}-th item of an array w. Considering more
general form (w {eBool, e2 . . 5} m), such that {eBool, e2 . . 5} : {Bool, 2 . . 5}, and

m :
∼

Int, the expression is evaluated in two steps as follows:
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w : {Bool, 2 . . 5} → (
∼

Int→ Int) {eBool, e2 . . 5} : {Bool, 2 . . 5} m :
∼

Int

w {eBool, e2 . . 5} :
∼

Int→ Int m :
∼

Int

w {eBool, e2 . . 5} m : Int

,

where the first application (w {eBool, e2 . . 5}) is not environmental, but rather spa-
tial, addressing the spatial position of an array item, while the second
(w {eBool, e2 . . 5} m) is environmental application evaluated to an item value (of
the type Int) used in an expression. The array w of the type {Bool, 2 . . 5} →

(
∼

Int→ Int) is static array, because it cannot be used in expressions in a higher
order manner. Lambda variable representing the array item value is of the type
Int. There is no way however for static arrays to obtain lambda variable of the type

{Bool, 2 . . 5} → (
∼

Int→ Int).

Deriving the environment and reasoning about undefined values which results
in simplified notion of lambda variables type in the form T instead of seemingly
more correct T⊥, are based on the proposition of first order processes, i.e. such that
may be applied just in the form (f e1 . . . en), where f is the name of a process, not
in higher order form (e0 e1), available for functions. It is easy to see that allowing
processes in the form e0 computable in the run time, the selection of a set of accessed
and/or updated environment variables would be run time dependent, i.e. it could
not be reasoned statically.

A new purely functional thread of evaluation starts by application of a process
to argument of the type (). This thread may cause side effects, affecting the state
of computation, being alone not affected. Purely functional threads (or grains) of
computation may be detected in the compile time, and they are strongly related to
the source program.

4 IMPLICIT ENVIRONMENT

The environment variables form a set of typed places (possibly shared by different
processes and different arguments of the same process), in the role of an input
memory gate of a process. In this way the “dangerous” imperative state affecting
actions are separated from the “safe” evaluation of expressions. At the same time,
imperative assignments are closely related to process applications. Both actions and
memory cells can be expressed in the form of control driven dataflow graphs.

So far we have considered variables comprised in an explicit environment, since
they were introduced using new names, different from lambda variables, in the type
definitions of processes. As shown below, the extension of this concept to implicit
variable environment defined by a selected subset of lambda variables is gentle;
a variable may be a member of an explicit environment, if it is not a member of an
implicit environment.
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Let x@(p, q) be a pair x of two items p, and q, that are either values in expres-
sions, or memory cells in type definitions of local processes, as shown below.

Let us consider the definition of a “pure” function in the form as follows:

f x@(y@(p, q), r) = ef

in the scope s, and suppose the application (f ((ep, eq), er)), such that ep, eq and
er are expressions, ep evalutes to control value (ep : ()) and both eq and er evaluate to
data values. Let the value x of the argument, as illustrated in Figure 3, be partially
defined.

scope s((ep, eq), er)

(ep, eq)

er

eq

scope (s+ 1)

ef

Fig. 3. The application f ((ep, eq), er)

The lambda variable x is the constant which cannot change in the context of
f definition; this guarantees the referential transparency of the expression evalua-
tion.

According to the pattern matching rule

x@(y@(p, q), r) : ((T1, T2), T3)

x : ((T1, T2), T3) y : (T1, T2) p : T1 q : T2 r : T3

the selection mechanism guarantees the variables x, y, p, q, and r are (old) values
that may be potentially used in the expression ef . The type checking however
excludes p from this set, since p value is undefined, as shown in Figure 4.

On the other hand, the value represented by lambda variable x can be redefined
partially, updating one or more of variables y, p, q, and r that are implicit envi-
ronment variables — potential environment variables for any process defined in the
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scope s

scope (s+ 1)

ef

x y r

q

Fig. 4. The use of old values x, y, q, and r in ef

scope (s + 1), local to the scope s. Pattern matching rule for implicit environment
variables is as follows:

x@(y@(p, q), r) : ((T1, T2), T3)

y :
∼

(T1, T2)→ (T1, T2) p :
∼

T1→ T1 q :
∼

T2→ T2 r :
∼

T3→ T3

and y, p, q and r may belong to the implicit environment I (s+1) — a set of environ-
ment variables for all processes defined in the scope (s+1) local to scope s provided
that these processes use them in their type definitions.

For instance, let y, p, q and r be all used in the type definition of a process g in
Example 4.1.

Example 4.1.

f x@(y@(p, q), r) = ef
where

g :: y (T1, T2)→ r T3 → p T1 → q T2 → Tg

g a b c d = eg

corresponding to Figure 5.

Then it holds

[y :
∼

(T1, T2)→ (T1, T2), p :
∼

T1→ T1, q :
∼

T2→ T2, r :
∼

T3→ T3] ⊆ I (s+1).
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y r

p q

scope s

scope (s+ 1)

ef

eg

a b c d

Fig. 5. The use of implicit environment by a process g local to f

The types of arguments of processes having been defined in the scope (s+1), local
to the scope s may be derived automatically. Thus, it is possible to use underscore

instead of explicit type
∼

T , designating “any” type, i.e. such that can be derived.
The state may be manipulated even excluding the explicit environment from the

computation as it is done in imperative functional languages, by the application of
the local process, such as g when defining a new value ep. In PFL, however, the
previous value in p may be undefined.

The same situation arises when processes or functions are applied to dynamic ar-
rays. A PFL array is an extensionally defined mapping from the space of (n-grid) im-
material positions to values, which is created either fully undefined or fully defined,
and it can change its definition during the computation. To create n-dimensional
array with undefined items we provide the aggregated array creator, similar to the
type expression, but used in an expression, as follows:

{RF} → (),

where {RF} is a finite subrange, {RF} ⊆ {R}, taking into account that the array is

created being first of the type {RF} →
∼

T→ T , and then, when each item is applied
to (), it is of the type {RF} → T .

Except creating fully undefined arrays, PFL array creator {RF} → m, where
m : T , serves to create a fully defined array comprising iteratively evaluated expres-
sion m, storing the evaluated values subsequently in a memory chunk allocated to
an array. Such aggregated computation is implemented using built-in loop compre-
hension [12].
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Let us have the array created as follows

{RF
1 } → {R

F
2 } → ()

and suppose a process f is applied to {RF
1 } → {R

F
2 } → (). Then, the corresponding

type of an argument in the process f type definition may occur just in the form
w ({R1} → {R2} → T ), where w is either implicit or explicit environment variable,
since it is commonly impossible to define finite ranges in source program, that are
computed in the run time. Then, the derived type for an environment variable w is
as follows:

w :

∼
︷ ︸︸ ︷

({R1} → {R2} → T )→ ({R1} → {R2} → T ).

Notice however that it is not so much substantial whether the argument type
of f comprises the environment variable w, as introduced above, or not. In both
cases, either according to the environmental application rule (4), or directly, the
corresponding lambda variable x of either the process or function f is of the type

x : {R1} → {R2} → T .

Lambda variable x can be used in the definition of f in the next forms: x, which
means the array of the array of item values, x {eR1} means the array of item values
(of the type {R2} → T ), and x {eR1} {eR2} means the value of item, of the type T ,
still being ⊥, if the array was not initialised. The lambda variable x itself cannot be
an environment variable, since it is a constant — a pointer to a contiguous chunk of
memory representing the array of array of items. On the other hand, the chunks of
memory consist of environment variables. Therefore, if f is defined in the scope s,
it holds:

[x {R1} :

∼

︷ ︸︸ ︷

({R2} → T )→ ({R2} → T ), x {R1} {R2} :
∼

T→ T ] ⊆ I (s+1).

Then it is possible to define a process g in the scope (s + 1) local to f using
argument type x {R1} ({R2} → T ), or x {R1} {R2} T . But, since both range types
and the item type are derivable from the type of lambda variable x, the argument
types can be defined using any type , in the form (x {} ), or (x {} {} ).

Explicit environment variables names must differ not just from the names of
processes and functions, but also from the names of variables forming implicit envi-
ronment at the same scope. The last check is easily performed using the condition

v :
∼

T→ T ∈ Es, if v :
∼

T→ T 6∈ Is

for all v T attempting to be an argument type of a process in the scope s, such
that v be an explicit environment variable. Clearly, argument type expressions
comprising “any” type cannot be used for explicit environment variables, since their
types cannot be derived.
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Manipulating static and dynamic arrays is illustrated in Examples 4.2 and 4.3.
While explicit static array of the size maxT in Example 4.2 represented by a va-
riable table is initialised by process init, which uses loop comprehension applies
tab iteratively; the dynamic array of the same size is created and initialised in
Example 4.3 by application of init′ defined by array creator.

According to the definition of a process acup the k-th item of table is either
accessed and/or updated by an application acup ({k} m), depending on the type
of m (() or T ), which is decidable statically.

Example 4.2.

tab :: table {0 . . maxT − 1} [Char]→ ()
tab = ()

init :: ()
init = (tab ({i} [ ]) | i← {1 . . maxT})

acup :: table {0 . . maxT − 1} [Char]→ [Char]
acup item = item

In Example 4.3, while the k-th item of a dynamic array t (having been created
by init′) can be accessed (not however updated) by the application access t k, the
application (tab′ t i) means either access or update by the value m, depending on
the type of m (decidable statically again). Using the implicit environment formed
by the lambda variable table of tab′ the access or update action is performed here
by application of local process acup′.

Example 4.3.

init′ :: {0 . . maxT − 1} → [Char]
init′ = {0 . . maxT − 1} → [ ]

access :: ({0 . . maxT − 1} → [Char])→ Int→ [Char]
access table i = table{i}

tab :: ({0 . . maxT − 1} → [Char])→ Int→ [Char]
tab table index = acup′ ({index} m)

where

acup′ :: table {} →
acup′ item = item

In both cases array items are initialised to the empty string [ ], but initialising
expression is not limited to a constant in general. Omitting the styles in which
the applications are bound to form a program in the whole, as well as the form of
derivable types in the type definition of acup′, there is no difference in manipulating
the static array by application of acup and the dynamic array by application of acup′.
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Concluding, the following explicit and implicit environments are recognized:

• Explicit environment for values

• Explicit environment for static arrays

• Explicit environment for structured data

• Implicit environment formed by a dynamic array

• Implicit environment formed by structured data.

Furthermore, except that explicit environments are appropriate to be bound to
physical architecture resources, they form object environment, as shown in [13].

Notice also that sharing a subset of explicit environments by multiple modules
is a perfect basis for the implementation of a modular language systems.

The description of architecture dependent, object and modular PFLconstructs
is over the scope of this paper.

At the present time, object oriented PFL is bound to MPI — a message passing
interface [18, 19]. In particular, extending explicit environment concept to implicit
one enables exploiting MPI routines such as MPI BSend (buffered send). The phy-
sical notion of memory in PFL is necessary for exploiting new MPI datatypes, such
as contiguous, strided vector, indexed and structure datatypes. Object paradigm is
necessary to solve some imbalances introduced in MPI standard [15].

5 CONCLUSION AND FURTHER WORK

A PFL environmental concept is the generalized implementation substance, which
occurs in programming languages exploiting large variety of programming para-
digms. The language structure is ballanced with respect of giving strong boundary
separating the specification, which is associated with a problem, and implementa-
tion, which is associated with the architecture resources while a program is executed.

In this paper, the concepts of explicit and implicit environments are unified.
No implicit environment for values can be defined, since lambda variables are

values, not environment variables. On the other hand, a lambda variable is well
defined, if it is defined partially.

That is why imperative records and functional tuples are semantically unified
using a single concept of PFL tuples; each data structure may be partially defined,
not however just for the reason that an item was not yet evaluated, as it is in purely
functional languages. For example, the value of (1, ()) is a pair (1,⊥), i.e. with the
second item undefined. The construction of partially defined values corresponds to
an imperative programming paradigm. Using process functional paradigm, the use
of undefined values may be checked far simpler and it is far more tightly bound
to source program than it is in an imperative language, since PFL program is an
expression. The PFL ability for variant records is illustrated in Example 3.1, where
the values of algebraic type C are stored in the same memory cell of external envi-
ronment.
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PFL arrays are extensional partial processes, defined as mappings from space to
values that either exist (static arrays) fully undefined or they are created (dynamic
arrays) either fully undefined or fully defined. The definition of arrays may change
during computation.

The future is to use PFL in the role of a high level, typed and still non-
deterministic implementation language which semantics is determined by the ad-
ditional specification. The sequencing of updates and/or accesses, which guarantees
the required level of determinism is the main problem. Usually the sequencing
mechanism is defined by appropriate constructs incorporated into a general purpose
programming language, fixing its semantics, either combining multiple paradigms
as it is done in Oz [4, 20, 24], or determining the evaluation strategy explicitly in
imperative and/or functional languages.

However, deriving the “most appropriate” sequences of “process application fir-
ings” by additional specification seems to be more flexible. Moreover, as we hope,
it might result in approved implementation of the systems. Our idea comes out
from the results reached in [6, 7]. The analogies between statically structured Petri
nets and dynamically evolving control driven dataflow nets can be found. These
are promising for static reasoning about the evolution of computation, which would
provide the approved profile for the systems [14], i.e. such which guarantees the
functional correctness as well as their expected behavior, minimizing at the same
time the computational overheads.
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Radhoštěm, Czech Republic, April 27–29, 1999, pp. 41–48.

[10] Kollár, J.: PFL Expressions for Imperative Control Structures, Proc. Scient. Conf.
CEI’99, October 14–15, 1999, Herl’any, Slovakia, pp. 23–28.

[11] Kollár, J.: Control-driven Data Flow, Journal of Electrical Engineering, Vol. 51,
2000, Nos.3–4, pp. 67–74.

[12] Kollár, J.: Comprehending Loops in a Process Functional Programming Language.
Computers and Artificial Intelligence, Vol. 19, 2000, pp. 373–388.

[13] Kollár, J.: Object Modelling Using Process Functional Paradigm. Proc. ISM’2000,
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