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Abstract. This paper provides an introduction to the specification language Z from
a logical perspective. The possibility of presenting Z in this way is a consequence of
a number of joint publications on Z logic that Henson and Reeves have co-written
since 1997. We provide an informal as well as formal introduction to Z logic and
show how it may be used, and extended, to investigate issues such as equational
logic, the logic of preconditions, the issue of monotonicity and both operation and
data refinement.
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1 INTRODUCTION

This paper describes an approach to Z logic – it is relatively unconcerned with
Z semantics, except insofar as the existence of a non-trivial model is useful for
establishing the consistency of the logic. The paper neither attempts to replicate,
nor to extend, the excellent work on Z standardisation which has led to ISO standard
13568.1 It is, rather, complementary, seeking to explore and express the logical
preliminaries of Z2 and aiming to describe those uncontroversial properties of the
major elements of the language, in particular, the language of schemas and its
calculus.

The approach to Z logic taken here is mainly based on three papers [17, 18, 19];
these remain the comprehensive technical resource for two separate though related
approaches (we make some reference to the distinction in Section 3.5). Our objective
in this paper is to provide a more accessible overview of that work and to highlight
some more advanced related work beyond specification, in particular in the theory
of refinement, that becomes possible by virtue of the Z logic that we describe.

The paper is structured in three parts. The first is the least formal and most
accessible: it explores initial considerations concerning the formalisation of vernacu-
lar3 Z with particular reference to the novel features (those that take Z beyond, at
least in expressivity, higher-order logic) concerning schema types and bindings. The
second part of the paper is a more formally presented account of Z logic (the logicZC)
and how that may be extended by means of a series of conservative extensions
to more comprehensive logical systems with wider coverage. We are by no means
encyclopædic and the earlier papers referred to above contain more detail and a more
formal account. The final part of the paper contains the most advanced material:
it looks beyond Z as a specification language and ZC as a logic for reasoning about
specification. It demonstrates the further utility of such a logic by showing how
various theories of equality, operation and data refinement can be integrated with,
and issues such as monotonicity explored within, the base logic in a smooth and
systematic manner: something made possible with a logic in place. This survey
relies on the reader’s previous general knowledge of the topics it briefly surveys.
The paper ends with some concluding remarks, our acknowledgements and relevant
references to the literature.

1 The Z Standard does not provide a logic. The strategic decision to exclude a logic
was reported in [22]. An inconsistency [16] was discovered in the (unfinished) draft logic

submitted as part of the ISO Committee Draft 1.2 of the Z Standard in 1995.
2 Although beginning from its logical first principles, this paper does not begin Z itself

from first principles. The reader is assumed to be familiar with Z notation and concepts
as described in one of the better textbooks, for example, [33].

3 By vernacular Z we refer to Z as it has been used in practice and as it is reported in
informal and semi-formal accounts in the literature.
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2 INITIAL CONSIDERATIONS

We take it as self-evident that any formal specification should permit precise con-
sequences to be drawn: the emphasis in the term formal method should fall on the
second word and not the first. A language, even one with a semantics, is impoveri-
shed if there is no logic: it would provide no means for drawing those consequences
in a methodical, reproducible and agreed fashion. In this first part of the paper we
re-introduce the key features of specification in Z from a logical perspective. Our
objective is to motivate and introduce the basic principles of the logic ZC and to
explain why this core logic is a satisfactory basis for establishing logical apparatus
for a range of Z concepts.

2.1 Z Schemas and Bindings

At the heart of Z is the schema. Schemas are usually used in two ways: for describing
the state space of a system and for describing operations which the system may
perform.

Example 1. Informal state space: a jug of capacity 250ml of water having a current
volume and a current temperature. As a schema:

Jug
volume : N
temp : N

volume ≤ 250
temp ≤ 100

Written in linear form this would be:

Jug =̂ [volume : N; temp : N | volume ≤ 250 ∧ temp ≤ 100]

This schema has the name Jug and introduces two observations, volume and temp,
which have some natural number value (i.e. drawn from the set N) in each system
state.4 The states which comprise a schema are called bindings, each binding be-
longing to a schema is a legitimate state of the system. In this example the bindings
associate values (of the correct type) to the observations named volume and temp.
We use the word “observation” and never call them “variables”. If one pursues
the “schemas as sets of bindings” interpretation (which has been quite standard)

4 Note that the schema describes a state space, that is, a set of legitimate system states.
This is worth stressing because some informal accounts give a mixed message, sometimes
suggesting that a schema describes a particular state.
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then these are constants, not variables. Most informal accounts run into immediate
difficulty in this area.5

We will write bindings like this:6

〈| volume ⇛ n, temp ⇛ m |〉

where, in this case, n ∈ N etc. Naturally, it should follow that, for example:

〈| volume ⇛ 100, temp ⇛ 20 |〉 ∈ Jug

and also:
〈| volume ⇛ 100, temp ⇛ 200 |〉 6∈ Jug.

It is possible to extract the values associated with observations from bindings. This
is called binding selection. For example, we should be able to show:

〈| volume ⇛ 100, temp ⇛ 20 |〉.volume = 100.

In order to capture these ideas we begin by introducing the idea of a schema type:

[ · · · zTi

i · · · ] .

This is an unordered sequence of typed (indicated by superscripts) observations
(the zi). Then schemas are either schema sets :

[ · · · zi : C
PTi

i · · · ]

or they are atomic schemas :
[ S | P ]

where the Ci are sets, S is a schema and P is a predicate.
Of particular note are the carrier sets of the various types. These are formed

by closing:
N =df {z

N | true}

under the cartesian product, power type and schema type operations.7

No ambiguity results from the overloading of the symbol N here: types appear
only as superscripts – all other uses denote the carrier set.

We have remarked that schemas are sets of bindings. So the logic of schemas
can be obtained from the logic of sets and bindings. In ZC , for sets, we have:

P [z/t ]

t ∈ {z | P}
({}+)

t ∈ {z | P}

P [z/t ]
({}−).

5 See for example [33]. In chapter 11, page 149, they are “variables”; by page 154 they
are “components” (constants).

6 ISO Z uses == rather than ⇛, a notation which dates back to [28] and [29].
7 In fact N is only one possible base type. See Section 3 for further details.
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Note that ZC is strongly typed, so these (typed) set comprehensions present no
technical difficulties. See Section 3 for further details.

For bindings, ZC has:

〈| · · · zi⇛ti · · · |〉.zi = ti
(⇛=

 ) 〈| · · · zi⇛t .zi · · · |〉 = t [···z
Ti

i
···]

(⇛=
 )

The first of these establishes what information may be extracted from bindings; the
second confirms that these values are all that the binding contains.

The logical rules for schemas flow from the following ZC definitions:

[ · · · zi : Ci · · · ] =df {x | · · · ∧ x .zi ∈ Ci ∧ · · ·}

and

[ S | P ] =df {z ∈ S | z .P}.

The binding selection operator, introduced in the object logic for selection from bind-
ings (that is, ZC terms such as z .x) is generalised into a meta-language substitution
over terms (that is, meta-terms such as z .t) and over propositions (meta-terms such
as z .P)8. This is essentially a straightforward structural recursive generalisation of
binding selection, and appears in more detail in Section 3 below.

The rules for schema sets are then derivable in ZC :

· · · ti ∈ Ci · · ·

〈| · · · zi⇛ti · · · |〉 ∈ [· · · zi : Ci · · ·]
([]+)

t ∈ [· · · zi : Ci · · ·]

t .zi ∈ Ci
([]−)

and, for atomic schemas :

t ∈ S t .P
t ∈ [S | P ]

(S+)
t ∈ [S | P ]

t ∈ S
(S−

 )
t ∈ [S | P ]

t .P
(S−

 ).

Then for example, writing b for 〈| volume ⇛ 100, temp ⇛ 20 |〉, we have:

....
100 ∈ N ∧ 20 ∈ N

b ∈ [volume : N, temp : N]
([]+)

....
100 ≤ 250 ∧ 20 ≤ 100

b ∈ Jug
(S+)

as expected, with the trivial steps omitted.

The elimination rules allow us to determine properties of specifications. For
example, taking the product of the temperature and the volume as a rudimentary

8 This is modelled to some extent on the more complex object language substitution
frogspawn operator to be found in the faulty logic presented in [26]. A thorough analysis
of frogspawn terms is presented in [19].
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measure of the thermal energy of the water, we can show that this is never bigger
than 25000:

b ∈ Jug
1, (S−

 )

b.volume ≤ 250 ∧ b.temp ≤ 100

b.volume ∗ b.temp ≤ 25000

∀ b ∈ Jug • b.volume ∗ b.temp ≤ 25000
1.

2.2 Schema Algebra and Filtered Bindings

Having now considered simple schemas, we will move on immediately to consider an
operation from the schema calculus: schema conjunction.

Example 2. Consider the schema expression:

Jug ∧ Jug ′.

This is also often referred to as ∆Jug and will be necessary when we consider
operation schemas. A precise logical explanation of priming schemas is given below.
For now, it is safe to rely on one’s informal understanding.

In order to provide a logical account of schema conjunction, we need to introduce
a concept crucial to ZC : the type restriction (or filtering) of a binding. Roughly,
the bindings we expect in the schema S0 ∧ S1 are those common to S0 and S1.
But the story is more complicated: the types of S0 and S1 (say T0 and T1) need
not necessarily be the same. In order for S0 ∧ S1 to be well-defined, these types
must agree on their overlap. We will write T0 g T1 (in the meta-theory) for the
compatible type union (it is not defined if they are incompatible) of T0 and T1.
Then, more precisely, the bindings in S0 ∧ S1 will be all the bindings z in T0 g T1

so that z restricted to T0 is a member of S0, and restricted to T1 is a member of S1.
Note that when the types are disjoint, this is effectively a union operation.

We write z ↾T for the ZC term called the restriction (or filtering) of the binding z
to the type T . Naturally it is only well-formed when the type of z is an extension
of T . For example, in ZC we can prove:

〈| x⇛3, y⇛4 |〉 ↾ [xN] = 〈| x⇛3 |〉.

We will write T0 � T1 in the meta-theory when T0 is a schema subtype of T1 in
this sense. The critical ZC rule which effects restricted bindings is this:

tT0 .zi = ti
(t ↾ T1).zi = ti

(↾=) T1 � T0 and z ∈ αT1.

The meta-term αT refers to the (meta-)set of observations occurring in T (the
alphabet of T , see Section 3 below).

A natural generalisation of membership is useful, when T1 � T0:

zT0
.
∈ S PT1 =df z ↾ T1 ∈ S .
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This idea can also be applied to equality:

tT0

0
.
= tT1

1 =df t0 ↾ (T0 f T1) = t1 ↾ (T0 f T1).

Here we have written T0 f T1 for schema type intersection. The notation is most
usefully employed when T1 � T0 or T0 � T1.

More generally we have:

tT0

0 =T tT1

1 =df t0 ↾ T = t1 ↾ T .

This notation is most usefully employed when T � T0 and T � T1.
With all this in place, we can define schema conjunction by translating the

informal description above into a ZC definition:

S
PT0

0 ∧ S
PT1

1 =df {z
P(T0gT1) | z ↾ T0 ∈ S0 ∧ z ↾ T1 ∈ S1}

which leads immediately to the following rules:

t
.
∈ S0 t

.
∈ S1

t ∈ S0 ∧ S1

(S+
∧ )

t ∈ S0 ∧ S1

t
.
∈ S0

(S−
∧


)
t ∈ S0 ∧ S1

t
.
∈ S1

(S−
∧


).

Example 3. Now let us move on to consider operations which change the state.
Adding water to the jug:

AddWater
∆Jug
more? : [v : N, t : N]

volume ′ = volume +more?.v
temp′ = (volume ∗ temp +more?.v ∗more?.t) div volume ′

The declaration in this case amounts to the schema:

Jug ∧ Jug ′ ∧ [more? : [v : N, t : N]].

Given this observation, no modification of the interpretation of our definition for
atomic state schemas is necessary. For example, using the rules already provided
(together with other unexceptional rules of equality and propositions) we can prove:

b ∈ AddWater

where b is the binding:

〈| volume⇛50, temp⇛25,more?⇛m, volume ′⇛150, temp′⇛41 |〉

and m is the binding:
〈| v⇛100, t⇛50 |〉.
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We have:

....
b

.
∈ Jug

....
b

.
∈ Jug ′

b
.
∈ Jug ∧ Jug ′

(S+
∧ )

δ....
b

.
∈ [more? : [v : N, t : N]]

b ∈ Jug ∧ Jug ′ ∧ [more? : [v : N, t : N]]
(S+

∧ )
....
P

b ∈ AddWater
(S+)

writing P for 150 = 50 + 100 ∧ 41 = (50 ∗ 25 + 100 ∗ 50) div 150 and where, for
example, δ is:

b
.
= 〈| more?⇛m |〉

100 ∈ N 150 ∈ N

m ∈ [v : N, t : N]

〈| more?⇛m |〉 ∈ [more? : [v : N, t : N]]

b
.
∈ [more? : [v : N, t : N]]

.

Example 4. This operation simply takes the temperature of the water in the jug:

TakeTemp
ΞJug
read ! : N

read ! = temp

This is, as is well-known, shorthand for:

TakeTemp
∆Jug
read ! : N

read ! = temp
θJug = θJug ′

According to the definition given above, this is interpreted as the following set of
bindings in ZC :

{z ∈ ∆Jug ∧ [more? : [v : N, t : N] ∧ [read ! : N]]|z .(read ! = temp ∧ θJug = θJug ′)}.

What is so far missing from our account is an explanation of θ-terms. In the un-
primed case:

θS P[···z
Ti

i
···] =df 〈| · · · zi⇛zi · · · |〉.

Thus zT0 .θS PT1 = z ↾ T1 whenever T1 � T0.
In the primed case we have θS ′ = θ′S where:

θ′S P[···z
Ti

i
···] =df 〈| · · · zi⇛z′i · · · |〉.
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The second of these suggests, correctly, that in fact we have an operation (called θ′)
on S rather than S ′. Indeed, we have not provided a precise explanation of the
priming of schemas: θ′ is the more fundamental concept:

[ · · · xi : Ti · · · ]
′
=df [ · · · x′i : Ti · · · ]

and:
[ S | P ]

′
=df [S ′ | θ′S .P ]

The special Z term θ has a history of notoriously poor and incomplete explanation.
The introduction of characteristic bindings in [33] was a step forward. Integrating
this with a comprehensive logic, adding a proper analysis of terms such as θS ′, in
particular the role of the rule (⇛=

 ) (see above), provides a complete description of
its function and circumstances in which it is properly typed.

2.3 Schema Algebra and Promotion

Promotion is a Z idiom which seeks to bring uniformity (and so security and like-
lihood of correctness) to a common situation when building models of systems.
A similar idea is found with mapping (and its generalisations) as we find in func-
tional programming languages.9

In addition to schema conjunction, schema existential quantification (hiding)
also makes an appearance in promotion.

Further details of existential quantification appear in Section 3 below. For now,
we note that this idea can be formalised in ZC and that the rules for reasoning about
such schema expressions are:

t ∈ S

t
.
∈ ∃ z ∈ T • S

(S+
∃ )

t ∈ ∃ z ∈ T • S y ∈ S , y
.
= t ⊢ P

P
(S−

∃ ).

Let us illustrate promotion by examining the simplest of examples.

Example 5. Consider the following trivial operation:

Inc
v , v ′ : N

v ′ = v + 1

We wish to promote this operation, over the local state N, to an operation over the
global state N× N. The global operation simply generalises the local operation by

9 Once again we assume familiarity with practical Z. Promotion is very well introduced
and explored in, for example, [33] and [3].
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applying it to the first of the pair. The promotion schema as usual explains how the
local and global state spaces are to be connected:

ΦPair
v , v ′ : N
w ,w ′ : N× N

w .1 = v
w ′.1 = v ′

w ′.2 = w .2

and the global operation is:

PairInc =̂ ∃ v , v ′ : N • Inc ∧ ΦPair .

We should, for example, be able to prove that:

〈| w⇛(3, 5),w ′⇛(4, 5) |〉 ∈ PairInc.

We will write this binding as b0 and the extended binding

〈| v⇛3, v ′⇛4,w⇛(3, 5),w ′⇛(4, 5) |〉

as b1. This is straightforward:

....
b0

.
= b1

δ0....
b1

.
∈ Inc

δ1....
b1

.
∈ ΦPair

b1 ∈ Inc ∧ ΦPair
(S+

∧ )

b1
.
∈ PairInc

(S+
∃ )

b0 ∈ PairInc .

Let b2 be 〈| x⇛3, x ′⇛4 |〉, then δ0 is

....
b1

.
= b2

3 ∈ N 4 ∈ N

b2 ∈ [v , v ′ : N] 4 = 3 + 1

b2 ∈ Inc

b1
.
∈ Inc

and δ1 is
....

b1 ∈ [v , v ′ : N,w ,w ′ : N× N]

....
3 = 3 ∧ 4 = 4 ∧ 5 = 5

b1
.
∈ ΦPair

.

Here we omit all trivial steps, and those previously illustrated. Naturally this proof
illustrates the direct use of the basic rules for schema expressions, schemas and the
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base logic itself. As with all logics, it is in practice necessary to develop further
derived rules to streamline derivation.

One can, of course, also reason from complex expressions (using the elimination
rules). The following example shows that the second part of the global state is
always unchanged. This trivial example is a prototype for the general policy of
determining general properties which complex specifications enjoy:

Example 6. Consider the following property

∀ b ∈ PairInc • b.w .2 = b.w ′.2

and the proof, which uses the elimination rules for existential, conjunctive and
atomic schemas is:

b ∈ PairInc
1

y
.
= b

2

y ∈ Inc ∧ ΦPair
2

y
.
∈ ΦPair

y.w .1 = y.v ∧ t .w ′.1 = y.v ′ ∧ y.w .2 = y.w ′.2

y.w .2 = y.w ′.2

b.w .2 = b.w ′.2
b.w .2 = b.w ′.2

2, (S−
∃ )

∀ b ∈ PairInc • b.w .2 = b.w ′.2
1

3 THE SPECIFICATION LOGIC ZC

ZC is an extension of higher order logic with the addition of the schema types we
introduced above.

3.1 The Types of ZC

We begin with the language of types:

T ::= Υ | PT | T × T | [· · · zT · · ·].

Types of the form Υ are the names of free types and are given by equations of the
form

Υ ::= · · · | ci 〈〈· · ·Υij · · ·〉〉 | · · ·

where any of the Υij may be Υ (permitting recursion). In particular, 〈〈· · ·Υij · · ·〉〉
may be omitted. An important example is

N ::= zero | succ 〈〈N〉〉.
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This class of free types is quite simple, but has the virtues of covering many practical
cases and ensuring the existence of trivial set theoretic models. We do not permit
mutual recursion here, but the generalisation is straightforward.10

Types of the form [· · · zTi

i · · ·] (the order is not important) are called schema
types. We write α[· · ·zTi

i · · ·] for the alphabet set (in the meta-language) of obser-
vations {· · · zi · · ·}. No observation may occur more than once in such a type. The
symbols �, f, g and − denote the schema subtype relation, and the operations of
schema type intersection, schema type union and schema type subtraction. All these
relations and operations are defined only for schema types, so any future definition
which makes use of them is only well-defined when the types in question are schema
types. Schema type union imposes an additional constraint, since it is only defined
when its schema type arguments are compatible (common observations agree on
their type).

The last important operation on types is priming. First we associate with eve-
ry observation z its co-observation z′ where z′′ = z. Then we set [· · · z · · ·]′ to be
[· · · z′ · · ·]. This is not a convention of vernacular Z but turns out to be extremely
useful in Z logic, especially when combined with pattern matching syntax in defini-
tions.11

All further syntactic categories of the language of ZC must be well-formed with
respect to these types. Types are indicated by superscripting and omitted whenever
possible.

We now move on to describe the languages of terms and propositions and their
corresponding logical rules. The judgements of ZC have the form Γ ⊢ P where Γ is
a set of formulæ. The logic is presented as a natural deduction system in sequent
form. We shall omit all data (entailment symbol, contexts, type etc.) which remain
unchanged by any rule.

3.2 The Terms of ZC

First we have variables, bindings, pairs and their projections:12

tT ::= xT | t [···z
T···].z | tT×T1 .1 | tT0×T .2

tT0×T1 ::= (tT0, tT1)

t [···z
T···] ::= 〈| · · · z⇛tT · · · |〉

10 For the reader interested in pursuing the technical issues concerning free-types, see [2,
30] for example.
11 Much use of the idea of treating priming to be an operation, rather than a diacritical,

is made in Section 4.8 (the definition of composition) and in Section 5.3, especially in

connection with data refinement and the definitions of simulation images and co-images.
12 The reader may already have noticed, from examples in Section 2, that we carefully

distinguish observation meta-variables and variable meta-variables. In the object language
we do not make any distinction. The latter is quite standard in vernacular Z and the
former ensures that the potential ambiguity is resolved at the level of the syntax.
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These terms are characterised by various logical rules:

〈| · · · zi⇛ti · · · |〉.zi = ti
(⇛=

 ) 〈| · · · zi⇛t .zi · · · |〉 = t [···z
Ti

i
···]

(⇛=
 )

(t0, t1).1 = t0
(()= ) (t0, t1).2 = t1

(()= ) (t .1, t .2) = t
(()= ).

Second, we have the filtered (restricted) bindings.

tT0 ::= tT1 ↾ T0 where T0 � T1

As we have seen, the rule for these is:

tT0 .zi = ti
(t ↾ T1).zi = ti

(↾=) T1 � T0 and z ∈ αT1.

Third, there are the values of free-type:

tΥ ::= ci · · · t
Υij · · ·

The logic of free types permits the introduction of values in the type, equality
reasoning and, finally, elimination (generally by induction).

· · · zij ∈ Υij · · ·

ci · · · zij · · · ∈ Υ
(Υ+)

· · · zij ∈ Υij · · · · · · zkl ∈ Υkl · · ·

ci · · · zij · · · 6= ck · · · zkl · · ·
(Υ6=)

ci · · · zij · · · = ci · · · yij · · ·
zij = yij (Υ=)

· · · · · · zij ∈ Υij · · · , · · ·P [z/yk ] · · · ⊢ P [z/ci · · · zij · · ·] · · ·

z ∈ Υ ⊢ P
(Υ−)

where the yk are all those variables occurring in the zij with type Υ.
Finally, we have sets:

tPT ::= {zT | P}.

These are governed by:

P [z/t ]

t ∈ {z | P}
({}+)

t ∈ {z | P}

P [z/t ]
({}−).

For clarity of presentation we will use the meta-variable C (etc.) for sets (terms of
power type), and S (etc.) for sets of schema type. The latter are, as we have seen,
the schemas.
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We employ the notation b.P and b.t (generalising binding selection) which is
adapted from [32]. Suppose that {· · · zi · · ·} is the alphabet set of t , then the fol-
lowing equation holds:

t .P = P [· · · zi · · · / · · · t .zi · · ·].

3.3 The Formulæ of ZC

The formulæ of ZC delineate a typed bounded predicate logic.

P ::= false | tT = tT | tT ∈ C PT | ¬P | P ∨ P | ∃ zT ∈ C PT • P

The logic of ZC is classical, so the remaining logical operations are available by
definition. We also, as usual, abbreviate ¬ (t ∈ C ) to t 6∈ C .

A crucial observation is unicity of types : every term of ZC has a unique type.
We can make great use of this observation. It enables us to remove type decoration
in most circumstances.

The logic for the propositions is then standard:

P0

P0 ∨ P1
(∨+

 )
P1

P0 ∨ P1
(∨+

 )
P0 ∨ P1 P0 ⊢ P2 P1 ⊢ P2

P2
(∨−)

P ⊢ false

¬P
(¬+) P ¬P

false
(false+) ¬¬P

P
(¬−)

false

P
(false−)

P [z/t ] t ∈ C

∃ z ∈ C • P
(∃+)

∃ z ∈ C • P0 y ∈ C ,P0[z/y] ⊢ P1

P1
(∃−).

The eigenvariable y may not, as usual, occur in C ,P0,P1 nor any other assumption.

Γ,P ⊢ P
(ass)

t = t
(ref)

t0 = t1 P [z/t0]

P [z/t1]
(sub)

t0 ≡ t1
t0 = t1

(ext)

where:
t0 ≡ t1 =df ∀ z ∈ t0 • z ∈ t1 ∧ ∀ z ∈ t1 • z ∈ t0.

The transitivity of equality and numerous equality congruence rules for the various
term forming operations are all derivable in view of rule (sub). In particular, we can
prove that set-equality in ZC is extensional.

As an example of the rules for free types we can give the following specialisations
for N, as defined above:

zero ∈ N

n ∈ N

succ n ∈ N

n ∈ N

zero 6= succ n
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succ n = succ m
n = m

P [n/zero] m ∈ N,P [n/m] ⊢ P [n/succ m]

n ∈ N ⊢ P
.

The following weakening rule is admissible and is incorporated within the system:

Γ ⊢ P1

Γ,P0 ⊢ P1
(wk).

Finally, a term of type T always belongs to the carrier set of T :

tT ∈ T .

3.4 Consistency

The only interesting issue is the interpretation of schema types and bindings, in-
cluding binding selection and filtering.

Let B be an I -indexed family of sets over a suitable universe U .13 We can define
a dependent function space which is suitable for our purposes as follows:

Π(i∈I ).B(i) =df {f ∈ I → U | (∀ i ∈ I )(f (i) ∈ B(i))}.

This we can harness to interpret the schema types of ZC:

q
[· · · zTi

i · · ·]
y
=df Π(x∈I ).B(x )

where I =df {· · · zi · · ·} and B(zi) =df JTiK. The observations zi can be modelled
in ZF in any number of ways, for example as finite ordinals. The only important
point is that they be distinguishable from one another.

Then bindings, binding projection and filtered terms are defined as follows:

J〈| · · · zi⇛ti · · · |〉K =df f0
Jt .zK =df JtK (z)
Jt ↾ T K =df f1

where f0 ∈
q
[· · · zTi

i · · ·]
y
, f0(zi) = JtiK, f1 ∈ JT K and f1(z) = JtK (z) when z ∈ α[D ].

Further detail is provided in [17] and (for free-types) in [19].

3.5 An Alternative Approach

The system we have described is a “Church-style” theory, in which the syntax forma-
tion rules are controlled by typing considerations and where terms explicitly carry
their types. The unicity of types does simplify matters, permitting types to be omit-
ted in most circumstances. The meta-language is imposed upon to carry the burden

13 F (ω) is a suitable universe: see [17] for further details.
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of this. Naturally a machine implementation of the logic would need to consider
these issues explicitly.

An alternative “Curry-style” approach was described in [17] and [18]. In that
presentation neither terms nor propositions were type controlled. The logic, in that
context, comprises two linked theories of typing and inference. This has the effect of
making the logic as a whole considerably more complex, though the added explicit
information might well be more convenient as a basis for a machine implementation.

In the “Curry-style” system one has an additional judgements of the form
Γ ⊲ P prop and Γ ⊲ t : T . There are then typing rules such as:

t0 : T t1 : T
t0 = t1 prop

(C=)
t : T C : PT

t ∈ C prop
(C∈)

These rules ensure that well-formed equality statements are between terms of the
same type and that well-formed membership propositions are also appropriately
typed.

We also have rules for non-atomic propositions such as:

P0 prop P1 prop

P0 ∨ P1 prop
(C∨)

x : T ⊲ P prop

∃ x : T • P prop
(C∃).

With these in place the logical rules can be stated. These typically make reference
to typing judgements. For example:

Γ ⊢ P0 Γ− ⊲ P1 prop

Γ ⊢ P0 ∨ P1
(∨+

 )

and:
Γ ⊢ P [z/t ] Γ− ⊲ t : T

Γ ⊢ ∃ z : T • P
(∃+).

In these rules, the context Γ− represents the restriction of the context Γ to its typing
assertions only.

In this version of the logic one has the following critical result concerning syn-
tactic consistency:

If Γ ⊢ P then Γ− ⊲ P prop.

This is proved by induction on the structure of the derivation Γ ⊢ P .

4 CONSERVATIVE EXTENSIONS

The base logic ZC contains only rudimentary features of Z (schema types and bind-
ings). We have, in Section 2, indicated in overview how ZC can host more advanced
features by means of conservative extensions. This approach is simple and attractive,
in particular the question of the consistency of more complex features is automatic.
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4.1 Schema Sets and Atomic Schemas

Let T = [· · · zTi

i · · ·]. The syntax of basic schemas is:

S PT ::= [· · · zi : C
Ti

i · · ·] | [S PT | P ].

These are the schema sets and atomic schemas, respectively. As usual, we will write
schemas of the form: [[· · · zi : Ci · · ·] | P ] as [· · · zi : Ci · · · | P ]. We allow the obvious
generalisation of our alphabet operator to atomic state schemas and state schema
sets: α[S | P ] =df αS and α[· · · zi : C

Ti

i · · ·] =df α[· · · z
Ti

i · · ·].
Then these two basic schemas can be interpreted in ZC as follows:14

[ · · · zi : Ci · · · ] =df {x | · · · ∧ x .zi ∈ Ci ∧ · · ·}

and
[ S | P ] =df {z ∈ S | z .P}.

As we have already seen, the rules for schema sets are:

· · · ti ∈ Ci · · ·

〈| · · · zi⇛ti · · · |〉 ∈ [· · · zi : Ci · · ·]
([]+)

t ∈ [· · · zi : Ci · · ·]

t .zi ∈ Ci
([]−)

and, for atomic schemas :

t ∈ S t .P
t ∈ [S | P ]

(S+)
t ∈ [S | P ]

t ∈ S
(S−

 )
t ∈ [S | P ]

t .P
(S−

 ).

There is an important point to make regarding the interpretation of schemas: the
proposition P appearing in a schema is drawn from a more permissive grammar of
propositions than that established for ZC . In particular, propositions in that context
can contain observations as terms. A simple example will suffice to illustrate this.

Example 7. Consider the following schema:

Inc
v , v ′ : N

v ′ = v + 1

Consultation of the syntax of ZC will reveal that the proposition v
′ = v+1 is not a ZC

proposition because the observations v and v ′ are not terms of ZC . This generality

14 Strictly speaking we should indicate (both here and below) the translation explicitly,

writing for example:
J[S | P ]K =df {z ∈ JS K | z .P}

We will not bother with this as the intention is always quite obvious, and the use of the
extra brackets is notationally very burdensome.
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in the specification language is perfectly acceptable in view of the interpretation of
schemas. Pursuing this example, the ZC interpretation is:

{z [v
N ,v ′N] | z .(v ′ = v + 1)}

which simplifies to:
{z [v

N ,v ′N] | z .v ′ = z .v + 1}.

Note that z .v ′ = z .v + 1 is a bona fide proposition in ZC . In all cases a schema
proposition P becomes z .P under the interpretation and z .P will always be well-
defined.

4.2 θ-terms

The special Z term θ is interpreted as described in Section 2.2:

θS P[···z
Ti

i
···] =df 〈| · · · zi⇛zi · · · |〉

In the primed case we have θS ′ = θ′S where:

θ′S P[···z
Ti

i
···] =df 〈| · · · zi⇛z′i · · · |〉.

It is also worth noting that these special terms are not in themselves ZC terms, but
will translate under the interpretation appropriately. Another example:

Example 8. Consider the following schemas:

Example
∆S

θS = θS ′

where:

S
v : N

Under the interpretation we will have:

{z [v
N,v ′N ] | z .(θS = θS ′)},

and this will simplify to:
{z [v

N ,v ′N] | z .v = z .v ′}

This is as expected, and the proposition z .v = z .v ′ contains well-formed ZC terms.
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4.3 Schema Disjunction

When the schemas S0 and S1 have the types PT0 and PT1, the schema expression
S0 ∨ S1 has the type P(T0 g T1).

The definition of schema disjunction in ZC is:

S
PT0

0 ∨ S
PT1

1 =df {z
P(T0gT1) | z

.
∈ S0 ∨ z

.
∈ S1}.

This leads to the following rules:

t
.
∈ S0

t ∈ S0 ∨ S1

(S+
∨


)
t

.
∈ S1

t ∈ S0 ∨ S1

(S+
∨


)

t ∈ S0 ∨ S1 t
.
∈ S0 ⊢ P t

.
∈ S1 ⊢ P

P
(S−

∨ ).

4.4 Schema Conjunction

When the schemas S0 and S1 have the types PT0 and PT1, the schema expression
S0 ∧ S1 has the type P(T0 g T1).

The definition of schema conjunction in ZC is, as we have seen:

S
PT0

0 ∧ S
PT1

1 =df {z
P(T0gT1) | z

.
∈ S0 ∧ z

.
∈ S1},

and the rules are:

t
.
∈ S0 t

.
∈ S1

t ∈ S0 ∧ S1

(S+
∧ )

t ∈ S0 ∧ S1

t
.
∈ S0

(S−
∧


)
t ∈ S0 ∧ S1

t
.
∈ S1

(S−
∧


).

4.5 Schema Negation

Schema negation is straightforward:

¬S PT =df {z
T | z 6∈ S},

and these rules follow:

t 6∈ S

t ∈ ¬S
(S+

¬ )
t ∈ ¬S
t 6∈ S

(S−
¬ )

4.6 Schema Inclusion

In addition, our notion of atomic schemas combines with schema conjunction to
provide an immediate treatment of schema inclusion by interpreting the separation
of declarations in a schema as schema conjunction. For example, the schema [z :
T ; S | P ] is just [[z : T ] ∧ S | P ] and so on.
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4.7 Schema Existential Hiding

If the schema S has the type PT1 and [zT0 ] � T1, then the type of the schema
expression ∃ z : T0 • S is P(T1 − [zT0]).

Existentially quantified schemas are interpreted in ZC as follows:

∃ z : T0 • S PT1 =df {x ∈ T1 − [zT0] | ∃ y ∈ T1 • y ∈ S ∧ x = y ↾ (T1 − [zT0 ])};

then these logical rules follow:

t ∈ S

t
.
∈ ∃ z : T • S

(S+
∃ )

t ∈ ∃ z : T • S y ∈ S , y
.
= t ⊢ P

P
(S−

∃ ).

4.8 Schema Composition

In this and the next section we will consider operation schema, that is, those schemas
whose type is PT where T has the form T ingT out ′ where T in contains declarations
of all before observations and T out ′ contains declarations of all after observations.
We will also need to refer to T out , the co-type of T out ′ . We will use the meta-
variable U when we specifically refer to operation schemas.

Note that the types T in and T out ′ are always disjoint. We can therefore write
the bindings belonging to U in the form t0 ⋆ t

′
1 where t0 has type T in , where t ′1 has

the type T out ′ and where the star represents binding concatenation which will only
be defined in circumstances in which its arguments have non-overlapping type. This
operation can be raised to sets:

C0 ⋆ C1 =df {z0 ⋆ z1 | z0 ∈ C0 ∧ z1 ∈ C1}.

For schema composition we present only a special case. For the general case (which is
substantially more complex) and for related operations, like schema piping, see [19].
Suppose T out

0 = T in
1 . Then:

U
T in

0
gTout

′

0

0
o
9 U

T in
1

gTout
′

1

1 =df {(z0 ⋆ z
′
1)

T in
0

gTout′

1 | ∃ yTout′

0 • z0 ⋆ y
′ ∈ U0 ∧ y ⋆ z ′1 ∈ U1}.

The rules are then:
t0 ⋆ t

′
2 ∈ U0 t2 ⋆ t

′
1 ∈ U1

t0 ⋆ t
′
1 ∈ U0

o

9 U1

(U+
o

9

)

t0 ⋆ t
′
1 ∈ U0

o
9 U1 t0 ⋆ y

′ ∈ U0, y ⋆ t ′1 ∈ U1 ⊢ P

P
(U−

o
9

).

The usual sideconditions apply to the eigenvariable y.
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4.9 Schema Precondition

We can introduce the idea of the precondition of an operation schema (essentially
the domain of the partial relation the schema denotes).

Let T in � V . Then:

Pre U xV =df ∃ z ∈ U • x =T in z .

This leads to the following rules:

t0 ∈ U t0 =T in t1
Pre U t1

(Pre+)
Pre U t y ∈ U , y =T in t ⊢ P

P
(Pre−)

where y is fresh.
For later convenience, the notion of precondition is introduced as a predicate. In

vernacular Z the precondition is a schema (set of bindings). This is easily recovered
when necessary as {zT

in

| Pre U z}.
The reader interested in pursuing these issues in further depth, for example for

more general operations such as schema level quantification and generic schemas,
should see [17, 18, 19] which contain more detail.

5 BEYOND SPECIFICATION

In this section we provide an overview and survey of a number of topics which
build still further on Z logic. Once Z has been established as a specification logic it
becomes possible to address new issues and characteristic properties in a systematic
and integrated manner. We will begin with the most familiar: the equational logic
of Z and the precondition logic for schema expressions. After this we tackle the
crucial topic of refinement. With all this in place it becomes possible to investigate
the monotonicity (or otherwise) of the schema calculus operators with respect to
refinement.

Our treatment here is necessarily brief and incomplete: readers who consult the
relevant literature will find not only more detail concerning the topics addressed
here, but also many other investigations which we have not mentioned here at all.
Our purpose in this section is to whet the reader’s appetite through our summary
and survey. Only the main contours of the topics addressed are highlighted and
readers will need to rely on their general knowledge of the topics discussed.

5.1 Equational Logic

It is interesting to note that the fundamental relation of Z is, in fact, equality. So far
as schemas are concerned, this is essentially equality of the partial relations which
(in particular, operation) schemas denote.

In the absence of a logic, the informal explanation of schema operators has often
been given in terms of certain equalities.
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Example 9. It is case that:

[T0 | P0] ∧ [T1 | P1] = [T0 g T1 | P0 ∧ P1].

Note that this equality is not definitional. In the context of the logic it should be
(and indeed is) derivable.

This, and all other expected schema equations, are derivable in the schema logic
described in Section 3. By way of example, consider the expected equation for
negated schemas.

¬[T | P ] = [T | ¬P ].

This is the proof: The result then follows, by rule (ext), from these two derivations:

t ∈ ¬[T | P ]

t 6∈ [T | P ]
(S−

¬ )

¬(t ∈ T ∧ t .P)

t 6∈ T ∨ ¬t .P

t 6∈ T
()

tT ∈ T

false

t ∈ [T | ¬P ]
¬t .P

()
tT ∈ T

t ∈ [T | ¬P ]
(S+)

t ∈ [T | ¬P ]
()

and:
t ∈ [T | ¬P ]

¬t .P
(S−

 )
t ∈ [T | P ]

t .P
(S−

 )

false

t 6∈ [T | P ]

t ∈ ¬[T | P ]
(S+

¬ )

5.2 Precondition Logic

We considered the concept of schema precondition in Section 4.9. That general
logical account can be combined with the logic of the schema calculus to provide
a logic of schema preconditions for all compound schemas.

5.2.1 The Precondition for Conjunction Schemas

In general, the precondition of a conjunction of operations is not the conjunction of
the preconditions of the individual constituents [31]. This is a direct consequence of
the underlying “postcondition only” approach Z takes (in contrast to other notations
such as B [1] or the refinement calculus [25]).

Let i ∈ {0, 1}, then the following elimination rules are derivable for the precon-
dition of conjoined schemas:

Pre (U0 ∧ U1) t

Pre Ui t
(Pre−∧

i

).



Z Logic and its Consequences 403

5.2.2 The Precondition for Disjunction Schemas

The analysis of the precondition of disjoined operations is more straightforward.
Let i ∈ {0, 1}, then the following introduction and elimination rules for the

precondition of the disjunction of schemas are derivable:

Pre Ui t

Pre (U0 ∨ U1) t
(Pre+∨

i

)

Pre (U0 ∨ U1) t Pre U0 t ⊢ P Pre U1 t ⊢ P

P
(Pre−∨ )

With these in place, we can easily prove the full distributivity of the precondition
over disjunction.

Pre (U0 ∨ U1) t ⇔ Pre U0 t ∨ Pre U1 t

5.2.3 The Precondition for Composition

We will deal with instances of composition where the operation schema expression
U0

o

9
U1 has the type P(T0 g T ′

1) and where U0 is of type P(T0 g T ′
2) and U1 is of

type P(T2 g T ′
1).

The following introduction and elimination rules for the precondition of com-
posed operation schemas are derivable:

t0 ⋆ t
′
1 ∈ U0 Pre U1 t1
Pre (U0

o

9
U1) t0

(Pre+o
9

)

Pre (U0
o

9
U1) t0 Pre U1 y, t0 ⋆ y

′ ∈ U0 ⊢ P

P
(Pre−o

9

).

The usual side-conditions apply to the eigenvariable y.
The following additional rule is derivable for the precondition of composition:

Pre (U0
o

9 U1) t0
Pre U0 t0

5.2.4 The Precondition for the Existential Quantifier

In this case we consider the simultaneous hiding of an observation and its co-
observation in an operation. Let z (and z′) have the type T z. Then we can derive
the following rules:

Pre U t
Pre (∃ z, z′ : T z • U ) t

(Pre+∃ )

Pre (∃ z, z′ : T z • U ) t Pre U y, y
.
= t ⊢ P

P
(Pre−∃ ).

Note that the usual side-conditions apply to the eigenvariable y.
Further detail, including a treatment of other schema operations, can be found

in [12].
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5.3 Refinement Logic

The ordinary subset relation on schemas (sets of bindings) establishes a primitive
theory of refinement for Z. It is, however, unacceptable for it is only a partial cor-
rectness theory and it treats preconditions as firing conditions. To see this, note
first that the empty set of bindings is a subset of all sets of bindings of the appro-
priate type and therefore a refinement of all such schemas. This schema establishes
no conditions whatsoever and well-defined input/output relations will be lost in
such a refinement. This is, then, evidently a partial correctness model. Second,
note that weakening the precondition can introduce new input/output relationships
which were not previously present. Clearly adding new relationships to a set does
not lead to a subset, and hence not to a refinement. Evidently this is a theory of
refinement for firing conditions.

The standard total correctness theory of refinement (also permitting weakening
of preconditions) involves the process of relational completion (see for example [33],
Chapter 16 et seq.). This completion is often called the lifted-totalisation and intro-
duces an additional element usually written ⊥. Such a value must be separated from
the interpretation of Z and this is easily achieved by introducing a simple ZC theory
which we call Z⊥

C .
In Z⊥

C we introduce new constants (“abortive” values), postulating new con-
stants ⊥T for every type T : these are usually called “lifted” types. There are,
additionally, a number of axioms which ensure that all the new ⊥T values interact
properly.

〈| z0⇛ ⊥T0 · · · zn⇛ ⊥Tn |〉 =⊥[z
T0

0
···z

Tn
n ]

(⊥T0,⊥T1) =⊥T0×T1

{zT | z =⊥T} =⊥PT

For example:

⊥[z
T0

0
···z

Tn
n ] .zi =⊥Ti (0 ≤ i ≤ n).

These are the only axioms concerning these terms, hence, the term forming con-
structions are non-strict with respect to the ⊥T values.

Natural carriers for each type (sets which exclude ⊥) are then easily defined by
closing:

Υ =df {z
Υ | z 6=⊥}

under the type forming operations. These are then used to establish the (⊥-free)
schema logic, as described in Section 3 above.

Further details, including the fact that the theory Z⊥
C is conservative over ZC ,

can be found in [11].
The lifted totalisation of a set of bindings can then be defined. Let

T⊥ =df T ∪ {⊥}
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and
T ⋆ =df T

in
⊥ ⋆ T out ′

⊥ ;

then:
•

U =df {z0 ⋆ z
′
1 ∈ T ⋆ | Pre U z0 ⇒ z0 ⋆ z

′
1 ∈ U }

which leads to rules for lifted totalised sets:

t0 ⋆ t
′
1 ∈ T ⋆ Pre U t0 ⊢ t0 ⋆ t

′
1 ∈ U

t0 ⋆ t
′
1 ∈

•

U
(•+)

and
t0 ⋆ t

′
1 ∈

•

U Pre U t0
t0 ⋆ t

′
1 ∈ U

(•− )
t0 ⋆ t

′
1 ∈

•

U

t0 ⋆ t
′
1 ∈ T ⋆ (•− ).

The following are also derivable:

U ⊆
•

U
(i)

⊥∈
•

U
(ii)

¬Pre U t0 t0 ∈ T in
⊥ t ′1 ∈ T out ′

⊥

t0 ⋆ t
′
1 ∈

•

U
(iii).

These demonstrate that the definition is consistent with the usual intentions: the un-
derlying partial relation is contained in the completion, the entirely abortive binding
is present in the relation, and, more generally, each value outside the precondition
(including ⊥) maps to every value in the co-domain of the relation.

5.3.1 Operation Refinement

We first consider operation refinement in which the data-types involved do not
change.

W•-refinement, written U0 ⊒w•
U1 is defined by:

U0 ⊒w•
U1 =df

•

U0 ⊆
•

U1

Obvious introduction and elimination rules follow from this.
In fact the rather complex manoeuvres necessary to set up this definition are

unnecessary: refinement can be captured entirely in terms of the language of Z itself.
Let z , z0, z1 be fresh variables:

Pre U1 z ⊢ Pre U0 z Pre U1 z0, z0 ⋆ z
′
1 ∈ U0 ⊢ z0 ⋆ z

′
1 ∈ U1

U0 ⊒s U1
(⊒+

s )

U0 ⊒s U1 Pre U1 t

Pre U0 t
(⊒−

s
)

U0 ⊒s U1 Pre U1 t0 t0 ⋆ t
′
1 ∈ U0

t0 ⋆ t
′
1 ∈ U1

(⊒−

s
)
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The theories ⊒w•
and ⊒s are equivalent (they are the same relation on specifica-

tions) [11].
Other refinement approaches for Z, such as a weakest preconditions (wp) ap-

proach, can also be formalised in ZC .
First we have post-sets:

Post U z0 =df {z
′
1 | z0 ⋆ z

′
1 ∈ U }

This permits a wp-interpretation for schemas

wp U C =df {z | Pre U z ∧ Post U z ⊆ C}

leading to the following rules:

Pre U t z ′ ∈ Post U t ⊢ z ′ ∈ C

t ∈ wp U C

where z is a fresh variable.

t ∈ wp U C
Pre U t

t0 ∈ wp U C t ′1 ∈ Post U t0
t ′1 ∈ C

.

We can now define WP-refinement:

U0 ⊒wp U1 =df ∀C
PTout′

• wp U1 C ⊆ wp U0 C

leading to the following introduction and elimination rules

z ∈ wp U1 C ⊢ z ∈ wp U0 C

U0 ⊒wp U1
(⊒+

wp)

where z and C are fresh variables:

U0 ⊒wp U1 t ∈ wp U1 C

t ∈ wp U0 C
(⊒−

wp).

The theory ⊒wp is also equivalent to ⊒w•
and ⊒s . The proof of this, and a number

of other approaches and analyses, can be found in [11].

5.3.2 Data Refinement

Data refinement is the more interesting and sophisticated paradigm. Formalising
the usual approaches to forward and backward simulation in ZC is straightforward.

We begin with the lifting of simulations:

◦

S P(T1gT ′

0
) =df {z1 ⋆ z

′
0 ∈ T1⊥ ⋆ T ′

0⊥
| z1 6=⊥⇒ z1 ⋆ z

′
0 ∈ S}
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leading to the following rules:

t1 ⋆ t
′
0 ∈ T1⊥ ⋆ T ′

0⊥
t1 6=⊥ ⊢ t1 ⋆ t

′
0 ∈ S

t1 ⋆ t
′
0 ∈

◦

S
(◦+) t1 ⋆ t

′
0 ∈

◦

S t1 6=⊥

t1 ⋆ t
′
0 ∈ S

(◦− )

t1 ⋆ t
′
0 ∈

◦

S

t1 ⋆ t
′
0 ∈ T1⊥ ⋆ T ′

0⊥

(◦− ).

Then we can define WF•-refinement, a theory of forward simulation data refinement:

U0 ⊒wf•
U1 =df

◦

S o

9

•

U0 ⊆
•

U1
o

9

◦

S

leading to the following rules. Let z0 and z1 be fresh:

z1 ⋆ z
′
0 ∈

◦

S o
9

•

U0 ⊢ z1 ⋆ z
′
0 ∈

•

U1
o
9

◦

S

U0 ⊒wf•
U1

(⊒+
wf•

)

U0 ⊒wf•
U1 t1 ⋆ t

′
0 ∈

◦

S o

9

•

U0

t1 ⋆ t
′
0 ∈

•

U1
o

9

◦

S

(⊒−

wf•

).

As with operation refinement, it is possible to define an equivalent theory (SF-refi-
nement) based solely on the language. Let x0, x1, z0, z1, z2 be fresh variables:

z1 ⋆ z
′
0 ∈ S ,Pre U1 z1 ⊢ Pre U0 z0

Pre U1 x1, x0 ⋆ z
′
2 ∈ U0, x1 ⋆ x

′
0 ∈ S ⊢ x1 ⋆ t

′ ∈ U1

Pre U1 x1, x0 ⋆ z
′
2 ∈ U0, x1 ⋆ x

′
0 ∈ S ⊢ t ⋆ z ′2 ∈ S

U0 ⊒sf U1
(⊒+

sf )

U0 ⊒sf U1 Pre U1 t1 t1 ⋆ t
′
0 ∈ S

Pre U0 t0
(⊒−

sf

)

U0 ⊒sf U1 Pre U1 t1 t0 ⋆ t
′
2 ∈ U0 t1 ⋆ t

′
0 ∈ S t1 ⋆ y

′ ∈ U1, y ⋆ t ′2 ∈ S ⊢ P

P
(⊒−

sf

).

The usual side-conditions apply to the eigenvariable y.
The theories ⊒sf and ⊒wf•

are equivalent [9].
A similar analysis for backwards refinement is also possible. Let x , x0, x1, z , z0

be fresh variables. Then SB-refinement is given by the following theory:

x ⋆ z ′ ∈ S ⇒ Pre U1 z ⊢ Pre U0 x
z0 ⋆ z

′ ∈ S ⇒ Pre U1 z , x0 ⋆ x
′
1 ∈ S , z0 ⋆ x

′
0 ∈ U0 ⊢ z0 ⋆ t

′ ∈ S
z0 ⋆ z

′ ∈ S ⇒ Pre U1 z , x0 ⋆ x
′
1 ∈ S , z0 ⋆ x

′
0 ∈ U0 ⊢ t ⋆ x ′

1 ∈ U1

U0 ⊒sb U1
(⊒+

sb)

U0 ⊒sb U1 t ⋆ z ′ ∈ S ⊢ Pre U1 z

Pre U0 t
(⊒−

sb
)
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t0 ⋆ z
′ ∈ S ⊢ Pre U1 z

U0 ⊒sb U1 t1 ⋆ t
′
2 ∈ S t0 ⋆ t

′
1 ∈ U0 t0 ⋆ y

′ ∈ S , y ⋆ t ′2 ∈ U1 ⊢ P

P
(⊒−

sb
).

The usual side-conditions apply to the eigenvariable y.
WB•-refinement is: Let z0, z1 be fresh.

z0 ⋆ z
′
1 ∈

•

U0
o

9

◦

S ⊢ z0 ⋆ z
′
1 ∈

◦

S o

9

•

U1

U0

s

⊒wb•
U1

(⊒+
wb•

)
U0

s

⊒wb•
U1 t0 ⋆ t

′
1 ∈

•

U0
o

9

◦

S

t0 ⋆ t
′
1 ∈

◦

S o

9

•

U1

(⊒−

wb•
)

These two theories are also equivalent [8].
The weakest precondition approach can also be generalised to data refinement.

For example, the following is a theory of weakest precondition data refinement (for-
wards case) for Z. First we need the image operator for simulations with respect to
a (postcondition) set C :

[C PT1]S P(T1gT ′

0
) =df {z0 ∈ T0 | ∃ z1 ∈ C • z1 ⋆ z

′
0 ∈ S}.

This leads to the following theory, WPF-refinement:

z ∈ [wp U1 C ]S ⊢ z ∈ wp U0 [C ]S ′

U0 ⊒wpf U1
(⊒+

wpf )

where z and C are fresh variables.

U0 ⊒wpf U1 t ∈ [wp U1 C ]S

t ∈ wp U0 [C ]S ′
(⊒−

wpf )

The usual side-conditions apply to the eigenvariable y.
A weakest precondition data refinement for Z in the backwards case is also

possible. First we define the co-image of S under the postcondition C to be the
set (of type PT0) of all concrete states, drawn from the domain of S , which only
represent abstract states that are members of C .

S P(T0gT ′

1
)[C PT1] =df {z0 ∈ T0 | ∀ z1 • z0 ⋆ z

′
1 ∈ S ⇒ z1 ∈ C}

This leads to WPB-refinement:

z ∈ S [wp U1 C ] ⊢ z ∈ wp U0 S
′[C ]

U0 ⊒wpb U1
(⊒+

wpb)

where z and C are fresh variables.

U0 ⊒wpb U1 t ∈ S [wp U1 C ]

t ∈ wp U0 S
′[C ]

(⊒−
wpb).
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The theories ⊒wpf and ⊒wpb are equivalent to (and undoubtedly simpler than) ⊒sf

and ⊒sb (hence to ⊒wf•
and

s

⊒wb•
) respectively [10].

5.4 Monotonicity

It is perhaps rather strange that equality rather than refinement should be the fun-
damental relation of Z. It would be quite usual for a specification framework to
take the latter as its fundamental relation. Equality would then appear as inter-
refinability. As we have seen, there is a way in which refinement could be construed
as more fundamental than equality: if we were content with partial correctness re-
finement where preconditions are firing conditions. But this is not at all satisfactory.
The consequence, however, is that inter-refinability cannot be a finer relation than
equality, and there is then a price to pay: the schema calculus is not monotonic with
respect to refinement.

Monotonicity can to some extent be rehabilitated by imposing side-conditions
on the way in which schema operators are used. For example, if we have

∀ z • Pre U0 z ∧ Pre U2 z ⇒ Pre (U0 ∧ U2) z

then we also have
U0 ⊒s U1

U0 ∧ U2 ⊒s U1 ∧ U2

.

In other words, schema conjunction is monotonic in such circumstances.

The logic proves to be a very useful tool in synthesizing such side-conditions, as
we now illustrate.

For schema disjunction we require this sidecondition:

∀ z • Pre U0 z ∧ Pre U2 z ⇒ Pre U1 z .

Then the following rule is derivable:

U0 ⊒s U1

U0 ∨ U2 ⊒s U1 ∨ U2

In this case let us consider the ZC proof:

Pre (U1 ∨ U2) z
()

U0 ⊒s U1 Pre U1 z
()

Pre U0 z
(⊒−

s
)

Pre (U0 ∨ U2) z
(Pre+

∨


)
Pre U2 z

()

Pre (U0 ∨ U2) z
(Pre+

∨


)

Pre (U0 ∨ U2) z
(Pre−

∨
, )

δ0....

U0 ∨ U2 ⊒s U1 ∨ U2
(⊒+

s , )
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where δ0 stands for the following branch (where we write z for z0 ⋆ z
′
1)

z ∈ U0 ∨ U2
()

U0 ⊒s U1

δ1....
Pre U1 z0 z

.
∈ U0

()

z
.
∈ U1

(⊒−
S
)

z ∈ U1 ∨ U2

(S+
∨


)
z

.
∈U2

()

z ∈ U1 ∨ U2

(S+
∨


)

z ∈ U1 ∨ U2

(S−
∨ , )

and δ1 is

Pre (U1 ∨ U2) z0
()

Pre U1 z0
()

z0 ⋆ z
′
1

.
∈U0

()

Pre U0 z0 Pre U2 z0
()

Pre U0 z0 ∧ Pre U2 z0....
Pre U1 z0

Pre U1 z0
(Pre−∨ , )

Note the point (in the right-most sub-proof of δ1) where the side-condition is re-
quired. A proof attempt without the sidecondition in place fails at this point. But
the available assumptions and the required conclusion immediately articulate the
minimum condition for the result to hold.

For a comprehensive investigation of the question of the monotonicity of the
schema operators with respect to refinement, see [12].

6 CONCLUSIONS

This paper addresses two aims: first, to provide an accessible introduction to the
Z logic based on ZC, and second, to survey a range of more advanced applications
of this logic with references to the relevant literature.

The reader will have noticed one or two occasions on which concepts here differ
from vernacular Z (and indeed ISO Z). It is worth reflecting a little on the reasons for
these differences. Z was not originally introduced as a theory, rather as a notation
or language. The early formal work on Z concentrated on semantics (see [28] in
particular) with logic making an appearance somewhat later (see [32] in particular,
and also [13, 23, 34, 4, 5, 7, 15, 24, 6] for other developments and approaches). The
emphasis on semantics did not naturally lead to an increase in the level of formality
for future investigations: a logic permits direct reasoning in the language, whereas
reasoning in the semantics is hardly a practical (nor even a desirable) matter. It
should not be too surprising therefore to discover opportunities and difficulties when
a language, which has to a great extent developed independently of its mathematical
foundations, is considered in a logical context. These tensions are very much a part
of previous work to which we have already referred: whilst [19] is largely devoted
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to vernacular Z, [17, 18] explicitly ask questions about vernacular Z which arise as
a consequence of the logical analysis. In this paper, the deviations (apart from trivial
notational differences) are modest but present: priming considered as a bijective
operation between observations and co-observations (Section 3.1) and a hint in the
direction of novelty in connection with θ-terms of the form θS ′ (Section 2.2). The
papers [17, 18] are more revisionary, as their titles suggest.

A second theme we wish to highlight concerns our survey of more advanced
areas: the fact that the logic permits the formalisation of associated conceptual
apparatus alongside the specification language itself. Of particular note is the wide
variety of refinement theories we presented. In addition to the material discussed
in this paper, it is also possible to formalise programming notations within the
logic and relationships between programs and specifications. This is covered in [20]
and in [21]; again all the formalisation and analysis takes place within the single
framework.

Finally, note that now we have a Z logic, we can use it to give logics (via
definitions and hence derived rules) to various other formalisms. One formalism
that we have investigated is the Statechart-like µ-charts [14]. Once the definitions
that formalise them have been made, and the Z logic rules are expressed via the
definitions as µ-chart rules, all the paraphernalia that exist to support Z can be
used to support them. Proof tools are obvious examples of this, but also, and more
interestingly, the very refinement rules that we presented in Section 5 can be used
to derive a theory of refinement for µ-charts.

As a parting thought, providing a common logic for Z that all tool builders can
use as a standard is an obvious outcome of the work presented here, though how
many tools will be checked and, if necessary, updated to conform to the Z logic
remains to be seen.
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