
Computing and Informatics, Vol. 22, 2003, 209–219

THE EXPRESSIVE POWER
OF ABSTRACT-STATE MACHINES

Wolfgang Reisig

Institut für Informatik
Humboldt Universität zu Berlin
Unter den Linden 6
10099 Berlin, Deutschland
e-mail: reisig@informatik.hu-berlin.de

Abstract. Conventional computation models assume symbolic representations of
states and actions. Gurevich’s “Abstract-State Machine” model takes a more li-
beral position: Any mathematical structure may serve as a state. This results in
“a computational model that is more powerful and more universal than standard
computation models” [5].

We characterize the Abstract-State Machine model as a special class of transition
systems that widely extends the class of “computable” transition systems. This
characterization is based on a fundamental Theorem of Y. Gurevich.

Keywords: Specification technique, expressive power, computation models, se-
quential algorithms, transition systems, Abstract State Machines

1 DETERMINISTIC TRANSITION SYSTEMS

In the first volume of his seminal opus [8], Don Knuth introduces the notation
of algorithms. As a framework for the semantics of algorithms, Knuth suggests
computational methods : A computational method is what nowadays would be called
an initialized, deterministic transition system, i.e. a triple

C = (Q, I, F)

where Q is a set (its elements are denoted as states), I ⊆ Q (the initial states),
and F : Q → Q (the next-state function). Furthermore, Knuth assumes a set Ω of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics, SAS,...

https://core.ac.uk/display/267941395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

210 W. Reisig

terminal states, and requires F (q) = q for all q ∈ Ω : A terminal state is represented
as a fixpoint of F . (Knuth denotes I,Ω and F as input states, output states and
computation rule, respectively).

As one would expect, a computation sequence of C is a sequence

σ = x0x1 . . .

of states xi ∈ Q, with x0 ∈ I and xi+1 = F (xi) for i = 0, 1, The sequence σ is
said to terminate if xk ∈ Ω for some index k. Knuth denotes C as an algorithm if
each computation sequence of C terminates.

This definition comes without the requirement of F being “effective”. Quoting
[8, p. 8]: “F might involve operations that mortal man can not always perform”.
Knuth defines effective computational methods as a special case: A computational
method is effective iff it is essentially equivalent to a Turing Machine or to any
other mechanism for the computable functions. Nowadays, the term “algorithm” is
usually used to denote what Knuth calls an “effective computational method”.

As we did above already, we will use the term “transition system” instead of
“computational method”, and “effective transition system” instead of “effective com-
putational method”.

Transition systems have been generalized in several directions: Non-terminating
computation sequences adequately describe behaviors of reactive systems; the next-
state function F has been generalized to a relation R ⊆ Q × Q, with computation
sequences x0x1 . . . where (xi, xi+1) ∈ R. This represents nondeterminism. Additio-
nally one may require the choice of xi+1 to follow a stochastic distribution, or to be
fair. Some system models describe a single behavior not as a sequence of states, but
as a sequence of actions. The sequence orders the actions along a time axis. One
may even replace the total order by a partial order, representing the cause-effect
relation among actions.

All these generalizations of effective transition systems can be reduced to equi-
valent conventional effective transition systems, by reasonable notions of reduction
and equivalence. Generalizations of this kind are intended to express algorithmic
ideas more conveniently. They are not intended to challenge the established notion
of effective computation.

We study non-effective transition systems in this paper. The reader may won-
der whether there is anything interesting “beyond” the computable functions. In
fact, there is an exciting proper subclass of all transition systems, called “Sequential
Abstract-State Machines” (ASM), that in turn properly contains the effective tran-
sition systems. A Sequential ASM has a next-state function that can be represented
symbolically; but its states can in general not be represented symbolically.

This paper is intended to provide quick insight into the basic principles of ASM.
It should help understand why ASM in fact are more universal than standard com-
putation models. Furthermore, the paper provides intuitive reasons for the success
of ASM as a specification language, applied in many quite different areas. These
applications are only glanced, as well as the various extensions of ASM and the po-

The Expressive Power of Abstract-State Machines 211

werful tools. The paper is not intended to present new results, so the ASM expert
will not find any new result in this paper.

The rest of this paper is organized as follows: Section 2 presents a very simple
example to explain the basic idea of ASM. A formal definition of a very simple
kind of Sequential ASM is given in Section 3. Finally, Section 4 presents Gurevich’s
Theorem about this class of ASM. It characterizes the amazing expressive power of
Sequential ASM.

2 A SIMPLE EXAMPLE OF AN ABSTRACT-STATE MACHINE

We begin with a somewhat overly simple example. This example is intended to show
that the notion of algorithm is very reasonably defined also in the context of states
that cannot symbolically be represented.

Let augment be a function with two arguments: The first argument is to be any
set, and the second argument is to be any item. For a set M and any item m, define

augment(M,m) =def M ∪ {m}. (1)

We intend to construct an algorithm that augments two elements to a set, using
the function augment. More precisely, we want to construct a transition system C0 =
(Q0, I0, F0), such that each set M together with two elements m and n constitutes
an initial state xM,m,n. A computation sequence starting with xM,m,n then should
terminate with a state that represents the set M ∪ {m,n}.

As usual in the description of algorithms and programs, we employ variables.
We choose the variable X to vary over sets. In an initial state xM,m,n of C0 the value
of X is M .

The steps of C0 can be described in the setting of an algorithm P0:

P0 : begin X := augment(X,m);
X := augment(X,n)

end.
(2)

According to (2), an initial state S0 of C0 is followed by a state S1, which assigns
the set M ∪ {m} to X. State S1 is then followed by a state S2 that assigns the set
M ∪ {m,n} to X. S2 is a terminal state of C0.

The description (2) mixes the symbols “X”, “begin”, “end”, “;” and “:=” with
the concrete items m and n, and the function augment. We would prefer an entirely
symbolic representation. This is achieved by two additional variables, x and y, and
a binary operation symbol, g. In an initial state xM,m,n of C0 the value of X, x and y
is now assumed to be M , m and n, respectively, and the value of the operation g is
assumed to be the function augment. Then the steps of C0 can be represented as

P1 : begin X := g(X, x);
X := g(X, y)

end.
(3)

212 W. Reisig

The description (3) is an entirely symbolic representation indeed, i.e. a program
text. All states of P1 assign m, n and augment to x, y and g, respectively.

The representation of states still includes items such as M , m, n, M ∪ {m,n}
and augment. We might wish a symbolic representation of states, too. This would
require a symbolic representation of sets. A symbolic representation is a sequence of
symbols over a finite alphabet, Σ. There are only countable many representations
over Σ. There exist many more sets, however. So it is impossible to represent all sets
symbolically. Consequently, it is impossible to define the assignment of values to
variables symbolically. Hence it is impossible to represent the states of the transition
system C0 symbolically.

This is the essence of the above example: The next-state function F0 of C0 can
be represented symbolically, as in (3), whereas the states of C0 can not.

3 SEQUENTIAL ABSTRACT-STATE MACHINES

The example of Section 2 doesn’t fit into the framework of conventional computation
models. It is an example for a more general model. To highlight the differences,
let C = (Q, I, F) be an initialized, deterministic transition system, as described in
Section 1.

First, assume C is an effective transition system. Each state S ∈ Q can be
assumed to be represented as a finite sequence of symbols. The successor state F (S)
is a sequence of symbols, in general different from S. Summing up, arguments as
well as results of the next-state function F are finite sequences of symbols, and there
exists a finite symbolic representation for F .

Now assume C is a transition system in the framework of the more general
model. A state S of C is not symbolically represented, but a semantical object. It
consists of a set U (in general infinite), a finite number of distinguished elements
u1, . . . , uk in U , and a finite number g1, . . . , gl of functions over U , each with its arity
ki (i.e. gi : Uki → U).

We employ variables x1, . . . , xk and symbols f1, . . . , fl. In a state S, the va-
riable xi denotes the element ui. Hence we write xiS for ui (i = 1, . . . , k). The
symbol fj denotes the function gj, written fjS (j = 1, . . . , l).

All states of a transition system employ the same variables and function symbols,
and these variables and function symbols are used to symbolically represent the
next-state function F of C.

In technical terms, the variables and function symbols constitute a signature, Σ.
Each state of C is a Σ-Algebra (i.e. an element of AlgΣ). Variables, as we used
them, are usually denoted as “constant symbols” or “0-ary function symbols” in
the framework of Σ-algebras. We refer to the appendix for details of signatures and
algebras.

We formulate the next-state function in a programming like notation. The
elementary dynamic construct is the assignment statement, formed

x := t, (4)

The Expressive Power of Abstract-State Machines 213

where x is usually called a variable, and t a Σ-ground term. Remember that x is
indeed a 0-ary constant symbol of Σ. Applied to a state S, the assignment (4) yields
a successor state F (S), where x is assigned the value tS (i.e. xF (S) = tS).

Assignments are not only defined for 0-ary symbols, but for all ground terms
t ∈ TΣ. A ground term t ∈ TΣ is in general shaped t = f(t1, . . . , tn), where f is an
n-ary function symbol, and t1, . . . , tn ∈ TΣ. In case of n = 0, t is a constant symbol,
as discussed above. Applied to a state S, an assignment

f(t1, . . . , tn) := t0 (5)

updates the function fS at the argument tuple (t1S, . . . , tnS). Hence, for the successor
state F (S) of S holds fF (S)(t1S, . . . , tnS) = t0S. This kind of update may come as
a surprise. It corresponds to an update of an n-dimensional array f in conventional
programming.

We will allow a set of assignments being performed coincidentally, provided
they are consistent, viz no two different assignments update the same location
fS(t1S, . . . , tkS). Here is the formal definition:

Definition 1. Let Σ be a signature.

1. Let t, t0 ∈ TΣ with t shaped t = f(t1, . . . , tk). Then f(t1, . . . , tk) := t0 is
a Σ-assignment.

2. Let S ∈ AlgΣ. Two Σ-assignments f(t1, . . . , tk) := t0 and f(t′1, . . . , t
′
k) := t′0 are

consistent at S iff (t1S, . . . , tkS) = (t′1S, . . . , t
′
kS) implies t0S = t′0S.

3. A set of Σ-assignments is consistent at S iff its elements are pairwise consistent
at S.

In the sequel we do with signatures that include the symbols true, false, un-
defined, and the usual propositional logic combinators such as “∧” and “¬”. Such
signatures will be denoted as ASM signatures.

We are now prepared to introduce the program notation for next-state functions:

Definition 2. Let Σ be an ASM-signature.

1. The set guardΣ of guards over Σ is the smallest set of terms such that for all
t, t′ ∈ TΣ, t = t′ ∈ guardΣ, and β, β′ ∈ guardΣ implies ¬β ∈ guardΣ and β∧β′ ∈
guardΣ.

2. Let r be a Σ-assignment and let β ∈ guardΣ. Then

if β then r

is a guarded Σ-assignment.

3. Let q1, . . . , qm be guarded Σ-assignments. Then

par q1, . . . , qn endpar

is a sequential, bounded ASM-program over Σ.

214 W. Reisig

Notation. We frequently write r for the guarded assignment if t = t then r, with
any term t ∈ TΣ.

The semantics of an ASM program is based on the semantics of Σ-assignments:
An assignment f(t1, . . . , tn) := t0 updates in a state S the function fS at the argu-
ment tuple (t1S, . . . , tnS) with the value t0S. This generalizes to consistent sets Z in
the obvious way.

Definition 3. Let Σ be a signature, let S be a Σ-algebra with universe U , and
let Z be a set of Σ-assignments, consistent at S.

1. For a k-ary symbol f ∈ Σ, let

fZ,S : Uk → U

(t1S, . . . , tkS) 7→ t0S iff f(t1, . . . , tk) := t0 ∈ Z
u 7→ fS(u), otherwise

2. Let R =def semZ(S) be the Σ-algebra with universe U , defined for each symbol
f ∈ Σ by fR = fZ,S.

The semantics of an ASM program M is now reduced to the semantics of as-
signments: To applyM to a state S, first evaluate the guards ofM at S, and then
execute all assignments with true guards:

Definition 4. Let Σ be an ASM-signature.

1. Let β ∈ guardΣ and let S ∈ AlgΣ. Then βS = true iff β = (t = t′) and tS = t′S,
or if β = ¬β′ and not β′S = true, or if β = β′ ∧ β′′ and β′S = β′′S = true.

2. Let

M: par if β1 then r1
...
if βm then rm

endpar

be an ASM-program over Σ.

Then the semantic function semM : AlgΣ → AlgΣ is defined as follows:

For S ∈ AlgΣ let Z := {ri | βiS = true, 1 ≤ i ≤ m}. Then

semM(S) :=

{
semZ(S), if Z is consistent on S ,
S, otherwise .

An ASM programM over a signature Σ can serve as the next-state function of
a transition system that employs Σ-algebras as states:

The Expressive Power of Abstract-State Machines 215

Definition 5. Let Σ be an ASM signature, letM be an ASM program over Σ and
let A = (Q, I, F) be a transition system with Q ⊆ AlgΣ and F = semM. Then A is
an ASM transition system.

Program P1 in (3) of Section 2 is no ASM program at first glance: An ASM
program cannot express sequential composition. This deficit is easily overcome by
a well-known “trick”: Extend the initial state by a fresh variable, l, and valuate l
by 0 in the initial state, S0. Reformulate (3) by

P2 : par if l = 0 then X := g(X, x);
if l = 0 then l := 1;
if l = 1 then X := g(X, y);
if l = 1 then l := 2

endpar.

Many versions of ASM deviate from the strict syntax of Definition 4, very well
allowing notations such as (3).

4 THE EXPRESSIVE POWER OF SEQUENTIAL ASM
TRANSITION SYSTEMS

In the sequel we discuss the expressive power of ASM transition systems. They
turn out to be amazingly expressive: Intuitively formulated, every transition sys-
tem with a symbolically representable next-state function can be represented as an
ASM transition system. As a technicality, all constructs go up to isomorphism.

First we describe the next-state function F for each state S by the “difference”
between S and its follower state, F (S). This difference is a set of updates (f,u, v),
where f is a function symbol, u is an n-tuple of elements with n the arity of f , and v is
a single element. Applied to a state S, an update (f,u, v) denotes fF (S)(u) = v, i.e.
the function symbol f , interpreted in state F (S), and applied to the argument u, is
equal to v. Here is a formal definition:

Definition 6. Let Σ be a signature, let f be a function symbol in Σ with arity n,
let U be a universe, let u ∈ Un and v ∈ U . Then (f,u, v) is a Σ-update over U .

For example, the update (X, (),M ∪ {m}) describes the step from S0 to S1 in
Section 2. The next-state function F usually updates more than one function at
more than one position: The step from a state S to its successor state F (S) covers
usually a set of updates:

Definition 7. Let A = (Q, I, F) be an initialized, deterministic transition system
with Q ⊆ AlgΣ for a signature Σ. Let S ∈ Q.

1. A Σ-update (f,u, v) is an F -update of S iff fS(u) 6= fF (S)(u) = v.

2. Let ∆(F, S) denote the set of all F -updates of S.

216 W. Reisig

For all S, the sets ∆(F, S) together constitute F . Hence, F may be characterized
by help of the sets ∆(F, S), i.e. by a symbolic representation of ∆(F, S). Such
a symbolic representation must meet the following properties: If two states R and S
evolve different update sets, i.e. ∆(F, S) 6= ∆(F,R), then at least one term t ∈ TΣ

witnesses the difference: tR 6= tS. Furthermore, as a symbolic representation is
always finite, i.e. finitely many witnesses must suffice for all states. F is called
a bounded exploration in this case. Here is a formal definition:

Definition 8. Let A = (Q, I, F) be an initialized, deterministic transition system
with Q ⊆ AlgΣ for a signature Σ. Let T ⊆ TΣ such that for all states R, S ∈ Q:
If for all t ∈ T the equation tR = tS holds, then ∆(F,R) = ∆(F, S). In this case,
T is called characteristic for F . F is a bounded exploration if there exists a finite
characteristic set T of terms for F .

The bounded exploration property is the decisive property for F to be repre-
sentable by an ASM program. The additional requirement is a technicality: States
and initial states are closed under isomorphism, and the next-state function F is
invariant under isomorphism. These requirements are due to the well known obser-
vation that term representations cannot distinguish isomorphic structures:

Definition 9. Σ be a signature, let A = (Q, I, F) be an initialized, deterministic
transition system with Q ⊆ AlgΣ such that for all R, S ∈ Q and each isomorphism
h : R→ S holds:

1. R ∈ Q iff S ∈ Q and R ∈ I iff S ∈ I.

2. h : F (R)→ F (S) is an isomorphism, too.

Then A is isomorphic closed.

The following Theorem describes the expressive power of ASM transition sys-
tems:

Theorem 1. Let Σ be an ASM signature, let Q ⊆ AlgΣ, let A = (Q, I, F) be
an initialized, deterministic, isomorphism closed transition system and let F be
a bounded exploration. Then there exists an ASM program M with F = semM.

This fundamental Theorem has been proven in [7]. The proof has been re-
formulated in [9].

5 FURTHER ASPECTS OF ASM

The term “Abstract-State Machine” refers to the fundamental idea that a state is
a mathematical structure. We discussed the most elementary version of ASM in
a particular syntactic representation. In general, the syntax of ASM is not entirely
fixed; many other versions are likewise reasonable.

The Expressive Power of Abstract-State Machines 217

There are substantial extensions to the elementary versions of ASM as discussed
in this paper: The deterministic next-state function F may be replaced by a non-
deterministic next-state relation. Reactive behavior of an ASM program may be
modelled by steps xixi+1 which are not conducted by the program, but by the outside
world. Bounded exploration may be generalized, using ∀-quantified formulas in ASM
programs. A distributed version of ASM has likewise been advocated, where a simple
run consists of a partial order of actions. Turbo ASM allow to squeeze a sequence of
assignments into one super-assignment. The Lipari Guide [6] gives details on various
versions of ASM and their expressive power.

Σ-algebras are the most neutral kind of mathematical structure. Σ-algebras
therefore provide the most flexible means to model states of systems. This is why
the ASM approach has “. . . the ability to simulate arbitrary algorithms on their
natural level of abstraction, without implementing them” [2]. In fact, the liberal
requirement for states and steps adapt easily and perfectly to any kind of algorithm,
and in particular to high-level system design.

It comes without surprise that ASM have been particularly successful in describ-
ing the semantics of programming languages: Semantics deals with a rich variety
of mathematical structures that don’t require a syntactical representation. This,
exactly, is what ASM provides.

The ASM formalism has successfully been applied to virtually all areas of soft-
ware. The recent textbook [4] of Börger and Stärk introduces and surveys the most
important aspects of ASM theory, application, and tools. A lot of applications can
also be found in [2] and the excellent ASM website [1].

Acknowledgements

I thank Dines Bjørner for his encouragement to write this paper. Two anonymous
referees suggested very valuable improvements of the text.

REFERENCES

[1] The ASM web-page: http://eecs.umich.edu/gasm.

[2] Börger, E.: High Level System Design and Analysis Using Abstract State Machines.
In D. Hutter et al., editor, Current Trends in Applied Formal Methods, Vol. 1464 of
LNCS, pp. 1–43, 1999.

[3] Börger, E.: The Origin of the ASM Method for High Level System Design and
Analysis. Journal of Universal Computer Science, Vol. 8, 2002, No. 1, pp. 2–74.

[4] Börger, E.: Stärk, R.: Abstract State Machines – A Method for High-Level System
Design and Analysis. Springer Verlag, 2003.

[5] Gurevich, Y.: A New Thesis. American Mathematical Society Abstracts. p. 317,
August 1985.

[6] Gurevich, Y.: Evolving Algebra 1993: Lipari Guide. In E. Börger, editor, Specifi-
cation and Validtion Methods, pp. 9–36, Oxford University Press, 1995.

218 W. Reisig

[7] Gurevich, Y.: Sequential Abstract-State Machines Capture Sequential Algorithms.
ACM Transactions on Computational Logic, Vol. 1, 2000, No. 1, pp. 77–111.

[8] Knuth, D. E.: The Art of Computer Programming. Vol. 1: Fundamental Algo-
rithms. Addison-Wesley, 1973.

[9] Reisig, W.: On Gurewich’s Theorem on Sequential Algorithms. Acta Informatica,
Vol. 39, 2003, pp. 273–305.

APPENDIX: ELEMENTARY NOTIONS OF GENERAL ALGEBRA

We employ General Algebra in its most simple form, sticking to homogeneous al-
gebras with total functions. We introduce corresponding signatures and state some
elementary relations between signatures and algebras.

An algebra consists of a set and a choice of functions:

Definition A-1. Let U be a set.

1. Let ϕ : U × . . .× U︸ ︷︷ ︸
n−fold

→ U be a function. Then n is its arity.

2. The case of arity n = 0 yields a constant, i.e. an element ϕ() ∈ U , written ϕ.

3. Let n1, . . . , nk ∈ N. For i = 1, . . . , k let ϕi be a function over U with arity ni.
Then S = (U,ϕ1, . . . , ϕk) is an algebra. U is its carrier; (n1, . . . , nk) is its type.

A signature provides names for the functions of algebras:

Definition A-2. Let f1, . . . , fk be symbols and let n1, . . . , nk ∈ N.

1. Σ = (f1, . . . , fk, n1, . . . , nk) is a signature. For 1 ≤ i ≤ nk, the number ni is the
arity of fi.

2. fi is a constant symbol if ni = 0. fi is a function symbol otherwise.

Ground terms compose symbols according to their arity:

Definition A-3. Let Σ be a signature. The set TΣ of Σ-ground terms is inductively
defined as follows:

1. Each constant symbol is a ground term.

2. If f is a function symbol with arity n, and if t1, . . . , tn are ground terms, then
f(t1, . . . , tn) is a ground term, too.

Each signature characterizes a set of algebras:

Definition A-4. Let Σ = (f1, . . . , fk, n1, . . . , nk) be a signature. Each algebra S =
(U, g1, . . . , gk) with arity (n1, . . . , nk) is called a Σ-algebra. S is often called an
interpretation of Σ; gi is frequently written fiS and denoted as the interpretation
of fi in S.

Notation. For a signature Σ, let AlgΣ denote the set of all Σ-algebras.

The Expressive Power of Abstract-State Machines 219

Wolfgang Reisig studied physics and computer science at
Karlsruhe and Bonn, graduating n 1974. In 1974–1976 and
1976–1983, he was assistant professor at the University of Bonn
and RWTH Aachen, respectively. In 1979, he received the PhD
degree from RWTH Aachen. In 1983–1984 he was visiting pro-
fessor at University of Hamburg; from 1993 to date he is full
professor at Humboldt-Univerität zu Berlin, where he acted as
the managerial director at the Department of Computer Science
(1994–1996) and Dean of the Mathematical and Natural Science
Faculty (1996–1998). In summer 1997, he acted as a senior re-

searcher at the International Computer Science Institute (ICSI) at Berkeley, California; in
the winter term 2000/2001 he took “Lady Davis Visiting Professorship” at the Technion,
Haifa (Israel). Since 2002, he is the managerial director at the Department of Computer
Science.

