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Abstract. This paper addresses the problem of test quality assessment, namely of
BIST solutions, implemented in FPGA and/or in ASIC, through Hardware Fault
Emulation (HFE). A novel HFE methodology and tool is proposed, that, using
partial reconfiguration, efficiently measures the quality of the BIST solution. The
proposed HFE methodology uses Look-Up Tables (LUTs) fault models and is per-
formed using local partial reconfiguration for fault injection on XilinxTM Virtex
and/or Spartan FPGA components, with small binary files. For ASIC cores, HFE
is used to validate test vector selection to achieve high fault coverage on the physical
structure. The methodology is fully automated. Results on ISCAS benchmarks and
on an ARM core show that HFE can be orders of magnitude faster than software
fault simulation or fully reconfigurable hardware fault emulation.
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1 INTRODUCTION

High-quality electronic products require high-quality test. Design for Testability
(DfT) and test preparation during the design phase are mandatory for cost-effective
product development [1]. Test resource partitioning makes the use of Built-In Self-
Test (BIST) technology very attractive for production and lifetime testing [2]. In
this context, test quality assessment is a crucial factor of success.

Test quality can be evaluated through four quality metrics: TE (Test Effective-
ness), TO (Test Overhead), TL (Test Length) and TP (Test Power). TE measures
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the ability of a given test pattern to uncover likely physical defects induced during
IC manufacturing or lifetime operation. TL is the number of test vectors, directly
proportional to test application time. TO quantifies the additional hardware re-
sources (test hardware, and I/O pins) and its impact on system performance. TP
computes the power consumption needed to perform the test process. Test effec-
tiveness, associated with Defects Coverage [3], is usually evaluated through the FC
(Fault Coverage) metrics, using a fault model, such as the single Line Stuck-At
(LSA) fault model. In this work, only static faults are considered. Out of the four
quality indicators, TE embodies the necessary condition: if the target coverage value
is not met, the test solution is insufficient, and must be upgraded. This paper fo-
cuses on the costs of TE evaluation, i.e., of fault coverage computation, for System
on a Chip (SoC) cores. Traditionally, FC evaluation is performed running efficient
software tools – that is, by software fault simulation (SFS). However, for complex
cores, for large fault lists and/or for large number of test vectors, SFS costs easily
become prohibitive.

Hence, the main objective of this paper is to show that hardware fault emulation
(HFE), using FPGA (Field Programmable Gate Arrays), can provide a cost-effective
solution. A novel methodology and tool, using partial reconfiguration for fault
injection, is proposed.

A set of characteristics associated with BIST solutions are considered, and ad-
dressed in the HFE process proposed in this paper. BIST technology routinely uses
PR (pseudo-random) TPG (test pattern generators), like LFSR (Linear Feedback
Shift Registers). However, random pattern-resistant faults require refined TPG ap-
proaches, e.g., weighted PR, or re-seeding techniques [2]. Still, long test sequences
must be applied for FC computation. The modules under self-test may be combi-
national or sequential. Although many efficient algorithms have been proposed for
SFS (e.g., [4, 5]), for complex sequential circuits SFS is still a very time-consuming
task and it can significantly lengthen time-to-market. On the contrary, HFE can
speed-up run times orders of magnitude. Another FS task not efficiently performed
by software tools is multiple fault simulation, mainly due to the huge fault list.
However, multiple fault simulation may become mandatory, namely in the product
certification process of safety-critical applications [6]. Nevertheless, HFE may effi-
ciently cope with these issues. Finally, the design style can influence the FS solution
to be selected. In fact, volume production usually determines whether a product is
implemented in ASIC (Application Specific Integrated Circuit) or in FPGA. Hence,
HFE results usefulness depend on the structural description of the core (FPGA, or
ASIC), and on the selected fault model used for FC computation. In this work we
use the LSA fault model.

The purpose of this paper is threefold. First, it is to present a highly efficient
HFE methodology and tool for test quality assessment. The methodology uses
a partial reconfiguration technique for fault injection on XilinxTM Virtex and/or
Spartan FPGA components, by deriving very small bit files for fault injection. These
bit files are obtained from the full configuration bit file, by means of its direct
manipulation, without requiring any additional software tools. With the proposed
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HFE methodology, a set of Look-Up-Tables (LUT) based fault models (coarse and
fine grain models) is introduced. Second, for an FPGA product, LUT fault injection
effectiveness is evaluated as a fault sampling technique. Third, for an ASIC product,
HFE test vector selection is evaluated by the ability of the selected vectors to detect
hard faults in the target ASIC structure.

This paper is organized as follows: in Section 2, previous work on HFE is briefly
reviewed. In Section 3, the proposed HFE methodology is presented, namely the
LUT extraction and the partial reconfiguration processes. Section 4 presents the set
of LUT-based fault models. Section 5 describes experimental results that evaluate
the fault sampling and compare SFS and HFE, for an FPGA design style. Section 6
evaluates HFE capability to select test vectors to test ASIC structures. Finally,
Section 7 summarizes the main conclusions of this work.

2 PREVIOUS WORK ON HFE

Different HFE approaches using FPGAs have been proposed in the literature to
overcome the difficulties with SFS for sequential circuits. These deal with two key
parameters of the fault injection campaign: (1) additional FPGA resource allocation
and (2) time to perform the HFE process, tHFE. This time needs to be compared
with the time required to perform SFS, i.e., tSFS.

Dynamic fault injection, using dedicated extra hardware, and allowing the in-
jection of different faults without reconfiguring the FPGA, was proposed in [7–10].
The additional hardware proposed for implementing dynamic fault injection uses
a shift register whose length corresponds to the size of the fault list. Each fault is
injected when the corresponding position in the shift register has logic “1”, while all
other positions have logic “0”. Upon initialization, only the first position of the shift
register is set to “1”. Then, the “1” is shifted along the shift register, activating one
fault at a time. This technique was further optimized in [11]. It is time efficient.
However, the added hardware increases with the number of faults to inject, thus
limiting the size of the circuits that can be simulated. This is a major limitation of
this technique.

In [8], it is shown that parallelism is possible by injecting independent faults at
the same time. This parallelism is limited to faults in different propagation cones.
However, the reported speedup is only 1.36 times the pure serial fault simulation.

In [12], a new approach that included a backward propagation network to allow
critical path tracing [13] is proposed. This information allows multiple faults to be
simulated for each test vector. Nevertheless, it also requires significant amount of
extra hardware. Only combinational circuits have been analyzed.

A serial FS technique that requires partial reconfiguration during logic emulation
was proposed in [14]. This static fault injection technique requires no extra hardware
for fault injection. The authors show that HFE can be two orders of magnitude
faster than SFS, for designs over 100 000 gates. Hence, using partial reconfiguration
in FPGA, it is possible to significantly accelerate the FS process (tHFE ≪ tSFS).
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More recently, other static fault injection approaches were proposed in [15–17]
using the JBITS [18] interface for partial FPGA reconfiguration. The JBITS soft-
ware can achieve effective injection of faults on LUT [15, 16] or on erroneous register
values [17]. These papers do not report any actual results on partial FPGA recon-
figuration times for fault injection – only predictions are given. Moreover, the ap-
proach that uses JBITS requires the Java SDK 1.2.2 platform [19] and the XHWIF
hardware interface [20].

3 PROPOSED HFE METHODOLOGY

In this work, a novel HFE methodology is introduced, taking advantage of the li-
mited reconfiguration effort required to inject faults in LUTs, by an efficient partial
reconfiguration technique. First, a description of the LUT extraction and fault in-
jection procedures is presented. Then the proposed LUT-based fault models are
described in Section 4. The usefulness of the proposed HFE approach is demon-
strated in Section 5 for FPGA products, and in Section 6 for ASIC products. As,
in the proposed methodology, no additional FPGA resource allocation is required,
the key quality indicator for HFE is tHFE, which is computed as

tHFE = tconf +NF.treconf + [TL/fHFE ] (1)

where NF is the fault list size, TL the number of test vectors to be applied in the
BIST session, fHFE is the clock frequency at which the FPGA is operated during the
BIST session and tconf , treconf represent the configuration and partial reconfiguration
times. For a given fault list, tHFE can be limited by reduced treconf and by the at-
speed operation. In fact, for usual clock frequencies, the test length of the BIST
session, TL, does not pose a severe constraint (as it does in SFS).

3.1 LUT Extraction

Xilinx Virtex [21] and Spartan FPGA components are used in this work, due to
the fact that partial reconfiguration of these components is possible and documen-
ted [22]. CLBs (Configurable Logic Blocks) are the building blocks for implementing
custom logic. Each CLB contains two slices. Each slice contains two 4-input LUTs,
2 flip-flops and some carry logic. In order to extract the LUT’s configuration from the
binary file, the software tool developed to implement the methodology analyses the
part of the frames1 that describes the CLBs configuration, as depicted in Figure 1.

Each LUT can be used to implement a logic function of 0, 1, 2, 3 or 4 inputs.
For a given application and its allocated resources, the number of active inputs for

1 A frame is the minimum amount of bits that is required when configuring an FPGA.
To reconfigure an LUT 16 frames are sent plus a dummy one to flush the pipeline.The
length of a frame is related with the number of CLB’s rows, and must be word sized
(32 bits multiple).
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each assigned LUT must be identified. This allows fault list generation, needed to
automate the fault injection process.

Since each LUT has 4 inputs, the LUT contents consist of a 16-bit vector, one
vector for each input combination. Let yabcd be the output value for the combination
of input values abcd. The LUT configuration 16-bit vector can be denoted y0000,
y0001, y0010, . . . , y1111, where each bit position corresponds to the LUT output value
for the respective combination of the inputs i3, i2, i1 and i0. If one input has a fixed
value, then an 8-bit vector is obtained. For instance, if we have always i3=0, then
the relevant 8-bit vector is y0000, y0001, y0010, y0011, y0100, y0101, y0110, y0111. After
retrieving the information of each LUT from the bit file, the relevance of each input
ix (x = 0, 1, 2 and 3) is evaluated, by comparing the 8-bit vectors corresponding
to ix = 0 and ix = 1. If these two vectors are identical, then the input ix is not
active. This allows the identification of each LUT type, e.g., LUT2, LUT3 or LUT4,
according to their numbers of relevant inputs. In this LUT extraction process, the
nets associated with the LUT inputs and output are also identified, in order to
establish a link between the faults to inject and the design.

16 frames  16 frames  16 frames 

slice1 
configuration 

slice0 
configuration 

interconnect 
configuration 

1 column: 48 frames of CLBs configuration 

frame1 

frame16 
set of 18 

bits 

3rd and 4rd bit of 
each set of 18 bits 

00 

01 

10 

11 

00  01  10  11 ab 
cd 

LUT 

Fig. 1. Positions in the frames of the LUT configuration bits

3.2 Fault Injection

After LUT extraction, fault injection is carried out by partial reconfiguring of the
FPGA. The modification of the LUT contents (Karnaugh map) depends on the
user’s defined fault model. The proposed HFE methodology supports a generic
fault model for LUTs that is presented in Section 4.1. Partial reconfiguration bit
files, targeting each fault, are automatically generated in sequence. In this way,
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each bit file reprograms only the minimum number of frames required to (1) un-
inject the previous fault and (2) inject the next one. The binary file for partial
reconfiguration requires the faulty frames and a more restricted number of com-
mands [27].

This partial reconfiguration is repeated during the fault simulation (FS) process.
At present, this process is automated only for BIST. However, other HFE strategies
may be considered, namely emulation of the FS process on a target device. In
order to perform FS, the developed tool sends a [start BIST] command and waits
for [BIST end] to read the MISR signature. At present, this interaction between the
software that controls the fault simulation process and the FPGA is accomplished
using the JTAG 200Kb parallel III port. The HFE control is made using the USER0
and USER1 instructions of the TAP controller implemented in the FPGA: USER0
selects the control mode and USER1 selects the data transfer mode. As shown is
Figure 2, fault injection is performed by partial reconfiguration of the FPGA. The
start test is performed by sending a start bit over the data pin after the USER0
instruction has been issued. The end of the BIST session is sensed by reading a bit
over the data pin after the USER0 instruction has been issued. The BIST signature
is obtained by reading bits over the data pin after the USER 1 instruction has been
issued.

The validation of the tool is carried out in a DIGILAB 200E board with a Xilinx
Spartan 200 E FPGA. However, the developed software tool supports any board with
JTAG interface with Virtex or Spartan FPGAs, including the E type.

The developed tool delivers a fault simulation report. This report includes, for
each fault, the target LUT type and location, equivalent faults, detection result
and MISR signature. The LUT inputs and output are also identified, using the
information from the LUT extraction process.

Start test 
 

Send USER 0 
write start test bit 

Get result 
 

Send USER 1 
Read the bits to form the result 

Inject fault 
 

Partial reconfiguration 
of  FPGA 

Wait end of test 
 

While in USER 0 
test the bit returned for end of test

Fig. 2. HFE control states
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4 FAULT MODELS

4.1 LUT Fault Models

In order to test a circuit implemented in an FPGA, ensuring that its functionality
is correct with a certain degree of confidence (measured by test effectiveness, TE),
not only structural faults must be modeled, but also the FPGA configuration must
be tested.

The most efficient HFE approaches are based in LUT fault injection. In fact, it
is possible to inject/un-inject LUT faults very efficiently. Moreover, for a given ap-
plication and its correspondent resource allocation, the LUTs are used to implement
a significant part of the circuit’s logic. As a consequence, when using LUT faults
to estimate the fault coverage of the entire fault set, the designer uses a significant
sample of the complete fault list. This is demonstrated in Section 5.

LSA faults are the type of faults most commonly modeled in LUTs. Hence,
the coarse LUT fault model used in the proposed methodology is the I/O LSA
fault model. The reconfiguration vector that corresponds to e.g. the LUT input A
stuck at value v is obtained by copying the values yvBCD to yvBCD for each BCD
combination. For instance, the vector for the fault input A LSA-1 is obtained, as
illustrated in Figure 3, by copying y1000 to y0000, y1001 to y0001, y1110 to y0110, . . . ,
y1111 to y0111. LUT fault collapsing can be made easily by identifying the faults that
require the same faulty LUT content.

001/01/010

100111

010/11/001

101/0100

10110100AB/
CD

001/01/010

100111

010/11/001

101/0100

10110100AB/
CD

A=1

 

Fig. 3. Computing the 16 bits for LUT injection of an “input A LSA-1” fault

In order to increase the efficiency of the HFE process, the faulty LUT content
is pre-computed for each possible fault in the fault-free LUT configuration. The
LUT is described as a 16-bit vector. Different fault models may modify the fault-
free Karnaugh map in different ways. Hence, a set of LUT fault models can be
users defined. The definition of each fault model is made in a file that associates
one or several LUTs faulty contents to each possible combination of the 16 bits
that correspond to the fault free LUT configuration. The simulation tool, after
loading this file, can easily inject all the faults associated to each LUT configuration,
previously obtained as described in Section 3.2.
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An auxiliary tool was developed to generate the faulty LUT configurations for
different fault models. It is a major advantage to perform LUT faulty configuration
calculation only once and prior to fault simulation. In fact, this is more efficient and
adds flexibility to the fault model.

Following the procedure of obtaining these faulty configurations, they are com-
pared. Fault collapsing is performed when different faults result in identical faulty
configurations. In Table 1, the original (and the collapsed) number of faults is given,
for the single and multiple LSA fault model, for the c7552, s5378, s13207 ISCAS ’85
and ’89 benchmark circuits [25], and for a clone from the ARM7 core [24]. Multiple
LSA faults include all combinations of 2, 3 and 4 faults in the LUT inputs. As an
example, there are 24 possible double faults at the inputs of a 4 input LUT: C4

2

different pairs of nodes, where 22 different fault combinations can be injected. As
expected, fault collapsing is more relevant for the multiple faults model.

  Single LSA  Multiple LSA 
  Total  Collapsed  Total  Collapsed 

c7552  9374  7422  53566  17331 
s5378  6168  4479  35100  10065 

s13207  14232  10269  80180  23020 

ARM7  93710  70576  624676  185473 

Table 1. Original and collapsed number of LSA LUT faults

Routing configuration bits are also partially tested in this structural LUT test.
In fact, LSA faults are modeled at all LUT ports (a significant sample of the CLB
used logic). The impact of a routing fault on circuit functionality may manifest itself
as incorrect values at LUT’s inputs. However, exhaustive testing of routing faults
is not carried out with LUT LSA test; hence, it is possible that, in the presence of
a routing fault, a correct logic may be observed. Nevertheless, the probability of
this undesired aliasing is limited when the number of observations is large.

In the example of Figure 3 there are five LUT input vectors that produce an
erroneous output in the faulty LUT (corresponding to five changes in the LUT
contents). If the test sequence includes one of these local input vectors, and the
corresponding output is observed at the primary outputs of the core, this fault is
detected by the test.

In order to test each LUT position content and reduce the aliasing probability of
routing faults, a fine grain LUT fault model is proposed – the Combination Stuck At
(CSA) fault model [23]. The number of faults, for this model, is identical to the
possible combinations of LUT active inputs. Each fault is injected by inverting only
the LUT bit position that corresponds to one input vector. The total coverage of
CSA faults corresponds to the exhaustive LUT functional test for the programmed
configuration. Thus, CSA is a functionality driven fault model, while LSA is a line
driven fault model. It models configuration faults and also structural faults, since
the LSA LUT fault model can be viewed as a multiple CSA fault model.
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Table 2 compares the number of CSA faults with the number of single LSA
faults for different LUT types. The column “# collapsed LSA faults” presents an
approximate number of collapsed LSA faults based on the experiments reported in
Section 5. This table shows that the CSA fault model leads to an increase in the
fault list size, in comparison with the LSA fault list size, especially for LUTs with
4 active inputs. As these are the most used LUTs, CSA fault lists are typically more
than 50% larger than LSA fault lists. In HFE with partial reconfiguration faults
are serially injected. Hence, an increase of the fault list size impacts linearly on
tHFE . Nevertheless, partial reconfiguration based HFE is very fast. Therefore, this
increase in the fault list size is an affordable price to pay for the increase of accuracy
granted by the CSA model, as it will be demonstrated in Section 5.

In order to inject a fault, the LUT content must be changed. For a given
fault model, this change depends only on the LUT fault free information. LUTs
with identical fault free configurations require fault injections with the same faulty
LUT content. This fact allows pre-computation of the faulty LUT content, that is
performed only once for a given fault model for all possible LUT contents. During
the injection phase, the faulty LUT content is read from a table.

LUT type  # LSA faults 
# collapsed 
LSA faults  # CSA faults 

LUT0  2  1  1 
LUT1  4  2  2 
LUT2  6  4  4 
LUT3  8  5  8 

         LUT4  10  8  16 

Table 2. Number of LSA and CSA faults for different LUT types

4.2 LUT Faults vs. CLB Faults

As referred, fault injection is carried out on LUTs only. What confidence can we
have in a test that, ensuring high coverage of LUTs faults, will also cover the re-
maining faults? In order to answer this question, one can view the proposed HFE
methodology as a sampling technique, as LUT faults are a sample of the complete
fault set. Fault sampling techniques have been widely used and documented (e.g.,
[1, 26]). In fact, the designer does not need to simulate the whole fault set to obtain
a FC value, close to the global FC value. Therefore, for a given application, we need
to evaluate how representative is the fault sampling that consists of taking only LUT
faults to represent all CLB faults.

For this analysis, the fault list considered for the CLB consists of the LSA
faults at each CLB logic element output and inputs. Faults in the selection lines
of multiplexers with constant values are not considered, as they are considered as
routing faults. LSA faults in routing elements are collapsed to faults at lines of logic
elements.
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For the FPGA components under consideration (XilinxTM Virtex and/or Spar-
tan FPGA), each CLB has 2 LUT and 11 additional logic elements. Table 3 shows
the number and type of logic elements, the corresponding number of I/Os, the orig-
inal number of faults and the collapsed number of LSA faults. Since the number of
collapsed faults in a LUT with 4 inputs is 8, LUT I/O LSA faults represent only
16/(16 + 78) = 17% of the CLB LSA faults.
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2  And  2  1  6  4  8 
1  MUXCY  6  2  16  12  12 
1  MUXF5  3  1  8  6  6 
1  MUXF6  3  1  8  6  6 
2  FF  5  1  12  10  20 
2  XORCY  2  1  6  4  8 
1  DGEN  3  1  8  8  8 
1  WSGEN  4  1  10  8  10 

Total number of faults  58  78 

Table 3. Number of collapsed LSA faults in CLB logic elements (excluding LUT LSA
faults) in Spartan and Virtex Xilinx FPGAs

However, BIST TE must evaluate the fault coverage associated only with the
circuitry used by the specific configuration, i.e., associated with the target function-
ality. As shown in the next section, the use of LUT is dominant and typically fault
sampling rates are over 70%. Such significant fault sample size allows us to conclude
that the sample coverage (using only LUT faults) will lead to a good estimate of
the used CLB fault coverage, within a narrow confidence interval.

5 FAULT SIMULATION FOR FPGA CORES

The FPGA implementation of the ARM7 core [24] results, in terms of resource
allocation in a Spartan 600E Xilinx FPGA, is listed in Table 4.

Table 4 presents the original and the collapsed fault list size for each logic element
and the global fault list size for the circuit. For this example, using only LUT faults
is equivalent to sample 70.8% of the collapsed fault list. The huge difference from
the worst-case value evaluated in the previous section is due to the majority of LUTs
as processing logic elements. This is also the case for all the circuits that we have
studied. Table 5 shows the fault sampling values for three additional benchmark
circuits [25].

The effectiveness of the proposed HFE technique critically depends on the si-
mulation times, tHFE . Figures 4 and 5 show the fault simulation times using JTAG
200Kb parallel III port. It is clear from these figures that HFE is advantageous
over SFS after a reduced number of test vectors. After 100 000 vectors, HFE is
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LUT1  84  4  336  2  168 
LUT1_L  15  4  60  2  30 
LUT2  527  6  3162  4  2108 
LUT2_D  8  6  48  4  32 
LUT2_L  85  6  510  4  340 
LUT3  2619  8  20952  5  13095 
LUT3_D  62  8  496  5  310 
LUT3_L  17  8  136  5  85 
LUT4  6366  10  63660  8  50928 
LUT4_D  110  10  1100  8  880 
LUT4_L  325  10  3250  8  2600 
MUXCY  474  16  7584  12  5688 
MUXF5  824  8  6592  6  4944 
MUXF6  28  8  224  6  168 
XORCY  403  6  2418  4  1612 
FDC  1349  8  10792  8  10792 
FDCE  525  10  5250  10  5250 
FDCP  30  10  300  10  300 
FDP  16  8  128  8  128 
FDPE  24  10  240  10  240 

Total # faults  127238  99698 
# LUT faults  93710  70576 

Fault sampling %  73.6  70.8 

Table 4. Logic elements allocated for the ARM7 implementation

orders of magnitude faster than SFS. Moreover, it can be seen from Figure 5 that
the new HFE tool simulates a clone from the ARM processor with 70576 faults and
one million test vectors in 4800 s (one hour and twenty minutes). The flat initial
part of all curves in Figure 5 is due to the fact that there is a minimum amount of
time required to process the information of each fault. If the BIST session applies
a limited number of vectors (TL) and runs fast (fHFE), the hardware fault emulation
time (tHFE) is not significantly limited by the BIST time.

Circuit  c7552  s5378  s13207 ARM7 
Total  13836  9592  23294 127238 

# LUT faults  9374  6168  14232  93710 
Total collapsed  10029  6308  14882  99698 
# LUT faults 

collapsed 
7422  4479  10269  70576 

Fault sampling [%]  74,0  71,0  69,0  70.8 

Table 5. Fault sampling resulting from injecting faults in LUTs
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Fig. 4. HFE vs. software fault simulation time for the s13207 benchmark
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Fig. 5. Hardware fault emulation time, tHFE , for different benchmark circuits

Fault coverage results can also add in deciding the test length of the BIST
session, TL. As the HFE process runs fast, several experiments, with different test
lengths, can be performed, providing the FC vs. the number of test vectors curve.
Figure 6 shows a typical FC(TL) curve obtained using the new HFE tool and the
c7552 benchmark. In order to obtain these curves, instead of using MISRs, the
circuit is duplicated in the FPGA (one circuit for fault injection and one “golden”
circuit) allowing fault dropping and the identification of the first vector that detects
each fault. Figure 6 presents the curve obtained exercising the c7552 with an LFSR
implementing a polynomial of degree 168 and with taps in positions 166, 153 and 151.
The seed used was 111. . . 1 and the fault emulation time, tHFE , for 30 000 vectors,
was (with fHFE = 50MHz) 105 seconds.

How do these results compare with the ones reported by other authors? As
shown in Figure 7, adding extra hardware to enable fault injection without recon-
figuration, in [9], the fault emulation time estimated for the application of 100 000
test vectors to the s13207 is 353 s for a similar number of faults (9 815). This result
shows that the proposed HFE methodology, using partial reconfiguration, but no
extra hardware, is a fast process. In [14], fault emulation for the same circuit with
half the number of vectors takes 196 s. Without scan the fault coverage achieved is
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Fig. 6. Fault coverage evolution for the c7552, obtained by HFE

usually low and strongly dependant on the polynomial and seed used in the LFSR.
This dependence has a huge impact in fault emulation time.

   reference [ 9]    partial reconf.   

  
#  
faults   

time  
[s]   

#  
faults   

time  
[s]   

s5378    4603    78    4479    118   
s13207    9815    353   10269    271   
   100k pattern    
   without scan path   
  

   reference [14]    partial reconf.   

  
#  
faults   

time  
[s]   

#  
faults   

time  
[s]   

s9234    13020    148    3986    128   
s13207    21256    196   10269    129   
   50k pattern    100k pattern   
   with scan path   
  

Fig. 7. Comparing partial reconfiguration fault emulation with previous works

6 TEST PREPARATION FOR ASIC CORES

After analysis of the simulation performance and fault sample dimension of LUT
faults in FPGA targeted cores, one open question is: can hardware fault emulation
identify relevant test vectors for ASIC cores? We use the c7552 as a case study to
answer this question. First, c7552 was synthesized with an AMS cell library (csx)
and software fault simulation was carried out with 65 535 pseudo-random vectors.
The aim of this experiment was to find out whether the HFE process (with a different
structure) could lead to the identification of the test vectors that contribute to fault
detection on the ASIC structure. Three HFE processes were evaluated in hardware:
HFE using (1) LSA and (2) CSA fault models with the FPGA configuration obtained
from direct synthesis of the c7552 structure, and (3) LSA fault model with the FPGA
configuration obtained from synthesis of the c7552 AMS csx structure. This last
synthesis was carried out replacing the AMS csx cells by their Register Transfer
Level representation.
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Figure 8 shows the results of these SFS and HFE experiments. It is clear from
this figure that, with these structures and fault models, the absolute value of hard-
ware fault coverage cannot be used to estimate the fault coverage of a different
structure. Figure 8 also shows that the CSA fault model leads to pessimistic fault
coverage results: fault coverage below 95% after 65 535 test vectors.
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Fig. 8. Fault coverage results of the target structure and the FPGA implementations

The vectors responsible for increasing the fault coverage above 90% were iden-
tified and compared for the different fault simulations. There are 178 vectors, out
of 64 300, that are responsible for leading the fault coverage from 90 to 97.8% in
the software fault simulation. Ideally, we would like to identify these 178 vectors
with HFE. Table 6 shows the number of vectors identified as useful by the different
HFE experiments. Here, a useful test vector is one that contributes to an increase
in the cumulative fault coverage value. These results show that biasing the FPGA
implementation by synthesizing the target structure is rewarding. However, it still
does not lead to acceptable values of vector matching (76 of 178 vectors). The fine
grain model, the CSA fault model, leads to better results (127 vectors identified).
Note that all of the identified test vector subsets are very limited when compared
with the search space (64 300).

The low matching between test vectors identified by SFS for the target structure
and the ones identified using HFE could lead to the erroneous conclusion that vector
selection could not be performed in hardware. Fortunately, this is not the case since
the SFS using the target structure was carried out with fault dropping. Thus, only
the first vector that detects “hard faults” (that cause FC > 90%) is identified. This
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    Fault model and FPGA configuration 

    LSA 

LSA 
(modified 
structure)  CSA 

  # Useful vectors  411  423  1295 

# Identified  49  76  127 

# Not identified  129  102  51 

Matching 
with 

software 
fault 

simulation  # Added  58  62  619 

Table 6. Software and hardware vector selection matching (c7552)

means that the vectors identified in hardware as being erroneously added can, in
fact, detect hard faults in the target structure.

In order to evaluate whether the vectors not previously identified as useful can
detect hard faults, additional SFS was carried using the target ASIC structure. The
results of these simulations are presented in Figures 9 and 10. In each simulation,
the number of vectors applied is the one presented in Table 6. However, in order
to evaluate the detection correlation in the different fault sets, in Figure 9, the
horizontal axis is the same for all the simulations and therefore includes test vectors
(most of them) that were not applied.

Figure 9 shows clearly that the vectors identified in hardware are far more useful
than the matching with the first detection (Table 6) could suggest. In fact, the fault
coverage gain achieved with these vectors is much higher than the matching shown
in Table 6. In fact, LSA-based HFE leads to the detection of 60% of the hard faults
with the standard FPGA configuration. The detection value increases to 80% when
using the AMS csx structure, more similar to the ASIC structure. Using the CSA
fault model and the standard FPGA configuration, 91% of the hard faults are
detected.

7 CONCLUSIONS

Test quality assessment, namely BIST test effectiveness evaluation for stand-alone or
embedded sequential cores is a costly process. In this work, a novel HFE methodolo-
gy and tool is proposed, that efficiently, using partial reconfiguration, ascertain (or
not) the BIST solution under scrutiny. The proposed HFE methodology has been
compared to a commercial software fault simulation (SFS) tool and the superiority
has been demonstrated on ISCAS ’85 and ’89 benchmark circuits. The new HFE
tool simulates a clone from the ARM7 processor with 70576 faults and one million
test vectors in less than two hours, operating the FPGA emulator at 16.6MHz. The
LUT extraction and partial reconfiguration processes were detailed for XilinxTM

Virtex and/or Spartan FPGA components.
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Fig. 9. SFS using the target structure with different test sets (c7552)

A new, efficient and flexible set of LUT fault models was implemented. The
faulty LUT configurations that correspond to each fault are pre-computed only
once, prior to fault emulation, and loaded in the beginning of the HFE process.
This approach is more efficient and adds flexibility to the fault model.

The CLB fault list was detailed and the use of the LSA fault model at LUTs
terminals was analyzed as a fault sampling technique. Starting from a pessimistic
17% fault sampling value if all CLB resources were in use, it has been shown that,
due to the relevance of the LUTs on the implementation of the FPGA logic, the
fault sampling is over 70% in practical cases.

Test preparation in FPGA for ASIC cores was analyzed from two different points
of view: the capability of HFE to identify the first vector that detects each hard
fault and the fault coverage achieved in an ASIC structure using vectors selected
by HFE. While vector matching was reduced, the vectors selected using HFE and
the CSA fault model lead to very high LSA fault coverage in the ASIC structure:
97.14% (1 295 selected vectors) of a maximum of 97.87% (65 535 vectors), for the
c7552 benchmark.
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Glossary

ASIC – Application Specific Integrated Circuit

BIST – Built-In Self-Test

CLB – Configurable Logic Block

CSA – Combination Stuck-At

DfT – Design for Testability

FC – Fault Coverage

FS – Fault Simulation

FPGA – Field Programmable Gate Arrays

HFE – Hardware Fault Emulation

LFSR – Linear Feedback Shift Register

LSA – Line Stuck-At

LUT – Look-Up Table

MISR – Multi-Input Shift Register

PR – Pseudo-random

SFS – Software Fault Simulation

TE – Test Effectiveness
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TL – Test Length

TO – Test Overhead

TP – Test Power

TPG – Test Pattern Generator
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