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Abstract. The modified discrete cosine transform (MDCT) and modified discrete
sine transform (MDST) both for the evenly and oddly stacked systems are perfect
reconstruction cosine/sine–modulated filter banks based on time domain aliasing

cancellation (TDAC) employed in the current international audio coding standards
and commercial audio compression products. Based on the matrix representation
of MDCTs and MDSTs it is shown that the transposed MDCT and MDST matrices
are actually the pseudoinverses of their corresponding forward transform matrices.
The pseudoinverse matrix and its properties provide an elegant mathematical tool to
characterize the MDCT/MDST as the analysis/synthesis filter banks in the matrix
representation.
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1 INTRODUCTION

The modified discrete cosine transform (MDCT) and modified discrete sine trans-
form (MDST) are perfect reconstruction cosine/sine-modulated filter banks based
on time domain aliasing cancellation (TDAC) employed in the current international
audio coding standards and commercial audio compression products (proprietary
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audio coding algorithms) [1]. Two types of the MDCT are defined, specifically,
for evenly stacked [2] and oddly stacked [3] analysis/synthesis systems. In general,
the evenly and oddly stacked MDCTs and MDSTs are non-invertible transforms.
However, they are orthogonal in the context of complete TDAC analysis/synthesis
filter banks. The analysis consists of overlapping, windowing and transforming the
adjacent data blocks, while the synthesis includes inverse transforming, windowing,
overlapping and adding the data blocks to perfectly reconstruct the original data
sequences.

In this paper based on the matrix representation of MDCTs and MDSTs it is
shown that the transposed MDCT and MDST matrices are actually the pseudoin-
verses of their corresponding forward transform matrices. The pseudoinverse matrix
is the important concept of classical matrix theory, and though the observed relation-
ship between the inverse MDCT/MDST and pseudoinverse seems to be trivial from
linear algebra perspective, the pseudoinverse matrix and its properties provide an
elegant mathematical tool to characterize MDCT/MDST as the analysis/synthesis
filter banks in the matrix representation. It is important to note that recently pub-
lished books [4], [5] and [6] related to the theory of lapped transforms, multirate
systems and filter banks do not rigorously use the concept of pseudoinverse matrix
in the context of cosine–modulated filter banks. Whereas in [6] the pseudoinverse
matrix is discussed partially and it is referred to as “left-inverse”, in [4] and [5] it
is not discussed at all. Essentially, all books do not contain any reference to classic
theory of matrices.

2 DEFINITIONS AND PROPERTIES OF THE MDCT/MDST

2.1 The Evenly Stacked MDCT/MDST

Let {xn}, n = 0, 1, . . . , N − 1 represent an input data sequence. The evenly stacked
MDCT (E-MDCT) and its inverse are defined as [2]
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where ǫ0 = 1, and ǫk = 2 for k = 1, 2, . . . , N
2
− 1. The corresponding evenly stacked

MDST (E-MDST) and its inverse are defined as [2]
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the definitions of inverse E-MDCT/E-MDST are introduced for the correct matrix
representation. The E-MDCT/E-MDST sequences {c
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whereas the time-domain aliased data sequences {x̂
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by inverse E-MDCT/E-MDST possess the following symmetries
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The properties (5) and (6) can be simply verified by proper substitution into equa-
tions (1), (2), (3) and (4).

2.2 The oddly stacked MDCT/MDST

The oddly stacked MDCT (O-MDCT) and its inverse are defined as [3]
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The O-MDCT is equivalent to the modulated lapped transform (MLT) [4]. The
corresponding oddly stacked MDST (O-MDST) and its inverse are defined as [7, 8]
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The O-MDCT and O-MDST basis functions form the modulated complex lapped
transform (MCLT) [7], whose real part corresponds to the O-MDCT or MLT and
imaginary part is the O-MDST. The O-MDCT/O-MDST sequences {c
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and the time domain-aliased data sequences {x̂
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inverse O-MDCT/O-MDST possess the following symmetries
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The properties (11) and (12) can be simply verified by proper substitution into
equations (7), (8), (9) and (10).

3 THE PSEUDOINVERSE MATRIX

In this section the basic facts from classical matrix theory and computational me-
thods of linear algebra concerning to the pseudoinverse matrix are summarized.

It is well known that if A is a real square nonsingular matrix, then there exists
its unique inverse matrix denoted by A−1. However, in general, if A is an m × n
matrix (m 6= n), then the inverse matrix for A does not exist. Nevertheless, for
an arbitrary m × n matrix A the pseudoinverse matrix A+ exists, which possesses
some properties of the inverse matrix [9]. The pseudoinverse matrices are directly
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related to the minimum norm and they have played an important role in solution of
overdetermined systems of linear equations (least squares problem) [10, 11].

Let A be a real m × n matrix of rank r (matrix A has the full rank if r =
min(m, n), and it is rank deficient if r < min(m, n)). For an arbitrary matrix A
there exists exactly one n × m matrix denoted by A+ satisfying the four Moore-
Penrose conditions [10, 11]

(a) AA+A = A,

(b) A+AA+ = A+,

(c) (A+A)T = A+A, (A+A)2 = A+A,

(d) (AA+)T = AA+, (AA+)2 = AA+.

The matrix A+ is said to be the pseudoinverse or generalized inverse of A. Condi-
tions (c) and (d) emphasize the fact that matrices A+A and AA+ are Hermitian and
involutory, i.e., they are symmetric and their second power is equal to the original
matrix. In the case of m× n matrix A, m > n, if rank(A) = n, then the pseudoin-
verse matrix A+ is given by A+ = (ATA)−1AT , while if rank(A) = m = n, then
A+ = A−1. Generally, for an m×n matrix A of rank r we can perform the so-called
skeleton decomposition A = B C , where B is m × r and C is r × n matrix [9]. If
such a decomposition is known, then the pseudoinverse matrix A+ can be computed
from the formula

A+ = C+B+ = CT (CCT )−1(BTB)−1BT .

The pseudoinverse matrix A+ can be alternatively obtained via the Singular Value
Decomposition (SVD) [11] or QR factorization [10]. According to the SVD for
a real m × n matrix A of rank r there exists an orthogonal matrix U of order m,
an orthogonal matrix V of order n, and m × n diagonal matrix Σ of rank r with
positive diagonal elements that

UTAV = Σ, Σ = diag {σ1, σ2, . . . , σr, 0, . . . , 0},

where σ1 ≥ σ2 ≥ . . . ≥ σr > 0 are called singular values of A. Because U and V
are orthogonal matrices, UTU = UUT = I and V TV = V V T = I , where I is the
identity matrix, consequently

A = UΣV T .

It follows from the SVD decomposition that the pseudoinverse matrix A+ is given
by

A+ = V Σ+UT , Σ+ = diag {
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and it satisfies the four Moore-Penrose conditions. In particular, matrices AA+ and
A+A are given by [10]
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A+A = V

[

I 0
0 0

]

V T .

The computational methods for the SVD decomposition are presented in [11].

According to QR factorization of a real m × n matrix A, m > n, with linear
independent columns there exist uniquely an m× n matrix Q and an n× n matrix
R so that QT Q is diagonal matrix with positive diagonal elements di, and R is the
unit upper triangular matrix [10], that is

A = Q R, QT Q = D = diag{d1, . . . , dn}.

If such QR factorization of the matrix A is known, then pseudoinverse matrix A+

is given by

A+ = R−1 D−1 QT , QT Q = D.

The algorithm for computation of QR factorization is presented in [10].

4 THE MATRIX REPRESENTATIONS OF THE MDCT/MDST

An alternative method to represent the perfect reconstruction cosine-modulated
filter banks is the matrix-vector notation. Consider the E-MDCT/E-MDST and
O-MDCT/O-MDST defined by equations (1)/(3) and (7)/(9), respectively. The
symmetry properties (5) and (11) imply that only N

2
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and O-MDCT/O-MDST matrices are linear independent. Therefore, let C
E

N

2
×N

,

S
E

N

2
×N

, C
O

N

2
×N

and S
O

N

2
×N

be the N

2
×N E-MDCT, E-MDST, O-MDCT and O-MDST

matrices, respectively. Then equations (1), (3), (7) and (9) can be written in the
equivalent matrix-vector form as
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For the transposed E-MDCT and E-MDST matrices the following relations hold
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whereas for the transposed O-MDCT and O-MDST matrices the following relations
hold
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where IN

4

is the identity matrix, and JN

4

is the reverse identity matrix, both of

order N

4
.

Now it is clear that the E-MDCT/E-MDST and O-MDCT/O-MDST matrices
defined in equations (14)-(16) and (17)–(19) have the same full rank, i.e.,

rank(C
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) = rank(S
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) =
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Let us denote their transposed matrices by [C
E

]+, [S
E

]+, [C
O

]+ and [S
O

]+, respec-
tively. Using the relations (14)–(16) and (17)–(19) it can be easily verified that they
satisfy Moore-Penrose conditions, and therefore they are called to be pseudoinverses
of their corresponding matrices. Then both the evenly and oddly stacked inverse
MDCT/MDST given by (2), (4), (8) and (10) can be written in the equivalent
matrix-vector form as
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There is the following interpretation of above equations in (20) [9, 11]. If we con-
sider the forward MDCTs/MDSTs in matrix representation given by (13) to be
systems of linear equations, then time-domain aliased data sequences in (20) for
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given MDCT/MDST coefficients can be interpreted as least squares solutions, i.e.,
solutions with minimum norm. Moreover, we can derive the time-domain aliased
data sequences for inverse MDCTs/MDSTs explicitly in terms of original data sam-
ples. Consider an example for N = 8. Multiplying both sides of equations in (13)
by the corresponding transposed (pseudoinverse) MDCT/MDST matrix and using
relations (15), (16), (18) and (19) we have
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In the above equations we can clearly observe the time-domain aliased data se-
quences {x̂n} recovered by the given inverse MDCT/MDST transform including
both their forms in terms of original data samples and their symmetry properties
originally given by equations (6) and (12).

5 CONCLUSIONS

Based on the matrix representation for the evenly and oddly stacked MDCT/MDST
it has been shown that the transposed MDCT/MDST matrices are actually the
pseudoinverses of their corresponding forward transform matrices. Although the
observed relationship between the inverse MDCT/MDST and pseudoinverse seems
to be trivial from linear algebra perspective, the pseudoinverse matrix and its pro-
perties provide an elegant mathematical tool to characterize MDCT/MDST as the
analysis/synthesis filter banks in matrix representation.
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