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Abstract. Realizing that generality and uniformity of the usual Soft Comput-
ing (SC) structures exclude the application of plausible simplifications relevant in
the case of whole problem classes resulted in the idea that a novel branch of soft
computing could be developed by the use of which far simpler and more lucid uni-
form structures and procedures could be applied than in the traditional ones. Such
a novel approach to computational cybernetics akin to SC was developed at Bu-
dapest Tech to control inaccurately and incompletely modeled dynamic systems
under external disturbances. Hydraulic servo valve controlled differential cylinders
as non-linear, strongly coupled multivariable electromechanical tools serve as excel-

lent paradigms of such difficulties. Their control has to cope with the problem of
instabilities due to the friction forces between the piston and the cylinder, as well
as with uncertainties and variation of the hydrodynamic parameters that makes it
unrealistic to develop an accurate static model for them. In this paper a combina-
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tion of this novel method with the use of fractional derivatives is applied for the

control of a hydraulic differential cylinder. Simulation results well exemplifying the
conclusions are also presented.

Keywords: Soft computing, uniform structures and procedures, adaptive control,
hydraulic differential cylinders

1 INTRODUCTION

The main advantage in using SC is the evasion of the development of intricate ana-
lytical, static models of the systems to be controlled. Its fundamental components
were almost completely developed by the sixties of the past century. In our days SC
means either separate or integrated application of Neural Networks (NN) and Fuzzy
Systems (FS) enhanced with high parallelism of operation and supported by several
deterministic, stochastic or combined parameter-tuning methods that are frequently
referred to as “learning”.

Regarding the use of NNs, typical problem classes have been identified for the
solution of which typical uniform architectures (e.g. multilayer perceptron, Kohonen-
network, Hopfield-network, Cellular Neural Networks, CNN Universal Machine, etc.)
have been elaborated. For instance, a typical application of NNs is the linearization
of nonlinear sensor signals [1].

The great advantage in the use of fuzzy systems is that they provide mathema-
tically rigorous representation of vague or imprecise information in a form similar to
human languages [2]. They use membership functions of typical (e.g. trapezoidal,
triangular or step-like, etc.) shapes, and the fuzzy relations can also be utilized in
a standardized way by using different classes of fuzzy operators.

The first phase of applying traditional SC, that is the identification of the prob-
lem class and finding the appropriate structure for dealing with it, is easy normally.
The next phase, i.e. determining the necessary size of the structure and fitting its
parameters via machine learning, is far less easy. In general, in the case of strongly
coupled non-linear Multiple Input – Multiple Output (MIMO) systems traditional
SC suffers from the disadvantage of wrong “scalability” or “curse of dimensionality”
that mean that the number of the necessary neurons/fuzzy rules strongly increases
with the degree of freedom and the intricacy of the problem.

To reduce modeling complexity fuzzy interpolation methods were developed and
checked. For instance, similarity relations can be utilized in the design of fuzzy di-
agnostic systems [3]. Various techniques were elaborated as remedies for such prob-
lems as the application of rule interpolation [4] or improving Sugeno and Yasukawa’s
Qualitative Modeling [5], or the application of hierarchical rules [6], etc. In spite of
the very important developments the situation in such approaches normally is not
lucid. Similar problems arise regarding the necessary number of neurons in a neural
network approach. External dynamic interactions on which normally no satisfactory
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information is available influence the system’s behavior in dynamic manner. Both
the big size of the necessary structures, the huge number of parameters to be tuned,
as well as the goal varying in time still are serious problems.

In order to get rid of the scalability problems of the classical Soft Computing
a novel approach was initiated on the basis of a compromise between the need of
generality and scalability in [7]. It was shown by the use of perturbation calculus that
this method can be applied for a quite wide class of physical systems, e.g. in the case
of classical mechanical systems, too [8]. This approach uses far simpler and far more
lucid uniform structures and procedures than the classical ones: various algebraic
blocks originating from different Lie groups can be incorporated into the “model”,
e.g. a new family of symplectic transformations [9]. In the present paper this method
is applied in adaptive control of an electromagnetic servo valve controlled differential
hydraulic cylinder first investigated by Bröcker and Lemmen [10].

Their first approach was based on the “disturbance rejection principle”, the other
one on the “partial flatness principle”. In each case it was necessary to measure the
disturbance force and its time-derivative as well as to know the exact model of the
hydraulic cylinder they developed in details and identified for a particular robot arm-
drive system. However, the identification of such a system needs a lot of laboratory
work the result of which may also be temporal. A serious problem is the need for
measuring the external disturbance forces. In general it seems to be expedient to
apply adaptive control instead of trying to measure the ample set of unknown and
time-varying parameters. However, this adaptive control need not be too intricate,
actually should not be much more complicated than an industrial PID controller.
For this purpose Soft Computing based approaches would be more attracting than
detailed analytical modeling.

The above approach was applied in adaptive control of servo valve controlled
differential hydraulic cylinder in [11]. This approach used the phenomenology of
the hydraulic cylinder in a very cautious manner that avoided prescribing a PID
control due to the general angst regarding the non-linearities generated by friction.
A PI control was applied for the piston’s trajectory only. The approach described in
this paper transcends this previous one by allowing a PIDvar control for the piston’s
trajectory, in which the order of derivation depends on the past fluctuation of the
piston’s velocity that generates harsh modification in the friction forces, especially
in the vicinity of the zero-transitions of the velocity.

In the sequel the main point of the scalable soft computing is very briefly out-
lined. Following that the analytical model of the differential hydraulic servo cylinder
is presented together with the new control approach applied. The paper is closed
by the simulation results and the conclusions.

2 FORMULATION OF THE CONTROL TASK

From purely mathematical point of view the control task can be formulated as
follows. Some imperfect model of the system is given, on the basis of which some
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excitation is calculated to obtain a desired system response id as e = ϕ(id). The
system has its inverse dynamics described by the unknown function ir = ψ(ϕ(id) =
f (id) and resulting in a realized response ir instead of the desired one, id. Normally
one can obtain information via observation only on the function f () considerably
varying in time, and no possibility exists to directly “manipulate” the nature of
this function: only id as the input of f () can be “deformed” to id

∗

to achieve and
maintain the id = f (id

∗

) state. On the basis of the modification of the method of
renormalization widely applied in physics the following “iteration” was suggested
for finding the proper deformation:

i0; S1f (i0) = i0; i1 = S1i0; ... ; Snf (in−1) = i0;

in+1 = Sn+1in; Sn −−−→
n→∞

I
(1)

in which the Sn matrices denote some linear transformations. These matrices map
the observed response to the desired one, and the construction of each matrix cor-
responds to a step in the adaptive control. It is evident that if this series converges
to the identity operator just the proper deformation is approached, therefore the
controller “learns” the behavior of the observed system by step-by-step amendment
and maintenance of the initial model.

Regarding the resolution of the ambiguity of the matrices mathematically not
fully defined by (1), evasion of the dubious 0 → 0, 0 →finite, finite→ 0 transforma-
tions, and the convergence of the method, we refer to [7] and [9].

3 DESCRIPTION OF THE SYSTEM TO BE CONTROLLED

The operation of the differential hydraulic cylinder was described in details e.g.
in [10]. Let x denote the linear position of the piston in m units. The acceleration
of the piston is described by [10] as

ẍ =
1

m

[(

pA −
1

ϕ
pB

)

AA − Ff (ẋ)− Fd

]

(2)

in which pA and pB denote the pressures in chambers A and B of the piston in bar
units. ϕ = AA/AB denotes the ratio of the “active” surface areas of the appropriate
sides of the piston,m is the mass of the piston in kg, Ff stands for the internal friction
between the piston and the cylinder, and Fd denotes the external disturbance force.
The pressure of the oil in the chambers also depends on the piston position and
velocity as

ṗA =
Eoil

VA (x)
(−AAẋ+ BvKva1 (pA, sign (U))U) (3)

ṗB =
Eoil

VB (x)

(

AA

ϕ
ẋ− BvKva2 (pB, sign (U))U

)

(4)

where Bv denotes the flow resistance, Kv is the valve amplification, U is the nor-
malized valve voltage.
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The oil volumes in the pipes and in the chambers are expressed as

VA (x) = VpipeA +AAx,

VB (x) = VpipeB +AB (H − x)
(5)

(H is the cylinder stroke.) The hydraulic drive has two stabilized pressure values,
the pump pressure p0, and the tank pressure pt. Under normal operating conditions
(that is when no shock waves travel in the pipeline) these pressures set the upper
and the lower bound to pA and pB. The functions a1 and a2 are defined as given
in (6). Under “normal conditions” sign(a1) ≥ 0, and sign(a2) ≥ 0, too, according
to the limiting role of the pump and tank pressures.

a1 (pA, sign (U)) =















sign (p0 − pA)
√

|p0 − pA|
if U > 0,

sign (pA − pt)
√

|pA − pt|
if U < 0

a2 (pB, sign (U)) =















sign (pB − pt)
√

|pB − pt|
if U > 0,

sign (p0 − pB)
√

|p0 − pB|
if U < 0

(6)

The phenomenology on the basis of which the control in [11] was formed sounds
as follows. Supposing the need for a desired piston acceleration computed on the
basis of purely kinematic considerations, on the basis of the available system model
(either omitting or involving terms regarding the piston friction), and omitting the
unknown disturbance force, a desired value can be prescribed to (pA − pB/ϕ). Sup-
posing that at least pA, pB, x, and dpA/dt, dpB/dt, dx/dt are measurable in real-time
it is possible to know the actual value of this quantity. On this basis a desired time-
derivative can be prescribed to it. Again, on the basis of an available approximate
system model via the linear combination of equations [(3)-(4)/ϕ] an appropriate
control signal U can be proposed by the controller in order to realize this desired
derivative. Due to the inconvenient behavior of the piston’s friction, a PI-type con-
troller was proposed for (pA − pB/ϕ), and for the desired trajectory tracking, too.
Via comparing the desired and the observed values the adaptive control briefly out-
lined above was applicable for this problem. In this manner the derivation of the
disturbance force was evaded in contrast to Bröcker’s original approach in [11] that
started with the derivation of (2) according to the time.

In the present paper an alternative approach was chosen. For the desired relax-
ation of the trajectory tracking error e := (xR − xNom) a simple kinematic formula
was prescribed as

ë = −Pe −Dė − I

∫

0

e dt. (7)

With properly chosen P , I , and D coefficients (7) evidently corresponds to the
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mixture of error components of exponential damping. The appropriate coefficients
were determined simply by substituting an expected e = exp(αt) type relaxation
into the time-derivative of (7) that resulted in a third order polynomial for α. For
this polynomial three different negative real roots were prescribed in the form of
(α−α1)(α−α2)(α−α3). Substituting this into (7) the proper P , D, and I param-
eters were conveniently determined. The time-derivative of (7) therefore lead to the
desired third time-derivative of the piston’s trajectory as

...
x d =

...
xNom − Pė −Dë− Ie. (8)

The very rough approximate model of the cylinder was obtained by omitting the
friction forces and the external disturbance forces in (2) as

...
x d =

AA

m

(

ṗA −
1

ϕ
ṗB

)

(9)

into which the desired time-derivative of the piston’s acceleration was substituted.
Equation (9) thus immediately yields an expected value for d(pA − pB/ϕ)/dt. Via
computing [(3)-(4)/ϕ] the proposed control signal U can be determined, and from
the known current state of the system from (3), and (4), dpA/dt, and dpB/dt can be
determined. Consider now the Euler-Lagrange equation of motion of the classical
mechanical systems and its time-derivative in a wider context!

M (q) q̈+C (q, q̇) = Q, (10)

M (q)
...
q + Ṁ (q, q̇) q̈+ Ċ (q, q̇) = Q̇ (11)

It is evident from (10) that if d2q/dt2 does not suffer abrupt variation, for abrupt
variation of dQ/dt abrupt variation of d3q/dt3 can be expected, that is the strictly
positive definite inertia matrix of the mechanical system

∂Q̇

∂
...
q

=
∂Q

∂q̈
= M (12)

sets similar relationship between dQ/dt and d3q/dt3 and betweenQ and d2q/dt2. In
the proof of the possibility of convergence of (1) for mechanical systems this property
of M was utilized when the desired/realized values were prescribed/observed for
d2q/dt2. Therefore the possibility for convergence still exists if, on the basis of (11),
the desired/realized values are prescribed/observed for d3q/dt3, when in the role
of the physical agent controlling the motion dQ/dt stands instead of Q. With
appropriate initial conditions, in the field of classical mechanics in general (11),
and in the particular case of the piston now considered, (9) just corresponds to
this situation. In the present paper this observation is utilized. In connection
with its applicability some attention has to be paid to the problem of observing
d3x/dt3, which, in the case of the presence of friction forces, may be critical. For
filtering the noisy part of this signal, in accordance with the concept of fractional
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order derivatives Caputo’s definition can be applied, that re-integrates the integer
order derivative with a kernel function of long tail acting as a frequency filter. The
method was found to be promising for damping the forced oscillation of a car chassis
while passing hills/valleys along a bumpy road [12]. According to that (8) can be
modified as

x(2+β)d =

t
∫

0

dτ
[...
xNom (τ)− Pė (τ) −Dë (τ)− Ie (τ)

]

×
(t− τ )−β

Γ (1− β)
, β ∈ (0, 1) .

(13)
In the practical realization of (13) the lower limit of the integration is replaced –
t−T instead of 0 – that corresponds to a finite “memory of length” T . Furthermore,
for the numerical approximation of the integral with singular integrand the following
formula can be used: the full interval of the integration of length T is divided into
small sub-intervals of length δ, during which the reintegrated derivative is supposed
to be approximately constant:

dβ

dtβ
u (t) ∼=

u′ (t) δ−β+1

Γ (2− β)
+

∑

0<s<T/δ

δ−β+1
[

(s+ 1)−β+1 − s−β+1
]

Γ (2− β)
u′ (t− sδ). (14)

The next essential point is setting the order of derivation depending on the
behavior of the velocity of the piston. As is well known changing sign of the ve-
locity generates drastic changes in the friction forces. In the Stribeck model of
friction the viscous friction forces and adhesion are combined (details are given e.g.
in [10]). Due to the controller’s feedback this friction force can oscillate whenever
zero-transmission happens in the velocity. That is, β ≅ 1 is needed for non-zero
velocities, and β < 1 whenever the velocity is in the vicinity of zero. In the present
paper the following adaptive formula was applied

0 < β =

A+

∣

∣

∣

∣

∣

T/δ
∑

s=1

sign (
...
x (t− sδ))

∣

∣

∣

∣

∣

γ

A + (T/δ)γ
6 1 (15)

in which instead of the velocity the observed 3rd time-derivatives are used, because
this signal is directly related to the controller’s feedback. In the forthcoming si-
mulations the numerical data of the system measured and published by Bröcker
and Lemmen in [10] were used, with the exception of the oil elasticity Eoil for
which Bröcker measured 1 800 × 106 Pa, which is a huge value representing the
approximate incompressibility of the liquid. However, in a pipe system, due to
elasticity of the pipe walls, or due to complementary components intentionally built
into the system to reduce this huge stiffness (e.g. via using hydraulic accumulators,
flexible hoses [13]) this value can be considerably smaller. In the sequel simulation
results are presented.
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4 SIMULATION RESULTS

In the initial simulations Eoil = 18 × 106 Pa and fνi = 175Nsm−1. The other
significant constants in (14) were determined via running various simulations, and
had the values as follows: δ = 1ms, T = 20ms (also corresponds to the cycle time of
the external adaptive loop using the symplectic transformations), A = 1, γ = 10−4

nondimensional. As a disturbance force a constant 500N and a sinusoidal force of
amplitude 200N and circular frequency 12 s−1 was applied.

1 751 1501 2250 3000
0.0137

0.0666

0.1195

0.1724

0.2253

qp1

Nominal and Computed Trajectory

1 751 1501 2250 3000
0.025

0.076

0.128

0.179

0.230

qp1

Nominal and Computed Trajectory

Fig. 1. Nominal and simulated piston trajectory [m] vs. time [ms] for the PIDvar (upper),
and the combined (PIDvar and symplectic transformations) (lower) controls

In Figure 1 the trajectory tracking properties of the controller without and with
the application of the external adaptive control loop can be seen. The improvement
is evident. Figure 2 reveals that the variation of the pressure in the chambers of the
cylinder is not “hectic”, in spite of the hectic behavior of the friction forces in the
vicinity of the zero transition of the piston’s velocity. It is interesting to see what
happens whenever the nominal trajectory asymptotically is “constant”, i.e. when
the region of the friction force’s instability lasts in time. Figure 3 displays typical
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results for this case in which the information necessary for the external adaptive
loop becomes dubious for a long time, and the simple PIDvar control seems to be
even a little bit better than the full one.
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Fig. 2. The variation of the pressure in the cylinder chambers, the friction forces, and the
“extent” of the external adaptive transformation vs. time [ms] for the fully adaptive
control

In order to combine the sinusoidal and the asymptotically constant desired tra-
jectories, in Figures 4 and 5 simulation results can be seen for the original viscosity
fνi = 175Nsm−1 and its increased value fνi = 400Nsm−1. (The other parameters
of the simulation were not varied.) It is evident that in the high velocity part the
tracking accuracy decreased to some extent, while in the low velocity parts the ef-
fect of the viscosity is not significant in comparison with that of the adhesion of
the piston. The phase trajectories reveal that no extreme acceleration happens. As
it was expected in the less critical parts of the motion the order of derivation is
integer (≈ 3), and it sharply decreases in the close vicinity of the critical points
(Figure 5).
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Fig. 3. Tracking properties of the the simple PIDvar and the fully adaptive control (piston
friction included): piston position [m] vs. time [ms]

5 CONCLUSIONS

In this paper a possible improvement of an adaptive control developed for mag-
netic servo valve operated differential hydraulic cylinders was considered. It was
found that whenever the piston is in a “cruising phase” of nonzero velocity, si-
multaneous application of tuning the order of differentiation and that of a special
external adaptive loop results in considerable achievement. For this success it is
necessary to increase the net compressibility of the hydraulic working liquid by the
application of accumulators. In the case of trajectories having asymptotically zero
velocity the piston’s friction still remains a considerable disturbing factor. In the
asymptotical part of these trajectories the simple PIDvar control seems to be more
advantageous.
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Fig. 4. Trajectory (x in m vs. time in ms) and phase trajectory (dx/dt in m/s vs. x in m)
tracking for the fully adaptive controller for the original (upper pair) and the increased
(lower pair) viscosity
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