
Computing and Informatics, Vol. 24, 2005, 513–528

BEHAVIOURAL EQUIVALENCES
ON FINITE-STATE SYSTEMS ARE PTIME-HARD
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Abstract. The paper shows a logspace-reduction from the Boolean circuit value
problem which demonstrates that any relation subsuming bisimilarity and being
subsumed by trace preorder (i.e., language inclusion) is ptime-hard, even for finite
acyclic labelled transition systems. This reproves and substantially extends the
result of Balcázar, Gabarró and Sántha (1992) for bisimilarity.
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1 INTRODUCTION

The ever-growing need of formal verification of (complex) systems is reflected by the
broad and active research in this area. A particular research branch is devoted to
studying computational complexity of (and designing efficient algorithms for) various
verification problems. Checking behavioural equivalences or preorders (between,
say, a specification and an implementation) constitutes an important class of such
problems.
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Finite state systems (which might consist of communicating components running
concurrently) are then a natural primary target for such studies. These systems are
usually modelled as so called labelled transition systems (LTSs for short), which
capture the notion of (global) states and their changes by performing transitions –
these are labelled by actions (or action names). We deal here only with finite LTSs,
which can be viewed as classical nondeterministic finite automata – NFA (without
a necessity of defining accepting states).

It is useful to recall from classical language theory that checking language inclu-
sion or equivalence for NFA is pspace-complete (cf., e.g., [5]). This easily applies
also to the case where all states are deemed as accepting; we speak about trace
inclusion (trace preorder) or trace equivalence then.

When studying systems from behavioural point of view, it was soon observed
that trace equivalence is too coarse, and during the 1980’s the notion of bisimulation
equivalence (also called bisimilarity) emerged as a more appropriate fundamental
concept (cf. [7]). (Very roughly speaking, two bisimilar systems can simultaneously
simulate each other.)

Also other notions of equivalences (or preorders) turned out to be useful for
various specific aims. Van Glabbeek [11] classified such equivalences in a hierarchy
called linear time/branching time spectrum. The diagram in Figure 1 shows the most
prominent members of the hierarchy and their interrelations (the arrow from R to S

means that equivalence R is finer than equivalence S).

We note that bisimilarity is the finest in the spectrum while trace equivalence is
the coarsest. Roughly speaking, we can also divide the equivalences into ‘trace-like’
and ‘simulation-like’ ones.

For the aims of automated verification, it is natural to study the computational
complexity of each relevant relation (equivalence or preorder) X in the case of finite
LTSs. We have already mentioned that pspace-completeness of trace equivalence
follows from classical language theory. On the other hand, there are polynomial-
time algorithms in the simulation-like part of the spectrum; we can refer, e.g., to [3]
for a survey.

Balcázar, Gabarró and Sántha [1] considered the question of an efficient paralleli-
zation of the (polynomial) algorithm for bisimilarity. They showed that the problem
of checking bisimilarity is ptime-hard (i.e., all problems from ptime are reducible
to this problem by a logspace-reduction). This shows that the problem seems to
be ‘inherently sequential’, i.e., we can not hope for a real gain by parallelization
(unless nc = ptime, which is considered to be very unlikely; cf. e.g. [4]).

Paper [1] shows a logspace reduction from (a special version of) the Boolean
circuit value problem, which is well-known to be ptime-complete. Their reduction
handles just bisimilarity; in particular, it does not show ptime-hardness of other
‘simulation-like’ equivalences (which are known to be in ptime as well).

In this paper, we show another reduction from (a less constrained version of) the
circuit value problem which we find simple and elegant and which immediately shows
that deciding an arbitrary relation which subsumes bisimulation equivalence and is
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Bisimulation equivalence

2−nested simulation equivalence

Ready simulation equivalence

Ready trace equivalence

Readiness equivalence

Failures equivalence

Completed trace equivalence

Trace equivalence

Simulation equivalence

Possible−futures equivalence

Failure trace equivalence

Fig. 1. The linear time/branching time spectrum

subsumed by trace preorder is ptime-hard. Thus the result of [1] is substantially
extended.

The value of this extension is primarily relevant for the problems in ptime,
i.e., in the simulation-like part of the spectrum, which can also comprise ‘not yet
discovered’ equivalences; of course, ptime-hardness trivially follows for problems
which are known to be pspace-hard (in the trace-like part). It is also worth to
point out that our construction provides the ptime-hardness result even for acyclic
finite state systems; the problems for this subclass are generally easier, though trace
equivalence is still co-np-complete.

At the end of the paper, after Section 2 with definitions and Section 3 with the
technical proof, we add some remarks on ‘lifting’ the result to settle a conjecture
in [8]. Finally we remark that a preliminary version of this paper appeared in [10].

2 DEFINITIONS

A labelled transition system (an LTS for short) is a tuple 〈S,Act,−→〉 where S is
a set of states, Act is a set of actions (or labels), and −→⊆ S×Act×S is a transition

relation. A tuple 〈p, a, q〉 ∈−→, written also p
a

−→ q, is called a transition. We also

use notation p
w

−→ q for finite sequences of actions (w ∈ Act∗), with the obvious
meaning. We only consider finite LTSs, where both sets S and Act are finite.
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Now we give precise definitions of trace and bisimulation equivalences between
states in LTSs. It is sufficient to consider only pairs of states belonging to the same
LTS, since the states of two different LTSs can be naturally viewed as the states of
their disjoint union.

For a state p of an LTS 〈S,Act,−→〉, we define the set of its traces as

tr(p) = {w ∈ Act∗ | p
w

−→ q for some q ∈ S }.

States p and q are trace equivalent iff tr(p) = tr(q); they are in trace preorder iff
tr(p) ⊆ tr(q).

A binary relationR ⊆ S×S on the state set of an LTS 〈S,Act,−→〉 is a bisimu-
lation iff the two following conditions hold for each (p, q) ∈ R (and each a ∈ Act):

• if p
a

−→ p′ then there is q′ ∈ S such that q
a

−→ q′ and (p′, q′) ∈ R,

• if q
a

−→ q′ then there is p′ ∈ S such that p
a

−→ p′ and (p′, q′) ∈ R.

We will say that a transition p
a

−→ p′ is matched by q
a

−→ q′, resp. q
a

−→ q′ by
p

a
−→ p′, if (p′, q′) ∈ R.

States p, q are bisimulation equivalent (or bisimilar), written p ∼ q, iff (p, q) ∈ R
for some bisimulationR. Note that the union of bisimulations is a bisimulation; thus
bisimilarity∼ is the maximal bisimulation (the union of all bisimulations). It is easy
to check that ∼ is really an equivalence relation.

From complexity theory we recall that a problem P is ptime-hard iff each prob-
lem from ptime can be reduced to P by a logspace-reduction (i.e., the working
space of the reducing algorithm is in O(logn), where n denotes the size of the input
on the read-only input tape; the output is being written on the write-only output
tape, and may be of polynomial length). A problem P is ptime-complete iff P is
ptime-hard and P ∈ ptime.

Remark. It is well-known that if a problem P is ptime-hard then it is unlikely
that there exists an efficient parallel algorithm deciding P . Here ‘efficient’ means
working in polylogarithmic time (with time complexityO(logk n)) and with poly-
nomial number of processors. (See e.g. [4] for further details.)

To formulate the next theorem, i.e., our main result, we use a further technical
notion: A relation X on the states of LTSs is said to be between bisimilarity and
trace preorder iff p ∼ q implies pXq and pXq implies tr(p) ⊆ tr(q).

Theorem 1. For any relation X between bisimilarity and trace preorder, the fol-
lowing problem is ptime-hard:

Instance: A finite acyclic labelled transition system
and two of its states, p and q.

Question: Is pXq ?
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We shall prove the theorem by a logspace reduction from the problem of
monotone Boolean circuit value, mCVP for short.

To define mCVP, we need some definitions. A monotone Boolean circuit is
a directed acyclic graph in which the nodes (also called gates) are either of in-degree
zero (input gates) or of in-degree 2; there is exactly one node of out-degree zero
(the output gate), otherwise the out-degree is not constrained. Each non-input gate
is labelled either by conjunction ∧ or by disjunction ∨. (No negation is used; thus
we have monotonicity.) An input of the circuit is an assignment of Boolean values
(values from the set {0, 1}) to input gates. Given an input, the circuit computes
as expected: the (output) value of an input gate is given by the input, the value of
a gate labelled with ∧ (or ∨) is computed as conjunction (or disjunction) of values
of its predecessors. The output value of the circuit is the value of the output gate.

See Figure 2 for an example of a monotone Boolean circuit with an input; the
corresponding computed values are also depicted.

0

01

0

1 1

11 0

∧

∧

∧

∨ ∨

∨

0 11

Fig. 2. A monotone Boolean circuit with computed values on gates

The mCVP problem is defined as follows:

Instance: A monotone boolean circuit with an input.

Question: Is the output value 1?

The problem is well-known to be ptime-complete (cf. e.g. [4]). We also recall
that if P1 is ptime-hard and P1 is logspace reducible to P2 then P2 is ptime-hard
as well.

In the next section we show a logspace-algorithm which, given an instance of
mCVP, constructs an LTS with two designated states p, q so that:

• if the output value of the circuit is 1 then p ∼ q, and

• if the output value is 0 then tr(p) 6⊆ tr(q).
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So for any relation X between bisimilarity and trace preorder we have pXq iff
the output value is 1. This will immediately imply Theorem 1.

3 THE REDUCTION

Let us fix an instance of mCVP where the set of gates is V = {1, 2, . . . , n}. For
technical reasons we assume that the gates are topologically ordered, i.e., for any
edge (i, j) we have i < j; hence n is the output gate. (This assumption does not
affect ptime-completeness of mCVP, as can be seen from [4].) See Figure 10 for an
example of topologically ordered gates.

We use function t : V −→ {0, 1,∧,∨} for denoting the types of gates (in the
given instance of mCVP):

t(i) =











0 if i is an input gate with value 0
1 if i is an input gate with value 1
∧ if i is a gate labelled with ∧
∨ if i is a gate labelled with ∨

For every non-input gate i, we denote its (first and second) predecessors by f(i),
s(i) so that f(i) < s(i) (and s(i) < i due to the topological order). Let

vi ∈ {0, 1}

denote the actual (computed) value on gate i, i.e.,

• if i is an input gate then vi = t(i),

• if i is a non-input gate, then vi is computed from vf(i) and vs(i) using the operation
indicated by t(i).

For later use, we define inductively the words Wi ∈ {0, 1}∗, i = 0, 1, . . . , n:

W0 = ε,Wi+1 = vi+1Wi. (1)

Thus, Wn is the sequence of the actual (computed) values for all gates in the reversed
order wrt the given topological order; Wi is the suffix of Wn of length i.

For concreteness, we can assume that the given input instance of mCVP is of
the form

1 : d(1); 2 : d(2); . . . ; n : d(n)

where d(i) = t(i) if t(i) ∈ {0, 1} and d(i) stands for 〈t(i), f(i), s(i)〉 if t(i) ∈ {∧,∨}.
Given this instance of mCVP, we show a construction of LTS ∆ = 〈S,Act,−→〉,

where Act = {0, 1} and S is the union of the following sets:

• {pi | 0 ≤ i ≤ n},

• {qji | 1 ≤ j ≤ i ≤ n},

• {rj,ki | 1 ≤ k < j ≤ i ≤ n}.
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We organize states in S into levels. Level i (where 0 ≤ i ≤ n) contains all states
with the same lower index i, i.e.,

{pi} ∪Qi

where
Qi = {qji | 1 ≤ j ≤ i} ∪ {rj,ki | 1 ≤ k < j ≤ i}

as depicted in Figure 3 (already with some transitions).

level 0

level 1

level 2

level 3

0,1

0,1

0,1

0,1

0,1

0,1 0,1

p0

p1

p2

p3

q11

q12

q13

q22

q23

r
2,1
2

r
2,1
3 q33 r

3,1
3 r

3,2
3

Fig. 3. The states of ∆ organized into levels

For ease of presentation, we call qji successful if vj = 1, and unsuccessful if

vj = 0; similarly, state rj,ki is successful if both vj = 1 and vk = 1, and is unsuccessful
otherwise. We denote the set of all successful (unsuccessful) states on level i by
Succi (Unsucci). Hence

Qi = Succi ∪Unsucci.

Further, let I denote the identity relation I = {(s, s) | s ∈ S}.
The way we shall construct the transition relation of LTS ∆ will guarantee the

following property. (By Wi we refer to (1).)
crucial property:

• the set
I ∪ {(pi, q) | 0 ≤ i ≤ n, q ∈ Succi}

is a bisimulation (therefore pi ∼ q for each q ∈ Succi); and

• if q ∈ Unsucci then
Wi ∈ tr(pi) \ tr(q)

(therefore tr(pi) 6⊆ tr (q)).

Hence pn and qnn can serve as the two distinguished states announced at the end
of the previous section, with the required property that

• pn ∼ qnn if vn = 1 (i.e., if qnn is successful), and

• tr(pn) 6⊆ tr(qnn) otherwise.
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3.1 Construction of transitions

We now construct the transition relation of ∆; we start with no transitions, and
then we successively add the transitions described in what follows. There will be
only transitions going from states on level i to states on level i− 1; thus it is clear
that the constructed LTS ∆ will be acyclic.

Level i naturally corresponds to gate i; the actual transitions going from level
i to level i − 1 depend just on t(i) and f(i), s(i) (when t(i) ∈ {∧,∨}). We now
describe in detail the transitions going from level i to level i− 1 (for i ≥ 1).

Not depending on t(i), we add the following transitions

pi
0,1
−→ pi−1

q
j
i

0,1
−→ q

j
i−1 for j < i ,

r
j,k
i

0,1
−→ r

j,k
i−1 for j < i (recall that 1 ≤ k < j) .

(2)

(We write q
0,1
−→ q′ instead of q

0
−→ q′ and q

1
−→ q′.)

These will be all the transitions leading from states pi, q
j
i , r

j,k
i , with i > j, in the

case t(i) ∈ {0, 1,∧} (as depicted in Figure 4). We now handle the states qii , r
i,k
i in

the (sub)cases t(i) = 0, t(i) = 1, t(i) = ∧.

0,1 0,1 0,1

pi

pi−1

q
j
i

q
j
i−1

r
j,k
i

r
j,k
i−1

Fig. 4. All the transitions added in the cases with i > j and t(i) ∈ {0, 1,∧}

• t(i) = 0 (hence qii and r
i,k
i are unsuccessful):

We do not add any other transitions (which is depicted in Figure 5).

0,1

pi

pi−1

qii r
i,k
i

Fig. 5. No further transitions in the case t(i) = 0
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• t(i) = 1 (hence qii is successful, and r
i,k
i is successful if qki−1 is):

We add transitions (depicted in Figure 6):

qii
0,1
−→ pi−1 and r

i,k
i

0,1
−→ qki−1.

0,1
0,1

0,1

pi

pi−1

qii

qki−1

r
i,k
i

Fig. 6. The transitions added when t(i) = 1

• t(i) = ∧:
We add the following transitions (depicted in Figure 7):

qii
1

−→ pi−1 and qii
0

−→ r
s(i),f(i)
i−1

r
i,k
i

1
−→ qki−1 and r

i,k
i

0
−→ r

s(i),f(i)
i−1

.

0,1
1

0
0

1

pi

pi−1

qii

qki−1

r
i,k
i

r
s(i),f(i)
i−1

Fig. 7. The transitions added when t(i) = ∧

The case with t(i) = ∨ is the most complicated. The reason for this will appear
more clearly when we shall prove correctness of our construction.

• t(i) = ∨:
(See Figures 8 and 9.) Beside the transitions (2) (added independently on t(i)),
we add the following transitions for every q on level i (q ∈ {pi} ∪Qi):

q
0

−→ q
f(i)
i−1 and q

0
−→ q

s(i)
i−1

and we further add transitions

qii
1

−→ pi−1 and r
i,k
i

1
−→ qki−1.
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0,1
0

0

0 0,1
0

00
0,1

pi

pi−1

q
j
i

q
j
i−1

r
j,k
i

r
j,k
i−1q

f(i)
i−1 q

s(i)
i−1

Fig. 8. All the transitions added in the cases with i > j and t(i) = ∨

0,1
1

0
0

0
0

0
0

1

pi

pi−1

qii

qki−1

r
i,k
i

q
f(i)
i−1 q

s(i)
i−1

Fig. 9. Further transitions in the case t(i) = ∨ (and i = j)

To illustrate the overall construction, Figure 11 shows the LTS constructed for
the Boolean circuit depicted in Figure 10. (For better clarity, only states that are
reachable from states p6 and q66 are depicted.)

0 11

4 5

321

6

∧

∧

∨

Fig. 10. An example of a (topologically ordered) boolean circuit

3.2 Reduction Runs in Logarithmic Space

We now sketch why the described reduction can be performed in logarithmic space.
The algorithm performing the reduction has an instance of mCVP as its input, and
outputs the states and transitions of LTS ∆ in a systematic stepwise manner. It is
clear that the algorithm can be bound to use only a fixed number of variables (such
as i, j, k) with values not bigger than n (the number of gates); these values can be
stored in O(logn) bits (and the size of the input is clearly bigger than n).
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0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1 0,1

1
0

10
0

0

0,1

0,1
0,1 0,1

0
0

1

p0

p1

p2

p3

p4

p5

p6

q11

q12 q22

q23

q24

q33

q34

r
3,1
3

q44

r
5,4
5

q66

Fig. 11. An example of the constructed LTS

Remark. LTS ∆ contains O(n3) states and also O(n3) transitions (the number of
possible transitions leaving a given state is bounded, independently on n). Note
that a state of the form r

j,k
i can be reachable from pn or qnn only if there is i′ ∈ V ,

such that t(i′) = ∧, s(i′) = j and f(i′) = k, as can be easily proved by induction.
There are at most O(n) pairs j, k, where such i′ exists, and it is possible to test
for given j, k the existence of such i′ in logspace. So we could add to ∆ only
those states rj,ki , where such i′ exists. In this way we can reduce the number of
states (and transitions) to O(n2).

3.3 Correctness of the construction

Now we proceed to show the correctness of the described construction, i.e., that
LTS ∆ indeed satisfies the crucial property mentioned before Subsection 3.1.
This is proven by the following two lemmas.

Lemma 2. R = I ∪ {(pi, q) | 0 ≤ i ≤ n, q ∈ Succi} is a bisimulation.

Proof. Consider a pair (p, q) ∈ R. We must show that every transition p
a

−→ p′

can be matched by some transition q
a

−→ q′ (so that (p′, q′) ∈ R), and that each

q
a

−→ q′ can be matched by some p
a

−→ p′.
First note that the case (p, q) ∈ I (i.e., p = q) is trivial (any transition p

a
−→ p′

is matched by the same transition p
a

−→ p′).
Now consider a pair

(pi, q
j
i ) ∈ R
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(hence qji ∈ Succi, i.e., vj = 1; recall also that j ≤ i). We handle two subcases (j < i

and j = i) separately.

• j < i (Figures 4 and 8):

Note that qji ∈ Succi implies qji−1 ∈ Succi−1, hence (pi−1, q
j
i−1) ∈ R. So pi

a
−→

pi−1 where a ∈ {0, 1} can be matched by q
j
i

a
−→ q

j
i−1, and q

j
i

a
−→ q

j
i−1 can be

matched by pi
a

−→ pi−1. When t(i) is one of 0, 1, ∧ (Figure 4), we are done.

When t(i) = ∨ (Figure 8), we must also consider transitions pi
0

−→ q
f(i)
i−1 , pi

0
−→

q
s(i)
i−1, q

j
i

0
−→ q

f(i)
i−1 and q

j
i

0
−→ q

s(i)
i−1. The transition pi

0
−→ q

f(i)
i−1 is matched by

q
j
i

0
−→ q

f(i)
i−1 and vice versa, and pi

0
−→ q

s(i)
i−1 is matched by q

j
i

0
−→ q

s(i)
i−1 and vice

versa. (We use that I ⊆ R.)

• j = i (which means vi = vj = 1, and so t(i) 6= 0 ):
We handle the three (sub)cases depending on t(i) separately:

– t(i) = 1 (Figure 6): Transition pi
a

−→ pi−1 where a ∈ {0, 1} is matched by

qii
a

−→ pi−1 and vice versa.

– t(i) = ∧ (Figure 7): Transition pi
1

−→ pi−1 is matched by qii
1

−→ pi−1 and
vice versa.

Since vi = 1, we have vf(i) = 1 and vs(i) = 1. So r
s(i),f(i)
i−1 is successful, and

(pi−1, r
s(i),f(i)
i−1 ) ∈ R. Hence pi

0
−→ pi−1 is matched by qii

0
−→ r

s(i),f(i)
i−1 and vice

versa.

– t(i) = ∨ (Figure 9): Transition pi
1

−→ pi−1 is matched by qii
1

−→ pi−1 and

vice versa, pi
0

−→ q
f(i)
i−1 by qii

0
−→ q

f(i)
i−1 and vice versa, and pi

0
−→ q

s(i)
i−1 by

qii
0

−→ q
s(i)
i−1 and vice versa.

Since vi = 1, we have vf(i) = 1 or vs(i) = 1, which means that at least

one of q
f(i)
i−1 , q

s(i)
i−1 is successful. From this we have that (pi−1, q

f(i)
i−1 ) ∈ R or

(pi−1, q
s(i)
i−1) ∈ R. So pi

0
−→ pi−1 can be matched by (at least) one of qii

0
−→

q
f(i)
i−1 and qii

0
−→ q

s(i)
i−1.

Remark. The last subcase (t(i) = ∨) indicates why the construction was more
complicated for t(i) = ∨ than for t(i) = ∧. We had to be careful to properly
reflect the choice: for t(i) = ∨, the (‘successful’) case vi = 1 means just that
some of vf(i), vs(i) is also ‘successful’, i.e. 1; for t(i) = ∧ it is easier – vi = 1
means that both vf(i), vs(i) must be 1 as well.

It remains to consider a pair

(pi, r
j,k
i ) ∈ R

(hence r
j,k
i ∈ Succi, i.e., vj = vk = 1; recall also that k < j ≤ i). We again handle

two subcases (j < i and j = i) separately.
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• j < i (Figures 4 and 8):

Since rj,ki ∈ Succi, we have r
j,k
i−1 ∈ Succi−1, hence (pi−1, r

j,k
i−1) ∈ R. So pi

a
−→ pi−1

where a ∈ {0, 1} can be matched by r
j,k
i

a
−→ r

j,k
i−1 and vice versa. When t(i) is

one of 0, 1, ∧ (Figure 4), we are done.

When t(i) = ∨ (Figure 8), transition pi
0

−→ q
f(i)
i−1 is matched by r

j,k
i

0
−→ q

f(i)
i−1

and vice versa, and pi
0

−→ q
s(i)
i−1 by r

j,k
i

0
−→ q

s(i)
i−1 and vice versa.

• j = i (which means vi = vk = 1):
Note that qki−1 is successful, hence (pi−1, q

k
i−1) ∈ R. Depending on t(i) (where

t(i) 6= 0) we distinguish different (sub)cases:

– t(i) = 1 (Figure 6): Transition pi
a

−→ pi−1 (where a ∈ {0, 1}) is matched by

r
i,k
i

a
−→ qki−1 and vice versa.

– t(i) = ∧ (Figure 7): Transition pi
1

−→ pi−1 is matched by r
i,k
i

1
−→ qki−1 and

vice versa.

Since vi = 1, we have vf(i) = 1 and vs(i) = 1. So r
s(i),f(i)
i−1 is successful, hence

(pi−1, r
s(i),f(i)
i−1 ) ∈ R. Therefore pi

0
−→ pi−1 is matched by r

i,k
i

0
−→ r

s(i),f(i)
i−1

and vice versa.

– t(i) = ∨ (Figure 9): Transition pi
1

−→ pi−1 is matched by r
i,k
i

1
−→ qki−1 and

vice versa, pi
0

−→ q
f(i)
i−1 by r

i,k
i

0
−→ q

f(i)
i−1 and vice versa, and pi

0
−→ q

s(i)
i−1 by

q
i,k
i

0
−→ q

s(i)
i−1 and vice versa.

Since vi = 1, we have vf(i) = 1 or vs(i) = 1; hence (pi−1, q
f(i)
i−1 ) ∈ R or

(pi−1, q
s(i)
i−1) ∈ R. Therefore transition pi

0
−→ pi−1 can be matched by (at

least) one of transitions ri,ki
0

−→ q
f(i)
i−1 and r

i,k
i

0
−→ q

s(i)
i−1.

�

Lemma 3. If q ∈ Unsucci then Wi ∈ tr(pi) \ tr(q) (for 0 ≤ i ≤ n).

Proof. Note that tr(pi) contains all sequences from {0, 1}∗ of length at most i (see
Figure 3), so in particular Wi ∈ tr(pi).

By induction on i we now show that Wi 6∈ tr (q) for any q ∈ Unsucci. Since
Q0 = ∅ (we have only p0 on level 0), the claim is vacuously true for i = 0.

Now suppose i > 0. Using the induction hypothesis, it is sufficient to show that
q

vi−→ q′ implies that q′ is unsuccessful.
We first consider a state

q
j
i ∈ Unsucci

(hence vj = 0; recall also j ≤ i). We handle two subcases (j < i and j = i)
separately.

• j < i (Figures 4 and 8):
Since q

j
i−1 is (also) unsuccessful, we are done in the case t(i) ∈ {0, 1,∧} (Figu-

re 4), and also in the case when t(i) = ∨ and vi = 1 (Figure 8).
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When t(i) = ∨ and vi = 0 (Figure 8), we must also consider transitions qji
0

−→

q
f(i)
i−1 and q

j
i

0
−→ q

s(i)
i−1. But vi = 0 implies vf(i) = 0 and vs(i) = 0, and thus both

q
f(i)
i−1 , q

s(i)
i−1 are unsuccessful.

• j = i (hence vi = 0, which also means t(i) 6= 1):
We distinguish different (sub)cases depending on t(i):

– t(i) = 0 (Figure 5): There is no q′ such that qii
0

−→ q′, so we are done.

– t(i) = ∧ (Figure 7): The only q′ such that qii
0

−→ q′ is r
s(i),f(i)
i−1 . From vi = 0

we get vf(i) = 0 or vs(i) = 0, which means that r
s(i),f(i)
i−1 is unsuccessful.

– t(i) = ∨ (Figure 9): If qii
0

−→ q′, then q′ is either q
f(i)
i−1 or q

s(i)
i−1. From vi = 0

we obtain vf(i) = 0 and vs(i) = 0, and so both q
f(i)
i−1 and q

s(i)
i−1 are unsuccessful.

It remains to consider a state

r
j,k
i ∈ Unsucci

(hence vj = 0 or vk = 0 ; recall also that k < j ≤ i). We handle two subcases (j < i

and j = i) separately.

• j < i (Figures 4 and 8):

Since (also) rj,ki−1 is unsuccessful, we are done in the case t(i) ∈ {0, 1,∧} (Figu-
re 4), and in the case when t(i) = ∨ and vi = 1 (Figure 8).

When t(i) = ∨ and vi = 0 (Figure 8), we must also consider transitions rj,ki

0
−→

q
f(i)
i−1 and q

j,k
i

0
−→ q

s(i)
i−1. But vi = 0 implies vf(i) = 0 and vs(i) = 0 and thus both

q
f(i)
i−1 , q

s(i)
i−1 are unsuccessful.

• j = i (so if vi = 1 then vk = 0): We distinguish different (sub)cases depending
on t(i).

– t(i) = 0 (Figure 5): There is no transition leaving r
i,k
i , so we are done.

– t(i) = 1 (Figure 6): In this case vi = 1, hence vk = 0. The only state q′ such

that ri,ki
1

−→ q′ is qki−1, and this is an unsuccessful state.

– t(i) = ∧ (Figure 7):

The only q′ such that r
i,k
i

0
−→ q′ is r

s(i),f(i)
i−1 . In the case vi = 0 we have

vf(i) = 0 or vs(i) = 0, which means that r
s(i),f(i)
i−1 is unsuccessful.

The only q′ such that ri,ki
1

−→ q′ is qki−1. In the case vi = 1 we have vk = 0,
which means that qki−1 is unsuccessful.

– t(i) = ∨ (Figure 9):

The only q′ such that ri,ki
1

−→ q′ is qki−1. In the case vi = 1 we have vk = 0,
which means that qki−1 is unsuccessful.

If ri,ki
0

−→ q′ then q′ is either q
f(i)
i−1 or q

s(i)
i−1. In the case vi = 0 we have vf(i) = 0

and vs(i) = 0 which means that both q
f(i)
i−1 and q

s(i)
i−1 are unsuccessful.

�



Behavioural Equivalences on Finite-State Systems are PTIME-hard 527

Additional Remarks

We have considered complexity as a function of the size of a given labelled transi-
tion systems (which describes the state space explicitly). Rabinovich [8] considered
the problem for concurrent systems of communicating finite agents, measuring com-
plexity in the size of (descriptions of) such systems; the corresponding (implicitly
represented) state space can be exponential in that size. He conjectured that all
relations between bisimilarity and trace equivalence are exptime-hard in this set-
ting. Laroussinie and Schnoebelen [6] have confirmed the conjecture partially. They
showed exptime-hardness for all relations between simulation preorder and bisi-
milarity. One of the authors of this paper modified and extended the construction
presented here and proved Rabinovich’s conjecture completely in [9].
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