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Abstract. Hub location problems are widely used for network designing. Many
variations of these problems can be found in the literature. In this paper we deal
with the uncapacitated multiple allocation hub location problem (UMAHLP). We
propose a genetic algorithm (GA) for solving UMAHLP that uses binary encod-
ing and genetic operators adapted to the problem. Overall performance of GA
implementation is improved by caching technique. We present the results of our

computational experience on standard ORLIB instances with up to 200 nodes. The
results show that GA approach quickly reaches all optimal solutions that are known
so far and also gives results on some large-scale instances that were unsolved before.
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1 INTRODUCTION

Computer and communication systems, DHL services and postal delivery networks,
transportation systems may be observed as hub networks. They include a set of
interacting nodes (facilities) with given distance and flow cost between each pair of
nodes. The nodes in the network denoted as hub nodes serve as consolidation and
connection points between two locations. Each node in the network is assigned to
one or more hubs. All of the flow between any pair of nodes can only be realized
via specified hubs. Since transportation cost between hubs is lower, consolidating
traffic through hub nodes results in lower transportation cost per unit and efficient
exploitation of the network.

There are various hub location problems, depending on the imposed constraints
in the hub network. For example, number of hubs may be predetermined, capacity
restrictions or fixed costs on both hub and/or non-hub nodes may be imposed, etc.
Hub location problems can assume one of two allocation schemes:

• single allocation scheme, where each node must be assigned to exactly one hub
node. All of flows from/to each node go only via assigned hub;

• multiple allocation scheme, which allows each facility to communicate with more
than one hub.

Detailed review of hub location problems and their classification can be found
in [5] and [6].

There are several papers in the literature considering UMAHLP. The problem
was first formulated in [4]. Dual ascent techniques within a Branch-and-Bound
scheme were first applied for solving UMAHLP in [11] on ORLIB ([2]) hub instances
with n ≤ 25 nodes. Similar approach is used in [14], with tighter lower bounds and
improved upper bounds. The results are presented on instances with up to 40 nodes.

A new quadratic integer formulation of the problem, based on the idea of multi-
commodity network flows was introduced in [1]. This new formulation showed to
be suitable for using Branch-and-Bound procedure. The authors present results on
their own randomly generated instances with n ≤ 80 size.

In [3] the mixed integer linear programming (MILP) formulations for three mul-
tiple allocation hub location problems, including UMAHLP, are used. For each
problem preprocessing procedure and tightening constraints were developed. This
approach was tested on standard hub data set including up to 50 nodes.

The main idea in paper [13] was to tighten MILP formulation and reduce the
number of constraints using results from the field of the polyhedral structure of set
packing problem. Another idea presented in [7] was to consider the dual problem
of a MILP formulation. The authors first construct a heuristic method, based on
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a dual-ascent technique, which produces almost 70% optimal solutions on ORLIB
instances with up to 120 nodes. Heuristic was later embedded in Branch-and-Bound
algorithm, that provides optimal solutions in all cases.

2 MATHEMATICAL FORMULATION

In this paper we consider the uncapacitated multiple allocation hub location prob-
lem. In this case, no capacities on the nodes are imposed, the number of hubs is
not fixed and each non-hub node may be assigned to more than one hub (multiple
allocation scheme). Traffic between origin and destination node can be routed via
one or more hubs (switching points). Every hub node is located with certain ex-
penses (fixed cost hub problem). The objective is to choose set of hubs and allocate
non-hub nodes to the chosen set, so that the sum of total transportation cost and
fixed costs is minimized.

Various formulations of UMAHLP arise in the literature and one mixed integer
linear programming formulation [7] is used in this paper.

Consider a set I = {1, . . . , n} of n distinct nodes in the network, where each
node represents origin/destination or potential hub location. The distance from
node i to node j is Cij, and triangle inequality may be assumed [6]. The demand
from location i to j is denoted as Wij. Decision variables yk and xijkm are used in
the formulation as follows:

yk =
{

1 if a hub is located at node k,
0 if not.

xijkm is the fraction of flowWij from node i that is collected at hub k, and distributed
by hub m to node j.

Each path from demand to destination node consists of three components: trans-
fer from an origin to the first hub, transfer between the hubs and finally distribution
from the last hub to the destination location. Parameters χ and δ denote unit costs
for collection and distribution, while 1 − α represents discount factor for transport
between hubs. The fixed cost of establishing hub k (yk = 1) is denoted as fk. The
objective is locating some hub facilities in order to minimize the sum of total flow
cost and the total cost of location hubs. Using the notation mentioned above, the
problem can be written as:

min
∑

i,j,k,m

Wij · (χ · Cik + α · Ckm + δ · Cmj) · xijkm +
∑

k

fk · yk (1)

subject to
∑

k,m

xijkm = 1 for every i, j (2)

∑

m

xijkm +
∑

m,m 6=k

xijmk ≤ yk for every i, j, k (3)

yk ∈ {0, 1} for every k (4)
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xijkm ≥ 0 for every i, j, k,m. (5)

The objective function (1) minimizes the sum of the origin-hub, hub-hub and
hub-destination flow costs multiplied with χ, α and δ factors respectively and the
sum of fixed costs for establishing hubs. Constraint (2) specify that all the flow
is sent between every pair of nodes, while constraint (3) ensures that flow is only
sent via opened hubs. Constraints (4) and (5) reflect binary and/or non-negative
representation of decision variables. Note that the fact xijkm ≤ 1 is implied by
constraint (2), and is omitted.

UMAHLP is known to be NP-hard, with exception of special cases (for example
when matrix of flowsWij is sparse) that are solvable in polynomial time. If the set of
hubs is fixed, the related subproblem can be polynomially solved using shortest-path
algorithm in O(n3) time ([8]).

3 ACCOMPLISHED GA IMPLEMENTATION

3.1 Representation and Objective Function

The binary encoding of the individuals is used in this GA implementation. Each
solution is represented by the binary string of length n. Digit 1 in the genetic code
denotes that particular hub is established while 0 shows it is not.

Since users can be assigned only to opened hub facilities, only array yk is ob-
tained from the genetic code. There are no capacities, so the values of xijkm can be
calculated during the evaluation of objective function.

For fixed set of hubs (yk) the modified version of the well-known Floyd-Warsall
shortest path algorithm described in [8] is used. After finding shortest paths between
all pair of nodes, it is simple to evaluate objective function. It is done by summing
shortest distances multiplied with flows and corresponding χ, α, and δ parameters,
and adding fixed cost fk of established hubs (yk = 1).

3.2 Genetic Operators

Selection operator chooses the individuals that will produce offsprings in the next
generation, according to their fitness. Low fitness-valued individuals have less chance
to be selected than high fittness-valued ones. We use an improved tournament selec-
tion operator, known as fine-grained tournament selection (FGTS). This selection
scheme showed to be successful in cases when it is desirable that the size of tourna-
ment group has rational instead of integer values. This operator uses real (rational)
parameter Ftour which denotes desired average tournament size. The first type is
held k1 times and its size is [Ftour + 1]. The second type is performed k2 times
with the [Ftour] individuals participated. Since the value Ftour = 5.4 is used in this
implementation of FGTS, the corresponding values k1 and k2 (for N = 50 non-
elitist individuals) are 20 and 30, respectively. Running time for FGTS operator is
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O(N × Ftour). In practice, Ftour is considered to be constant (not depending on N)
that gives O(N) time complexity. For detailed information about FGTS see [10].

After a pair of parents is selected, crossover operator is applied to them pro-
ducing two offsprings. The operator we use in this GA implementation is one-point
crossover. This operator is performed by exchanging segments of two parents’ ge-
netic codes after randomly chosen crossover point. One-point crossover is realized
with probability pcross = 0.85. It means that approximately 85% pairs of individuals
exchange their genetic material.

Modified simple mutation operator used in this GA concept is performed by
changing a randomly selected gene in the genetic code of the individual, with certain
mutation rate. It may happen during the GA execution that (almost) all individuals
in the population have the same gene on certain position. These genes are called
frozen. If the number of frozen genes is l, the search space becomes 2l times smaller
and the possibility of premature convergence increases rapidly. The selection and
crossover operators cannot change the bit value of any frozen gene and basic muta-
tion rate is often too small to restore lost subregions of search space. If the basic
mutation rate is increased significantly, genetic algorithm becomes random search.
For this reason, the mutation rate is increased only on frozen genes. Therefore,
in this implementation mutation rate for frozen genes is 2.5 times higher (1.0/n),
compared to non-frozen ones (0.4/n).

3.3 Generation Replacement Strategy

The population size is 150 individuals. Steady-state generation replacement with
elitist strategy is used. Initial population is randomly generated, providing maximal
diversity of genetic material. Since the number of hubs to be located is significantly
smaller compared to total number of nodes, the probability of generating them in
the genetic codes of individuals in the initial population is set to 3.0/n. This way
we obtain “better” individuals for starting GA.

Two thirds of the population are directly passing in the next generation (elite
individuals). Genetic operators are applied on the rest of the population, so that
only one third of the population is replaced in every generation. Objective value
of every elite individual is calculated only once, and this provides significant time
savings.

Duplicated individuals are removed in every generation. Their fitness values are
set to zero so that selection operator avoids them to enter the next generation. This
is very effective method for saving the diversity of genetic material and keeping the
algorithm away from premature convergence. Individuals with the same objective
function, but in some cases different genetic codes may dominate in the population.
If their codes are similar, GA can lead to local optimum. For that reason, it is
useful to limit their appearance to some constant Nrv (it is set to 40 in this GA
application).
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3.4 Caching GA

Run-time performance of GA is optimized by caching technique. The main idea
is to avoid computing the same objective function value every time when genetic
operators produce an individual with same genetic code. The evaluated function
values are stored in hash-queue data structure using Least Recently Used (LRU)
caching technique. When the same code is obtained again its objective value is
taken from the caching table, that provides time-savings. In this implementation
the number of individuals stored in the caching table is limited to constant 5 000.
For detailed information about caching GA see [12].

Inst. Optsol GAbest t ttot gen gapavg σavg eval cache

(sec) (sec) (%) (%) (%)

10L 221 032.734 opt 0.003 0.113 503 0.000 0.000 664 97.4
10T 257 558.086 opt 0.001 0.114 501 0.000 0.000 709 97.2
20L 230 385.454 opt 0.007 0.206 504 0.000 0.000 2 547 89.9
20T 266 877.485 opt 0.010 0.204 506 0.000 0.000 2 585 89.8
25L 232 406.746 opt 0.015 0.313 505 0.000 0.000 3 401 86.6
25T 292 032.080 opt 0.014 0.295 506 0.000 0.000 3 483 86.3
40L 237 114.749 opt 0.065 0.833 517 0.000 0.000 5 302 79.6
40T 293 164.836 opt 0.017 0.792 501 0.000 0.000 5 217 79.3
50L 233 905.303 opt 0.072 1.434 510 0.000 0.000 6 650 74.1
50T 296 024.896 opt 0.072 1.339 512 0.000 0.000 6 626 74.3

60L 225 042.310 opt 0.075 2.149 506 0.000 0.000 7 248 71.5
60T 243 416.450 opt 0.130 2.417 516 0.000 0.000 7 568 70.8
70L 229 874.500 opt 0.309 3.691 531 0.000 0.000 8 980 66.3
70T 249 602.845 opt 0.152 3.629 513 0.000 0.000 8 100 68.6
80L 225 166.922 opt 0.809 5.119 565 0.000 0.000 9 613 66.1
80T 268 209.406 opt 0.515 4.992 539 0.000 0.000 9 488 65.0

90L 226 857.465 opt 0.368 6.693 518 0.000 0.000 10 266 60.5
90T 277 417.972 opt 0.424 6.619 522 0.000 0.000 10 017 61.9
100L 235 097.228 opt 1.205 8.381 561 0.000 0.000 10 930 61.2
100T 305 097.949 opt 0.155 7.946 505 0.000 0.000 9 746 61.6
110L 218 661.965 opt 0.557 9.695 517 0.000 0.000 10 022 61.5
110T 223 891.822 opt 1.103 10.731 539 0.000 0.000 10 877 59.8
120L 222 238.922 opt 0.885 12.609 524 0.000 0.000 10 443 60.4
120T 229 581.755 opt 2.343 15.077 564 0.000 0.000 12 188 57.0

130L - 223 814.109 3.117 21.566 563 0.000 0.000 12 198 56.9
130T - 230 865.451 2.789 22.765 552 0.000 0.000 12 651 54.4
200L - 230 204.343 25.202 81.456 667 0.696 1.239 16 374 51.2
200T - 268 787.633 28.688 93.926 701 0.000 0.000 18 778 46.5

Table 1. GA results on AP instances with χ = 3, α = 0.75 and δ = 2
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4 COMPUTATIONAL RESULTS

In this section we present results of our GA, tested on a AMD Athlon K7/1.33GHz
with 256MB of internal memory. The code was written in C programming language.
The tests are based on standard ORLIB ([2]) data set AP (Australian Post) which
is used for testing larger problems. It is obtained from Australian Post delivery
system, containing up to 200 nodes representing post code districts. Smaller size
AP instances are generated by aggregating basic AP data set. The distances between
cities satisfy triangle inequality, but the traffic (flow) between ordered pair of origin-
destination nodes is not symmetric. Fixed costs are included in AP data set, as
in [9]. The coefficients χ, δ and α that correspond to flow collection, distribution
and transportation between hubs take same values as in [7].

Inst. Optsol GAbest t ttot gen gapavg σavg eval cache

(sec) (sec) (%) (%) (%)

10L 221 032.734 opt 0.003 0.113 503 0.000 0.000 664 97.4
10T 257 558.086 opt 0.001 0.114 501 0.000 0.000 709 97.2
20L 230 385.454 opt 0.007 0.206 504 0.000 0.000 2 547 89.9
20T 266 877.485 opt 0.010 0.204 506 0.000 0.000 2 585 89.8

25L 232 406.746 opt 0.015 0.313 505 0.000 0.000 3 401 86.6
25T 292 032.080 opt 0.014 0.295 506 0.000 0.000 3 483 86.3
40L 237 114.749 opt 0.065 0.833 517 0.000 0.000 5 302 79.6
40T 293 164.836 opt 0.017 0.792 501 0.000 0.000 5 217 79.3
50L 233 905.303 opt 0.072 1.434 510 0.000 0.000 6 650 74.1
50T 296 024.896 opt 0.072 1.339 512 0.000 0.000 6 626 74.3

60L 225 042.310 opt 0.075 2.149 506 0.000 0.000 7 248 71.5
60T 243 416.450 opt 0.130 2.417 516 0.000 0.000 7 568 70.8
70L 229 874.500 opt 0.309 3.691 531 0.000 0.000 8 980 66.3
70T 249 602.845 opt 0.152 3.629 513 0.000 0.000 8 100 68.6
80L 225 166.922 opt 0.809 5.119 565 0.000 0.000 9 613 66.1
80T 268 209.406 opt 0.515 4.992 539 0.000 0.000 9 488 65.0
90L 226 857.465 opt 0.368 6.693 518 0.000 0.000 10 266 60.5
90T 277 417.972 opt 0.424 6.619 522 0.000 0.000 10 017 61.9
100L 235 097.228 opt 1.205 8.381 561 0.000 0.000 10 930 61.2
100T 305 097.949 opt 0.155 7.946 505 0.000 0.000 9 746 61.6
110L 218 661.965 opt 0.557 9.695 517 0.000 0.000 10 022 61.5
110T 223 891.822 opt 1.103 10.731 539 0.000 0.000 10 877 59.8
120L 222 238.922 opt 0.885 12.609 524 0.000 0.000 10 443 60.4
120T 229 581.755 opt 2.343 15.077 564 0.000 0.000 12 188 57.0

130L - 223 814.109 3.117 21.566 563 0.000 0.000 12 198 56.9
130T - 230 865.451 2.789 22.765 552 0.000 0.000 12 651 54.4
200L - 230 204.343 25.202 81.456 667 0.696 1.239 16 374 51.2
200T - 268 787.633 28.688 93.926 701 0.000 0.000 18 778 46.5

Table 2. GA results on AP instances with χ = 3, α = 0.75 and δ = 2
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The columns in Tables 1–4 contain the following data (in the presented order):

• dimension of the current AP instance, with L denoting “loose” and T “tight”
fixed cost;

• optimal solution (Optsol), if it is known in advance, otherwise “-” is written;

• the best GA solution (GAbest), with mark “opt” in cases when GA reaches
optimum for the current instance;

• average time t (in seconds) needed to obtain the best GA value;

• average total time ttot (in seconds) for finishing GA;

• average total number of generations;

• average percentage gap of GA solution with respect to Optsol or GAbest;

Inst. Optsol GAbest t ttot gen gapavg σavg eval cache

(sec) (sec) (%) (%) (%)

10L 122 038.940 opt 0.002 0.107 501 0.000 0.000 649 97.4
10T 127 425.939 opt 0.005 0.109 503 0.000 0.000 633 97.5
20L 125 309.816 opt 0.009 0.182 506 0.000 0.000 2 465 90.3
20T 129 079.794 opt 0.004 0.182 501 0.000 0.000 2 431 90.3
25L 126 821.800 opt 0.012 0.254 506 0.000 0.000 3 252 87.2
25T 143 422.390 opt 0.016 0.254 509 0.000 0.000 3 157 87.7
40L 124 994.499 opt 0.075 0.689 527 0.000 0.000 5 097 80.8
40T 140 962.910 opt 0.017 0.674 501 0.000 0.000 4 841 80.8
50L 120 871.926 opt 0.054 1.143 508 0.000 0.000 6 155 75.9
50T 152 294.536 opt 0.024 1.114 501 0.000 0.000 6 021 76.1

60L 112 991.944 opt 0.086 1.708 510 0.000 0.000 6 798 73.5
60T 124 961.384 opt 0.092 2.076 511 0.000 0.000 7 395 71.2
70L 114 595.951 opt 0.238 2.702 527 0.000 0.000 7 950 70.0
70T 134 324.296 opt 0.168 3.162 516 0.000 0.000 8 279 68.1
80L 116 505.953 opt 0.553 3.985 554 0.000 0.000 9 225 66.9
80T 138 970.736 opt 0.300 4.295 523 0.000 0.000 9 041 65.6
90L 115 225.601 opt 0.195 5.149 509 0.000 0.000 9 465 63.0
90T 130 558.600 opt 0.428 5.958 526 0.000 0.000 10 153 61.6
100L 123 822.587 opt 0.714 7.028 540 0.000 0.000 10 595 60.9

100T 143 119.855 opt 0.152 7.351 505 0.000 0.000 9 826 61.3
110L 110 192.705 opt 0.989 8.662 544 0.000 0.000 10 686 60.9
110T 114 895.505 opt 0.642 9.162 524 0.000 0.000 10 511 60.1
120L 111 758.347 opt 2.845 12.624 620 0.000 0.000 12 749 59.0
120T 118 376.769 opt 1.011 11.567 531 0.000 0.000 11 425 57.2

130L - 115286.957 1.863 18.069 543 0.000 0.000 11 938 56.3
130T - 119538.946 0.688 17.641 511 0.000 0.000 11 525 55.1
200L - 120377.895 15.616 69.237 625 0.000 0.000 15 578 50.4
200T - 133716.442 9.944 67.294 573 0.000 0.000 14 964 48.0

Table 3. GA results on AP instances with χ = 1, α = 0.1 and δ = 1
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• standard deviation σ of the average gap;

• average number of objective function evaluation (eval);

• average percentage of savings (cache) obtained by using the caching technique.

On each AP instance GA was run 20 times. The maximal number of generations
is set to Ngen = 1 000 in this GA implementation. The repetition of best objective
function value is limited to constant Nrep = 500.

As can be seen from Tables 1–4, the proposed GA quickly reaches all known
optimal solutions (n ≤ 120) in t ≤ 3.5 seconds. For other large-scale instances, for
which the optimum is not known, GA obtains solutions in t ≤ 28.7 seconds. The GA
concept cannot prove optimality and adequate finishing criterion that will fine-tune
the solution quality does not exist. Therefore, as column ttot in Tables 1–4 shows,

Inst. Optsol GAbest t ttot gen gapavg σavg eval cache

(sec) (sec) (%) (%) (%)

10L 125 591.591 opt 0.003 0.107 501 0.000 0.000 628 97.5
10T 127 425.939 opt 0.002 0.106 503 0.000 0.000 624 97.5
20L 126 058.465 opt 0.004 0.176 501 0.000 0.000 2 307 90.8
20T 129 079.794 opt 0.005 0.184 501 0.000 0.000 2 379 90.6

25L 126 900.890 opt 0.020 0.247 514 0.000 0.000 2 958 88.6
25T 143 422.390 opt 0.016 0.261 509 0.000 0.000 3 132 87.8
40L 125 199.814 opt 0.015 0.630 501 0.000 0.000 4 522 82.1
40T 140 962.910 opt 0.016 0.686 501 0.000 0.000 4 781 81.0
50L 124 917.187 opt 0.024 1.108 501 0.000 0.000 5 851 76.8
50T 152 294.536 opt 0.025 1.132 501 0.000 0.000 5 943 76.4

60L 116 799.121 opt 0.073 1.623 507 0.000 0.000 6 330 75.2
60T 124 961.384 opt 0.090 2.124 510 0.000 0.000 7 368 71.3
70L 120 503.243 opt 0.340 2.742 543 0.000 0.000 7 995 70.7
70T 135 016.621 opt 0.138 3.148 512 0.000 0.000 8 085 68.6
80L 119 405.594 opt 0.100 3.623 504 0.000 0.000 8 290 67.3
80T 138 970.736 opt 0.249 4.374 518 0.000 0.000 8 989 65.5
90L 118 611.695 opt 0.554 5.270 539 0.000 0.000 9 579 64.7
90T 130 558.600 opt 0.410 6.035 524 0.000 0.000 10 061 61.8
100L 125 484.484 opt 0.888 6.890 554 0.005 0.023 10 448 62.4
100T 143 119.855 opt 0.161 7.485 505 0.000 0.000 9 795 61.4
110L 116 255.117 opt 0.906 8.330 541 0.000 0.000 10 338 62.0
110T 121 484.974 opt 1.252 9.516 553 0.000 0.000 11 092 60.1
120L 118 048.051 opt 3.500 12.866 651 0.000 0.000 12 985 60.3
120T 122 850.043 opt 1.274 11.522 541 0.000 0.000 11 377 58.2

130L - 120 773.444 0.922 16.714 519 0.000 0.000 11 094 57.5
130T - 126 138.979 0.561 17.268 508 0.000 0.000 11 269 55.9
200L - 122 401.965 13.764 65.355 614 0.201 0.412 14 873 51.7
200T - 133 772.797 0.637 58.482 501 0.000 0.000 12 889 48.9

Table 4. GA results on AP instances with χ = 1, α = 0.5 and δ = 1
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our algorithm runs through additional ttot − t time (until the finishing criterion is
satisfied), although it already reached the optimal solution.

The proposed GA approach cannot verify optimality of obtained solutions, but
represents significant contribution to existing methods for solving UMAHLP, be-
cause it is able to solve large-scale instances unsolved before.

Inst. Optsol GAbest t ttot gen gapavg σavg eval cache

(sec) (sec) (%) (%) (%)

10L 125 591.591 opt 0.001 0.105 501 0.000 0.000 621 97.5
10T 127 425.939 opt 0.001 0.108 503 0.000 0.000 625 97.5
20L 126 058.465 opt 0.003 0.179 501 0.000 0.000 2 300 90.9

20T 129 079.794 opt 0.004 0.184 501 0.000 0.000 2 325 90.8
25L 126 900.890 opt 0.021 0.252 513 0.000 0.000 2 942 88.6
25T 143 422.390 opt 0.017 0.266 508 0.000 0.000 3 115 87.8
40L 125 199.814 opt 0.018 0.642 501 0.000 0.000 4 455 82.3
40T 140 962.910 opt 0.018 0.704 501 0.000 0.000 4 767 81.1
50L 124 917.187 opt 0.023 1.134 501 0.000 0.000 5 820 76.9
50T 152 294.536 opt 0.025 1.154 501 0.000 0.000 5 891 76.6

60L 116 799.121 opt 0.088 1.645 510 0.000 0.000 6 251 75.6
60T 124 961.384 opt 0.090 2.178 509 0.000 0.000 7 313 71.5
70L 121 858.663 opt 0.236 2.683 527 0.000 0.000 7 657 71.1
70T 135 016.621 opt 0.194 3.295 518 0.000 0.000 8 216 68.5
80L 119 405.594 opt 0.101 3.710 504 0.000 0.000 8 303 67.2
80T 138 970.736 opt 0.280 4.540 520 0.000 0.000 9 028 65.5
90L 118 611.695 opt 0.520 5.245 536 0.000 0.000 9 369 65.2
90T 130 558.600 opt 0.323 6.085 517 0.000 0.000 9 887 62.0
100L 125 484.484 opt 1.025 7.044 563 0.000 0.000 10 519 62.8
100T 143 119.855 opt 0.186 7.701 506 0.000 0.000 9 850 61.3
110L 119 007.810 opt 0.864 8.363 538 0.000 0.000 10 221 62.2
110T 122 257.504 opt 0.309 8.712 509 0.000 0.000 10 188 60.2
120L 119 561.474 opt 2.130 11.762 588 0.000 0.000 11 699 60.4
120T 122 850.043 opt 1.188 11.610 537 0.000 0.000 11 243 58.4

130L - 120 773.444 0.907 16.659 519 0.000 0.000 10 980 57.9
130T - 126 138.979 0.642 17.569 510 0.000 0.000 11 290 55.9
200L - 122 401.965 20.330 71.403 675 0.050 0.225 16 167 52.2
200T - 133 772.797 0.647 59.471 501 0.000 0.000 12 896 48.8

Table 5. GA results on AP instances with χ = 1, α = 0.9 and δ = 1

5 CONCLUSIONS

An efficient evolutionary meta-heuristic for solving UMAHLP is presented. Binary
representation, mutation with frozen genes, limited number of different individuals
with same objective value and caching technique were used. The proposed GA
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quickly obtains solutions that match optimal ones known in literature. It is also
able to solve practical size problems that were out of reach for exact methods.

Further research should be directed to parallelization of genetic algorithm and
implementation to multiprocessor systems and applying presented approach to si-
milar hub and other location problems.
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