
Computing and Informatics, Vol. 25, 2006, 421–439

AGENTOWL: SEMANTIC KNOWLEDGE MODEL
AND AGENT ARCHITECTURE

Michal Laclav́ık, Zoltán Balogh, Marián Bab́ık,
Ladislav Hluchý

Institute of Informatics

Slovak Academy of Sciences

Dúbravská cesta 9

845 07 Bratislava, Slovakia

e-mail: michal.laclavik@savba.sk

Manuscript received 6 May 2006; revised 5 September 2006
Communicated by Jacek Kitowski

Abstract. MAS is a powerful paradigm in nowadays distributed systems, however
its disadvantage is that it lacks the interconnection with semantic web standards
such as OWL. The aim of this article is to present a semantic knowledge model of
an agent suitable for discrete environments as well as implementation and a use of

such model using the Jena semantic web library and the JADE agent system. The
developed library allows interconnection of Agent and Semantic Web technologies
can be used in an agent based application where such interconnection is needed.
The defined model and methodology show the use of the library in knowledge ma-
nagement applications where the proposed model has been used and evaluated in
the scope of the Pellucid and K-Wf Grid IST projects.

Keywords: Semantics, agent, architecture, knowledge model

1 INTRODUCTION

Multi-Agent Systems (MAS) is a powerful paradigm [1, 2, 3] for distributed hetero-
geneous information systems when representation and reasoning using knowledge
is needed. At present, MAS lacks interconnection with current commercial techno-
logical standards and the results of semantic web research [1]. The MAS needs to
incorporate results of many areas of computer sciences such as artificial intelligence,

422 M. Laclav́ık, Z. Balogh, M. Bab́ık, L. Hluchý

or the knowledge management. In the MAS, knowledge is usually represented by
states, rules or predicate logic [8, 7]. Although this is extremely powerful, it is hard
to capture knowledge from a person or from current information systems in the
form of rules or predicate logic clauses. Moreover, another difficulty is to present
information and knowledge expressed in e.g. predicate logic to the end user [17].
Ontology as understood in the Semantic Web is closer to current information sys-
tems. It is based on XML/RDF [20, 19, 18], which can be more easily captured
or returned from/to a person and existing information systems because information
systems usually have XML based interfaces and XML can be easier presented to user
after transformations [21, 22, 32]. The MAS architectures, Belief Desire Intention
(BDI) [23], Behavioral [5, 23] or FIPA [24], have a representation of the knowledge
model. In BDI [23], architecture’s “belief” represents the knowledge model. In the
Behavioral architecture, knowledge is hidden in variables and algorithm states or can
be represented by additional mechanisms (rules, ontology etc.) FIPA [24] describes
the knowledge model based on ontology, but leaves internal agent memory model,
its manipulation and understanding of design of agent on developer’s decisions. In
addition, FIPA defines a knowledge manipulation based on content languages such
as FIPA-SL [8], FIPA-KIF, which are powerful but lack any interconnection with
commercial tools and standards. For example, the JADE agent system supports
FIPA-SL language for message passing, but no FIPA-SL query engine or repository
of such knowledge model is available. This is why we see ontology description from
the semantic web area (DAML+OIL [19], OWL [18]) to be more appropriate for
real application. Furthermore, FIPA defines FIPA-RDF, but again only concerning
a message structure. For these reasons all implementations of FIPA architecture
(current MAS standard) are weak and not suitable for developers who want to build
their knowledge management systems using software agents. Therefore we have
decided to integrate semantic web technologies into MAS and create architecture,
methodology and software for such integration. In addition, we have developed
a generic ontology suitable for representing an agent knowledge model for applica-
tions in fully observable environment, which can be described by discrete events.
This model can be further extended and thus used in many areas especially for the
knowledge and experience management [14, 17, 31].

Structure of the article is divided into 6 chapters:

Introduction: Explains the state of the art and needs for such work.

Agent Knowledge Model: Describes the proposed agent knowledge model using
description logic compatible with OWL-DL.

Modeling Methodology for Agent Design: Explains a modeling methodology
based on CommonKADS and Protégé ontology editor for use of such model in
specific applications.

Design and Specification of Agent Software Library: describes developed li-
brary based on Jena, which supports such model in the JADE agent system

AgentOWL: Semantic Knowledge Model and Agent Architecture 423

Demonstration: Shows a use of the agent model, methodology and library on
a simple agent example.

Conclusion: concludes results of the presented work.

1.1 State of the Art

The agent architectures are fundamental engines underlying the autonomous com-
ponents that support effective behavior in the real-world, dynamic and open envi-
ronments. Many architecture typologies exist [23], the following basic types of agent
architectures are considered in this work:

• Reactive Architecture

• Belief Desire Intention Architecture – BDI

• Behavioral Architecture.

In literature, the main focus is on the externals of the agents, their communi-
cation with environment and other agents. The internal knowledge model is left for
an agent creator. Several tools allow creation of the BDI based agents [23]; how-
ever, these are sufficient for some simulations and tests only, definitely not for any
real system. The FIPA does not cover this area of agent systems either. The FIPA
specifications just describe how agents should communicate and how they can share,
translate or communicate ontologies. In the FIPA compliant implementations of an
agent system, different approaches for building the agent knowledge model can be
found. The most advanced, but not a sufficient approach is in the JADE [5] agent
system. The JADE support for ontologies or agent knowledge modeling [7] is based
on the Java classes. The JADE agent model is not sufficient in several ways. Such
model cannot support features of semantic ontology representations such as OWL,
does not have a query engine for the FIPA-SL language [8] and a model based on
predicate logic is hard to be communicated with a user and existing commercial
systems. Thus, we have created an RDF/OWL based agent memory model. The
agent communication based on the RDF/OWL and FIPA based agent system was
presented in other works such as [9], but this work lacks a generic internal model,
offering only a theory how RDF/OWL can be used for the agent communication.
In this work we considered parts of those two models and extended them with the
event based memory model. The event based model was previously used in many
areas, but in the agent field only the work of Anderson [10] deals with the event
model as typical reactive architecture. Another approach for the event based model
is in Russell [4], where action – situation pairs produce events similar to those in our
model. Russell’s model is well described and more general than the proposed model
but in practice its implementation is quite complicated. Our model is suitable for
applications where an agent needs to search for information or knowledge in environ-
ment evolving in time. We think such model is useful for searching agents or agents
in the knowledge management application. In the proposed model, events are used
to take action or to have a reference of past actions, which provide us with a history

424 M. Laclav́ık, Z. Balogh, M. Bab́ık, L. Hluchý

of an environment at any moment. History events can be preprocessed at any time
enabling achievement of different results with the same knowledge model if we find
out that processing algorithms created by an agent developer are not sufficient and
need to be refined.

Figure 1 represents existing and missing features of FIPA compliant MAS.
Dashed lines represent missing connection with GUI, external knowledge bases, ex-
ternal systems existing in an organization, ACL communication based on OWL and
SPARQL content languages as well as the generic model based on OWL, which can
be used for pool of applications. Such dashed connections as well as the generic
extensible knowledge model suitable for discrete environments are covered in the
architecture presented in the paper.

Multi Agent System

Agent 1

Agent 2

Agent 3

Graphical User Interface

External
System

Knowledge
Base

Directory
Facilitator

Knowledge Storage
Querying

XML, XML-RPC, SOAP

User requests
Displaying results

FIPA ACL,
KIF, FIPA-SL, FIPA-RDF

FIPA ACL,
RDF/OWL, SPARQL

Knowledge
Model

KM

KM

IIOP,
HTTP,
SMTP

ACL

Multi Agent System

Agent 1

Agent 2

Agent 3

Graphical User Interface

External
System

Knowledge
Base

Directory
Facilitator

Knowledge Storage
Querying

XML, XML-RPC, SOAP

User requests
Displaying results

FIPA ACL,
KIF, FIPA-SL, FIPA-RDF

FIPA ACL,
RDF/OWL, SPARQL

Knowledge
Model

KM

KM

IIOP,
HTTP,
SMTP

ACL

Fig. 1. Existing and missing features of agent architecture

According to the Agent Technology Roadmap [1], the result of AgentLink II [11]
community, there are a number of broad technological challenges for research and
development over the next decade in the agent technology. Within the presented
work we are trying to partially cover the following challenges:

• Providing better semantic infrastructure (ontologies, knowledge models)

• Apply basic principles of software and knowledge engineering

• Make stronger connection between the MAS and existing commercial technolo-
gies.

2 AGENT KNOWLEDGE MODEL

Most of the agent architectures are combinations of basic architecture types – the
so called hybrid architectures. We have focused on behavioral architecture, where

AgentOWL: Semantic Knowledge Model and Agent Architecture 425

an agent memory model used in behaviors implementations was created within this
work. The proposed Knowledge Model is generic and suitable for applications with
discrete, fully observable environments where environment changes can be captured
by discrete events. Such model is suitable only in applications where environment
can be modeled by discrete events in time and context, contrary to Russell’s model [4]
which is more general but too complex to implement. Such applications are for
example the information search agents or the agents in knowledge management ap-
plications where we tested the proposed model. The motivation for such model came
from satisfying different information and knowledge management needs in organiza-
tions. Usually in an organization discrete events can be captured as defined in the
model such as e-mails received, documents created, documents opened, activities fi-
nished or e-mails sent. An analysis of such events can provide useful information and
knowledge about organization processes, documents or communication flows. The
use of agents to reason on such model is essential if we deal with large distributed
or virtual organizations in heterogeneous environment.

In this chapter we will describe the agent memory formally using description
logic [16] and subsequently we will move to modeling and implementation using
RDF/OWL. The model is based on events, while the idea is taken partially from
the JADE ontology model as well as Russell’s model [4]. As we described, the JADE
ontology model [7] has some limitations.

2.1 Formal Description of Model Using Description Logic

The model is based on five main elements: Resources, Actions, Actors, Context
and Events. Figure 2 shows a formal graph representation using the same terms as
the model described in this chapter, where we describe the knowledge model using
description logic [16] compatible with OWL-DL [18]. In the proposed model we
expect that all agents share same ontology.

The Resource class stands for all the resources in the agent environment. Many
subclasses representing resource types can be defined as part of customization of the
model. Important subclass of Resource is Actor.

Actor ⊆ Resource

{actor} ∈ Actor
(1)

The Actor class denotes actors in the environment. Actor individuals can take
actions {action}, which are individuals of the Action class.

{action} ∈ Action (2)

The Task class symbolizes done or to be done tasks in the environment. Depending
on application it can represent problems too. The Domain class stands for applica-
tion domain extension of ontology, while all extensions should be subclasses of this
class. Context class represents context of actors, environment or else.

426 M. Laclav́ık, Z. Balogh, M. Bab́ık, L. Hluchý

Resource ⊆ Context

Action ⊆ Context

Domain ⊆ Context

{domain} ∈ Domain

Task ⊆ Contex

Context ⊃ Resource ∪ Action ∪Domain ∪ Task

{context} ∈ Context

(3)

An important property of the Task is a domain. This symbolizes domain related
application concepts. It was identified that such connection is useful for setting
appropriate knowledge management algorithms for the actor context and resource
updating.

Task ⊆ domain.Task(domain) ∩ Context (4)

The Event class represents events in the system. The Event individual {event} is an
{action} taken by an {actor} on particular {resource} in the situation described by
the {context}. The properties of the Event class are context.Event, resource.Event,
action.Event, actor.Event.

Event ⊆

action.Event({action})∩

resource.Event({resource})∩

actor.Event({actor})∩

context.Event({context})

{event} ∈ Event

(5)

A special type of the Actor is the Agent. The Agent is used for a software agent
representation in the system.

Agent ⊆ Actor

{agent} ∈ Agent
(6)

Typical actions which can be performed by software agents are defined. They repre-
sent types of inter-agent communication such as the ACL QUERY-REF and ACL
INFORM message [25]. When communication between agents is performed, events
of such kind are generated.

{aQuery, aInform} ∈ Action (7)

When actions such as creating, updating or deleting of resources are performed,
events containing those kinds of action are stored and evaluated in the system.

{aUpdate, aDelete, aCreate} ∈ Action (8)

AgentOWL: Semantic Knowledge Model and Agent Architecture 427

The Actor class consists of important properties: context.Actor, resource.Actor.

Actor ⊆

resource.Actor({resource})∩

context.Actor({actor})∩

Resource

(9)

The context.Actor represents actor’s current context. The system or application
environment is based on stored events. The events model the environment state.
Current state of the environment or actor related environment/context is thus af-
fected by relevant new events.

contextActor({actor}) =

fC(∀event; actor.Event({actor}) ∈ {event})
(10)

The resource.Actor property stands for all current resources of the actor. These re-
sources are results of actors’ intentions or objectives. Such resources are dependable
on current actors’ environment state/context (context.Actor).

resource.Actor(resource) =

fR(contextActor({actor}))
(11)

Functions/algorithms for context and resource updating are specified by (10)
and (11). An advantage of such model is that it enables to achieve better re-
sults when such algorithms are changed in the future, using the same model and
data. Due to storing all events we can model the environment at any moment from
the past and process it later from any starting point with improved algorithms for
context and resource updating. In addition, this model can be successfully used
outside the MAS [14]. It can be used in knowledge intensive applications, where we
need to model actors and their knowledge model. Often this is the case when we
need to model users of the system who are mostly the main actors in any applica-
tion.

3 MODELING AND DEVELOPMENT METHODOLOGY

FOR AGENT DESIGN

Since this model is suitable mainly for knowledge management applications, we tried
to define modeling methodology according to methodologies used in the knowledge
management. Thus the methodology follows the CommonKADS [26] which was
developed and used for the knowledge management analysis and modeling. How-
ever, CommonKADS is not tied to any modeling tool, knowledge representation or
ontologies. CommonKADS is divided into two main parts:

428 M. Laclav́ık, Z. Balogh, M. Bab́ık, L. Hluchý

• a knowledge model based on other three models:

– an organizational or environmental model

– an agent model

– a task model

• and design of the system. In our case the design is based on the MAS.

We present a knowledge model based on the OWL ontology [18] and we model
it in the Protégé ontology editor [27]. Thus defined methodology for the knowledge
model is similar to [12]. Ontology modeled with Protégé reflects the CommonKADS
models and has several commonalities with the JADE ontology model. Design of
the system is based on UML, AUML [28] and MAScommonKADS [29]. Using this
methodology can bring good results only after several iterations of the modeling
process, which should be performed after the first developing, use and evaluation
of the first system version. The iteration method is common and used in most
knowledge management methodologies.

3.1 Specification of Method for Creating Ontology and Agents Model

When modeling a knowledge model for an application we follow the first three Com-
monKADS models:

• The Organizational or in our case the Environment Model

• The Task Model

• The Agent or Actor Model.

When modeling the knowledge model we have to extend the generic agent model
(Figure 2) by new elements and relations. This model is the same as that described
using description logic in the previous chapter.

Action

aCreate

io

aDelete

io

aInform

io

aUpdate

io

aQuery

io

Context

isa

Task

isa

Domain

isa Resource

isa

domain*

Actor

context*

resource*

Agent

isa

isa

Event

action*

context*

actor*

resource*

Fig. 2. Basic ontology for knowledge modeling

AgentOWL: Semantic Knowledge Model and Agent Architecture 429

The Environment Model models the environment of application and that of ac-
tors. Thus, modeling a resource element needs to be extended by new types
of resources such as documents, contacts, goods or services. A domain element
needs to be extended by all application/domain specific concepts (possibly in-
cluding resources), which model a problem domain, especially concepts used by
actors to make decisions or accomplish a task (e.g. documents, contacts in ad-
ministration applications). The resources considered as results of actor’s goals
have to be modeled as well. Usually results of actors’ goals can be considered
as resources e.g. in searching agents (found documents) or selling agents (sold
goods).

The Actor Model models actors performing tasks and actions. The actor can be
a human, a software agent or another entity (e.g. information system) performing
actions and which can be monitored by the system. An important part of the
actor model is actor’s context which defines current actor’s environment and
actor’s resources which are the results of accomplished goals. Thus, the Actor
model includes definitions of 2 algorithms for the actor context (10) and resources
updating (11) defined in the actor/agent model.

The Task Model models tasks, activities, processes and actions relevant to actors.
An important property of a task is a Domain. Tasks are often related to some
resources or other domain entities and we need this relation to define functions
for updating the actor context and the resources mentioned above.

Defining ontology of mentioned models should be followed by iterative refining in
order to include all needed elements in the model. Refining the model requires con-
sideration whether combination of actions, resources and actors could be captured
as events and whether all possible events could be created from defined ontology
elements. The outcome of models is the knowledge model consisting of:

• Ontology developed in Protégé in the OWL format.

• Algorithms for each agent (actor) updating actors’ context fC (10) and resources
fR (11). Often such algorithms are similar or the same for all actors.

3.2 Design of Agent Based System with the Presented Model

The design of the system should be based on three UML diagram types, similarly
to those in the object oriented programming and AUML [28], namely:

• Use Case Diagram

• Sequence Diagram

• Class Diagram.

The Use Case Diagram: creating the Use Case Diagrams for the MAS, we iden-
tified that it is important to design a diagram for each agent type, where the
agent is understood as system boundaries of the use case. The number of agents

430 M. Laclav́ık, Z. Balogh, M. Bab́ık, L. Hluchý

should be clear from the overall knowledge model of the system especially from
the Actor model.

The Sequence Diagram: similar to the OOP sequence diagram. It represents
communication among agents and interaction with external systems (GUI, sen-
sors or other interfaces). Interactions among agents explain the type of the
ACL message (e.g. Inform(), Query-ref()). An additional table describing each
message type can be attached to a diagram.

The Class Diagram: represents design of each agent type. The main difference in
comparison with the OOP UML class diagram is that all agent behaviors need
to be described. Behaviors are considered as something owned by agents and
thus should be displayed similarly as methods in the agent class. More details
with examples of such UML diagrams can be found in [17].

4 DESIGN AND SPECIFICATION OF AGENTOWL LIBRARY

In this chapter we provide description of developed AgentOWL software library to be
used for creation of agents with the OWL knowledge model. The developed library
is based on the JADE agent system [5] and the Jena semantic web library [30].
It covers functionalities that we identified as missing in current agent architectures
such as JADE. The library can be used independently of the model and development
methodology described in previous chapters. It can be used in any agent based
application where interconnection with semantic web and commercial technologies
is required. Missing components are as follows:

• Agent Knowledge Model based on RDF/OWL

• Action-resource pair (bases of events) as basics for communication included in
OWL ontology model

• Sending ACL based RDF/OWL messages

• Receiving ACL based RDF/OWL messages

• Including received information (events) into a model

• XMLRPC receiving messages

• XMLRPC returning RDF/OWL and plain XML

• Inference Engine

• SPARQL messages handling.

The library consists of the following classes:

The class Ontology has basic constants related to OWL ontology and the used
ontology.

The class Memory has the functionality to load, store and manipulate the agent
memory based on an RDF or an OWL model. The Jena library is used for this
manipulation. The memory can load an OWL file developed in Protégé which

AgentOWL: Semantic Knowledge Model and Agent Architecture 431

JADE

Agent

Library

Jena

RDF/OWL model

Presentation

External System

User

Other Agent

Fig. 3. Agent library functionality diagram

becomes an ontology model of the agent memory. The memory can be stored in
a database backend such as MySQL, other RDBS supported by Jena or into the
OWL file. When using a database model, an agent can migrate between nodes
and does not need to carry its memory with itself. It just needs to disconnect
from memory and connect after execution starts on a different node if a use of
mobile agents is required.

The class Message contains static methods for creating ACL messages or trans-
forming models to the RDF or XML strings. Some of those methods can be
used for XML-RPC communication when wrapped with the XML-RPC server.
Figure 3 shows an agent library functionality diagram of using this library. The
JADE based agent can be developed using this library to support Jena OWL
model as the agent memory, and furthermore it is possible to include the XML-
RPC based functionalities for presenting knowledge or receiving events from
external systems as RDF messages based on a used ontology. Furthermore it al-
lows communication among agents based on RDF/OWL as FIPA-ACL content
language.

The developed library is published on the JADE website as the third party
software [13, 33] as a way to put together Jena RDF/OWL and JADE Multi-agent
system features. The developed library is quite popular and in 2005–2006 it was
downloaded 735 times.

More details with demonstration examples can be found in [17] or the on library
website [33] .

432 M. Laclav́ık, Z. Balogh, M. Bab́ık, L. Hluchý

5 DEMONSTRATION

This demo shows a use of the developed agent library. We created a simple ontology
in Protégé. In the demo we developed two agents:

• AskAgent

• AnswerAgent.

Action

CD

cd2

io

cd1

io

Goods

isa

Book

isa

book2

io

book1

io

book3

io

Actor

Resource

resource*

Agent

isa

isa

isa

Computer

isa

com2

io

com1

io

com3

io

AnswerAgent

io

Event

action*actor*

resource*

Fig. 4. The Agent model of the AnswerAgent. The AskAgent uses the same model with
the only difference that it does not have any resource individuals.

Both agents use the same ontology, but with different individuals. In Figure 4
you can see the model of the AnswerAgent. The AskAgent uses the same ontology
with only one individual “AskAgent”. The AskAgent knows different resource types
such as books, CDs or computers, but its memory does not contain any individual
of that kind. The AnswerAgent memory with different resource individuals can be
seen in Figure 4. For example, the model contains 3 computer individuals.

A user selects a type of resource for which the AskAgent should search. The user
selects a computer in the AskAgent GUI (Figure 5) and clicks the search button.
The type of the resource is passed to an agent by the XML-RPC method call. One
of the AskAgent behaviors is activated and the AskAgent produces the SPARQL
query and passes the ACL QUERY message to the AnswerAgent.

(QUERY−REF
: sender (agent− i d e n t i f i e r

AgentOWL: Semantic Knowledge Model and Agent Architecture 433

: name AskAgent@nb . l a c l a v i k . sk :1099/JADE
:X−JADE−agent−c lassname

agent . demo . askAgent . AskAgent)
: r e c e i v e r (s e t (agent− i d e n t i f i e r

: name AnswerAgent@nb . l a c l a v i k . sk :1099/JADE))
: content ”
PREFIX ont : <http : // onto . u i . sav . sk/ agents . owl#>
PREFIX rd f :

<http : //www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX rd f s : <http : //www.w3 . org /2000/01/ rdf−schema#>
SELECT ?x WHERE {?x rd f : type ont : Computer}”

: language SPARQL
: onto logy http : // onto . u i . sav . sk/ agents . owl

)

The AskAgent asks the AnswerAgent to return to it all computers it has in
the memory. The AnswerAgent receives an ACL QUERY message and performs
an SPARQL query on its memory. The result is passed as several ACL INFORM
messages consisting of the RDF description of requested resource.

(INFORM
: sender (agent− i d e n t i f i e r

: name AnswerAgent@nb . l a c l a v i k . sk :1099/JADE
:X−JADE−agent−c lassname

agent . demo . answerAgent . AnswerAgent)
: r e c e i v e r (s e t (agent− i d e n t i f i e r

: name AskAgent@nb . l a c l a v i k . sk :1099/JADE))
: content ”
<rd f :RDF

xmlns : j .0=”http : // onto . u i . sav . sk/ agents . owl#”
xmlns : r d f=

”http : //www.w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns : r d f s=”http : //www.w3 . org /2000/01/ rdf−schema#”
xmlns : owl=”http : //www.w3 . org /2002/07/ owl#
xml : base=”http : // onto . u i . sav . sk/ agents . owl”>
<owl : C la ss rd f : about=”Computer”>

<r d f s : subClassOf rd f : r e s ou r c e=”Resource”/>
</owl : Class>
<Computer rd f : about=”com1”>

< t i t l e >Notebook Sony Vaio</ t i t l e >
</Computer>

</rd f :RDF>”
: language http : //www.w3 . org /1999/02/22− rdf−syntax−ns#
: onto logy http : // onto . u i . sav . sk/ agents . owl

)

434 M. Laclav́ık, Z. Balogh, M. Bab́ık, L. Hluchý

The AnswerAgent creates events in its memory that resources were sent to Ask-
Agent. This way the AnswerAgent keeps information about the environment. When
the AskAgent receives an ACL INFORM message, it stores its context into its me-
mory model. Events about receiving resources are created in the AskAgent memory.
In addition, it adds references to returned resources to the AskAgent individual re-
source property. When a user clicks on the “getXML” button (Figure 5) in the
AskAgent GUI, the AskAgent individual from the AskAgent memory is returned in
the XML format. In this XML you can see resources, which are now in the AskAgent
memory.

Fig. 5. Screenshot of running demo (top left: JADE window, bottom left: JADE Sniffer
Agent, top right: AskAgent GUI, bottom right: ACL Inform Message)

<Agent ID=”AskAgent”>
<r e source>

<Computer ID=”com3”>
<t i t l e >Toshiba Sa t e l i t e </ t i t l e >

</Computer>
</resource>
<r e source>

<Computer ID=”com2”>
<t i t l e >HP Armanda</ t i t l e >

</Computer>

AgentOWL: Semantic Knowledge Model and Agent Architecture 435

</resource>
<r e source>

<Computer ID=”com1”>
<t i t l e >Notebook Sony Vaio</ t i t l e >

</Computer>
</resource>
<t i t l e >AskAgent</ t i t l e >

</Agent>

XML that returned to GUI is plain XML differing from RDF/OWL based XML
which can be gathered from a Jena Model. It is not possible to parse RDF/OWL
based XML using XSL templates due to RDF resource referencing, while the Agent-
OWL library XML output of a Jena Model can be processed using XSL templates.
Such plain XML can be then passed and showed in a different format in GUI.
It would be better to develop GUI based on JSP and XSLT, where it is possible
to transform returned XML to HTML. This option is easier for users to install,
run and see the results, because to run the demo you just need Java installed.
We created such GUI window for this demo purposes only. The solution adopting
the XSL approach [14, 22] was created and used in the Pellucid and K-Wf Grid
projects.

The demo together with the library is published on the JADE website as third
party software [13, 33] as a way to put together Jena and JADE features.

6 CONCLUSION

The paper describes how semantic web technologies can be applied in multi-agent
systems. An agent knowledge model was created enabling the possibility to model
the agent environment, agent context and its results. The agent library to sup-
port such an agent knowledge model was developed and extends the JADE agent
system, which is currently the most popular MAS toolkit. The model is exten-
sible for the knowledge and experience management [14, 17, 31]. It was proved
that such model and the agent architecture are implementable and can be used in
different knowledge intensive applications in discrete environments. The approach
was successfully used and evaluated in several R&D projects, mainly in the Pellu-
cid IST project [6] (A Platform for Organisationally Mobile Public Employees EU
5FP IST-2001-34519). The developed library for using such semantic model was
published on the JADE agent website and it is available to the worldwide JADE
community.

The presented work will be further developed and extended. Such process has
already been started and we are trying to apply the developed model, methodology
and infrastructure to solve various problems in information search and the knowledge
management application in organizational environment.

436 M. Laclav́ık, Z. Balogh, M. Bab́ık, L. Hluchý

Acknowledgment

This work was partially supported by projects K-Wf Grid EU RTD IST FP6-511385,
NAZOU SPVV 1025/2004, RAPORT APVT-51-024604 and VEGA No. 2/6103/6.

REFERENCES

[1] Luck, M.—McBurney, P.—Preist, C.: Agent Technology: Enabling Next Ge-

neration Computing. A Roadmap for Agent Based Computing, 2003.

[2] Kelemen, J.: The Agent Paradigm – Foreword. In Computing and Informatics,
Vol. 22, 2003, No. 6, p. 513–519.

[3] Singh, P.: Examining the Society of Mind. In Computing and Informatics, Vol. 22,
2003, No. 6, p. 521–543.

[4] Russell, S.—Norvig, P.: Artificial Intelligence – A Modern Approach. Second
Edition, Prentice Hall Series in Artificial Intelligence, ISBN 0-13-790395-2, Chapter
10.3 Actions, Situations, and Events. pp. 328–340.

[5] Telecom Italia: JADE (Java Agent DEvelopment Framework) Website.
http://jade.cselt.it/, 2004.

[6] Pellucid Consortium: Pellucid IST Project Website.
http://www.sadiel.es/Europa/pellucid/, 2004.

[7] Caire, G.: JADE Tutorial Application-defined Content Languages and Ontology.
http://jade.cselt.it/, 2002.

[8] FIPA: FIPA SL Content Language Specification, 2000.

[9] Obitko, M.—Marik V.: OWL Ontology Agent based on FIPA proposal. Zna-
losti 2004, Brno, Czech Republic, 2004.

[10] Anderson, J.: An Agent-Based Event Driven Foraging Model. Natural Resource
Modeling, Vol. 15, 2002, No. 1.

[11] AgentLink II EU Project, 2002, http://www.agentlink.org/.

[12] Schreiber, G.—Crubezy, M.—Musen, M.: A Case Study in Using Protégé-2000
as a Tool for CommonKADS. 2001,

[13] Laclavik, M.: AgentOWL – OWL Agent memory model. 2005,
http://jade.tilab.com/community-3rdpartysw.htm#AgentOWL.

[14] Laclav́ık, M.—Gatial, E.—Balogh, Z.—Habala, O.—Nguyen, G.—

Hluchý, L. : Experience Management Based on Text Notes (EMBET). In: Proc.
of eChallenges 2005 Conference, 19–21 October 2005, Ljubljana, Slovenia, Innovation

and the Knowledge Economy, Volume 2, Part 1: Issues, Applications, Case Stu-
dies; Edited by Paul Cunnigham and Miriam Cunnigham; IOS Press, pp. 261–268,
ISSN 1574-1230, ISBN 1-58603-563-0.

[15] K-Wf Grid Consortium: K-Wf Grid IST Project Website. 2006,
http://www.kwfgrid.net/.

[16] Baader, F.—McGuinness, D.—Nardi, D.: The Description Logic Handbook.
ISBN 0521781760, January 9, 2003.

AgentOWL: Semantic Knowledge Model and Agent Architecture 437

[17] Laclav́ık, M.: Ontology and Agent based Approach for Knowledge Management.

Ph.D. Thesis; Institute of Informatics, SAS, field: Applied Informatics, June 2005.

[18] W3C: Web Ontology Language (OWL). 2006,
http://www.w3.org/TR/owl-features/.

[19] DARPA: DAML Website. 2002, http://www.daml.org/.

[20] W3C: Resource Description Framework RDF. 2006, http://www.w3.org/RDF/.

[21] W3C: XSLT. 2006, http://www.w3.org/Style/XSL/.

[22] Laclav́ık, M.—Balogh, Z.—Nguyen, G.—Gatial, E.—Hluchý, L.: Methods
for Presenting Ontological Knowledge to the User. In: L. Popelinsky, M. Kratky
(Eds.): Znalosti 2005, Proceedings, VSB-Techicka universita Ostrava, Fakulta elek-
trotechniky a informatiky, 2005, pp. 61–64. ISBN 80-248-0755-6. February 2005,
Vysoké Tatry, Slovakia.

[23] Wooldridge, M.: Introduction to MultiAgent Systems. ISBN 047149691X, 2002.

[24] FIPA: Foundation for Intelligent Physical Agents website. 2002,
http://www.fipa.org/.

[25] FIPA: FIPA Specification ACL Message Structure. 2000.

[26] Schreiber, A. et al.: Knowledge Enginering and Management: The CommonKADS
Methodology. ISBN 0-262-19300-0, 2000.

[27] Stanford University: Protégé Ontology Editor. 2006,
http://protege.stanford.edu/.

[28] FIPA modeling Group: Agent-based Unified Modeling Language – AUML. 2004,
http://www.auml.org/.

[29] Iglesias, C.—Garijo, M.—Gonzalez, J.—Velasco, J.: Analysis and Design
of Multiagent Systems Using MAS-CommonKADS. 1998.

[30] HP Labs and Open Source Community: Jena Semantic Web Library. 2006,
http://www.sf.net/.

[31] Lambert, S.: Pellucid Consortium: Knowledge Management for Organisationally
Mobile Public Employees. KMGov 2003, Rhodes Island, Greece, 2003.

[32] Návrat, P.—Bieliková, M.—Rozijanová, V.: Methods and Tools for Acquiring
and Presenting Information and Knowledge in the Web. In: Proc. International Con-

ference on Computer Systems and Technologies – CompSysTech 2005, Varna 2005
http://ecet.ecs.ru.acad.bg/cst05/Docs/cp/SIII/IIIB.7.pdf.

[33] Laclav́ık M.: SouceForge.net: AgentOWL: Agents with OWL Ontology Models

Using JADE Agent System and Jena. 2006, http://agentowl.sourceforge.net/.

438 M. Laclav́ık, Z. Balogh, M. Bab́ık, L. Hluchý

Michal Lalav��k is a researcher at the Institute of Informatics

of the Slovak Academy of Sciences. In 1999 he received his M. Sc.
degree in computer science and physics. He received his Ph.D.
degree in applied informatics with focus on knowledge oriented
technologies in 2006. He is the author and co-author of several
scientific papers and he participates in the Pellucid and K-Wf
Grid IST projects as well as in several national projects. His re-
search interests include artificial intelligence, agent technologies,
knowledge management and semantic web.

Marián Bab��k is a researcher at the Institute of Informatics of
the Slovak Academy of Sciences at Center for Intelligent Tech-
nologies (CIT) and a member of the computing group at the
Institute of Experimental Physics, SAS. In 2003 he received his
M. Sc. degree in artificial intelligence from the Technical Univer-
sity, Košice. He was a member of the CDF collaboration at the
Fermi National Laboratory and worked as a technical student at
the European Organization for Nuclear Research (CERN). He
is the author and co-author of several scientific papers and par-
ticipates in the EU IST projects K-Wf Grid, EGEE-2, Degree,

as well as in several national projects. He is experienced in the Semantic Web technolo-
gies and languages; development of large scale systems; development of knowledge based
systems and semantic web services.

Zoltán Balogh is a researcher at the Institute of Informatics of
the Slovak Academy of Sciences. In 1999 he received his M. Sc.
degree in management. Since then he is employed at the insti-
tute. He is the author and co-author of several scientific papers.
He participates in Pellucid and K-Wf Grid EU IST projects as
well as in several national projects (VEGA, APVT, SPVV). His
research interests include web services, ontologies, case-based
reasoning, instance-based learning and application of semantics
in business systems.

AgentOWL: Semantic Knowledge Model and Agent Architecture 439

Ladislav Hluh�y is the director of the Institute of Informa-

tics of the Slovak Academy of Sciences and also the head of the
Department of Parallel and Distributed Computing at the insti-
tute. He received M. Sc. and Ph.D. degrees, both in computer
science. He is R&D Project Manager, Work-package Leader
in a number of 4FP, 5FP and 6FP projects, as well as in Slo-
vak R&D projects (VEGA, APVT, SPVV). He is a member of
IEEE, ERCIM, SRCIM, and EuroMicro consortiums, the editor-
in-chief of the journal Computing and Informatics. He is also
(co-)author of scientific books and numerous scientific papers,

contributions and invited lectures at international scientific conferences and workshops.
He also gives lectures at Slovak University of Technology and is a supervisor and consultant
for Ph.D., master and bachelor studies.

