
Computing and Informatics, Vol. 25, 2006, 1–15

IMPROVING THE GENERALIZATION ABILITY
OF RBNN USING A SELECTIVE STRATEGY
BASED ON THE GAUSSIAN KERNEL FUNCTION

José M. Valls, Inés M. Galván, Pedro Isasi

Departamento de Informática, Universidad Carlos III de Madrid
Avenida de la Universidad 30
28911 Leganés (Madrid), Spain
e-mail: {jvalls, igalvan}@inf.uc3m.es, isasi@ia.uc3m.es

Manuscript received 17 June 2005; revised 20 December 2005

Communicated by Vladimı́r Kvasnička

Abstract. Radial Basis Neural Networks have been successfully used in many ap-

plications due, mainly, to their fast convergence properties. However, the level of
generalization is heavily dependent on the quality of the training data. It has been
shown that with careful dynamic selection of training patterns, better generalization
performance may be obtained. In this paper, a learning method is presented, that
automatically selects the training patterns more appropriate to the new test sample.
The method follows a selective learning strategy, in the sense that it builds appro-
ximations centered around the novel sample. This training method uses a Gaussian
kernel function in order to decide the relevance of each training pattern depending
on its similarity to the novel sample. The proposed method has been applied to three
different domains: an artificial approximation problem and two time series predic-
tion problems. Results have been compared to standard training method using the
complete training data set and the new method shows better generalization abilities.

Keywords: Radial Basis Neural Networks, generalization ability, selective learning,
kernel functions

1 INTRODUCTION

Radial Basis Neural Networks (RBNN) [9, 4] are originated from the use of radial
basis functions, as the Gaussian functions, in the solution of the real multivariate

2 J.M. Valls, I.M. Galván, P. Isasi

interpolation problem [2, 14]. As the Multilayer perceptron (MLP) they can ap-
proximate any regular function [12]. Due to its local behavior and to the linear
nature of its output layer, their training is faster than MLP training [12] and this
fact makes them useful for a wide variety of applications. Usually, the generalization
capability of RBNN is poor because they are too specialized in the training data set.
Hidden neurons represent regions of the input space and therefore the search of the
appropriate hidden neurons to get good generalization properties may be an arduous
task [6].

In order to improve the generalization ability of the networks, some authors
have developed optimization methods to allocate the centers of the RBNN and to
determine their architecture [13, 18], whereas others have paid attention to the
nature and size of the training set. There is no guarantee that the generalization
performance is improved by increasing the training set size [1]. In general, only
those examples which are most likely to help the network solve the problem should
be chosen. It has been shown that with a careful dynamic selection of training
patterns, better generalization performance may be obtained [3].

The idea of selecting dynamically – from the available data about the domain –
the patterns to train the network is close to our approach. However, the aim in this
work is to develop learning mechanisms, such that the selection of patterns used
in the training phase is based on novel samples, instead of being based on other
training patterns. Thus, the network will use its current knowledge of each new
sample in order to decide what patterns are going to be selected for training.

The learning method proposed in this work to train RBNN consists of recog-
nizing, from the whole training data set, the most relevant patterns for each new
sample to be processed, discarding data that could worsen the generalization of the
new pattern. This subset of useful patterns is used to train a RBNN, and therefore
deferring the training until a test pattern is received. Thus, taking advantage of the
fast convergence of this kind of networks, a complete RBNN is trained for each test
sample. The relevance of a pattern in the training data is obtained using a weighting
measure generated by a kernel function. The value assigned by this function to the
training pattern depends on its Euclidean distance to the test sample in such a way
that the closest patterns get the highest weights.

2 WEIGHTED SELECTION OF TRAINING PATTERNS

The method proposed in this work to train RBNN involves storing the training data
in memory, and finding relevant data to answer to new patterns. Thus, the decision
about how to generalize is carried out when a novel pattern needs to be answered,
constructing local approximations with a subset of training patterns. With this
purpose, when a novel sample is received, the learning method selects, from the
whole training data, an appropriate subset of training patterns in order to improve
the answer of the network for that novel pattern. Afterwards, the RBNN is trained
using this new subset of selected data. The goal is to show that, if the RBNN is

Improving RBNN Using a Gaussian Selective Strategy 3

trained with the most appropriate training patterns, the generalization on the new
sample can be improved.

The general idea for training patterns selection is to select those patterns close (in
terms of the Euclidean distance and some weighting measure) to the novel sample,
and to include once or more times those selected patterns. Thus, the network is
trained with the most useful information, discarding those patterns that not only
do not provide any knowledge to the network, but might confuse the learning process.

When a novel sample is gathered, the selection of patterns is carried out estab-
lishing a weight for each training pattern, depending on the distance of this pattern
to the novel sample. That weight is calculated using a weighting function or kernel
function, which must have the following characteristics:

• The function reaches its maximum value when the distance to the novel sample
is null.

• The function decreases smoothly as this distance increases.

With this purpose, the kernel function used in this work, to select the most
relevant patterns, is the Gaussian function. This function assigns to each training
input pattern xk a real value or weight according to the following equation:

K(xk) =
1

σ
√
2π

e
−

d(q,xk)2

2σ2 (1)

where q represents the novel sample, σ is a parameter named “width”, which in-
dicates the width of the Gaussian function, and d(q,xk) is the Euclidean distance
from the novel sample to the training input pattern xk. In order to simplify the
notation this distance will be represented by dk and is defined as usual:

dk = d(xk,q) =

√

√

√

√

n
∑

i=1

(xki − qi)2. (2)

The weighting function given by Equation (1) allows to associate a weight to
each training pattern, reaching its maximum value when the distance is zero and
decreasing smoothly as distance increases. As the width parameter decreases, the
shape of the function becomes sharper, being higher its maximum value; thus, less
training examples will be selected although the weights of the nearest ones will be
higher.

The weight values K(xk) are used to indicate how many times the training
pattern (xk,yk), where yk is the target output for the input xk, will be included into
the training subset associated to the novel sample q. Hence, those real values must
be transformed into natural numbers. The most intuitive way consists on taking the
integer part of K(xk). Thus, each training pattern will have an associated natural
number, nk = int(K(xk)), which indicates how many times the pattern (xk,yk) will
be used to train the RBNN when the new instance q is reached. If nk = 0 then
the kth pattern is not selected and not used to train the RBNN.

4 J.M. Valls, I.M. Galván, P. Isasi

Once the training patterns are selected according to the weighting function
(Equation (1)), the RBNN is trained with the new subset of patterns. The usual
way of training a RBNN is based on the hybrid learning method introduced by
Moody and Darken [9]. It involves determining the neuron centers, the dilations or
widths, and the weights in two separate stages: a self-organized stage to estimate
the centers locations and widths of the radial basis functions on the hidden layer
and a supervised stage where the linear weights of the output layer are determined.

The centers Ci are calculated in an unsupervised way using the K-means algo-
rithm to classify the input space. In this context, the K- means algorithm is applied
only to the selected training patterns for the new sample. The neurons dilations di
or widths are evaluated as the geometric mean of the distances from each neuron
center to its two nearest centers

di =
√

‖Ci − Ct‖ ‖Ci − Cs‖ (3)

where Ct and Cs are the two nearest centers to center Ci.
Finally, the weights of output layer of the RBNN are estimated in a supervised

way to minimize the mean square error E measured over the selected training subset:

E =
1

R

R
∑

r=1

er (4)

where R is the number of patterns selected and er is the error committed by the
network for the pattern xr, given by

er =
1

2

m
∑

i=1

(ỹri − yri)
2 (5)

where yr = (yr1, ..., yrm) and ỹr = (ỹr1, . . . , ỹrm) are the desired output vector and
the output vector of the network, respectively.

In the next, the sequential structure of the selective learning method is summa-
rized.

For each new sample q,

1. The standard Euclidean distances dk from the pattern q to each input training
pattern are calculated using the equation 2.

2. The Kernel function K(), given by Equation 1, is used to calculate a weight for
each training pattern from its distance to the new pattern.

3. The real numbers K(xk) are transformed into natural numbers nk taking its
integer part.

4. A training pattern subset associated to the novel pattern q, named Xq , is built
up as follows:

(a) Given a pattern (xk,yk) from the original training set, that pattern is in-
cluded in the new subset if the value nk is higher than zero.

Improving RBNN Using a Gaussian Selective Strategy 5

(b) In addition, the pattern (xk,yk) is placed nk times randomly in the training
set Xq.

5. The RBNN is trained using the new subset Xq .

3 EXPERIMENTAL VALIDATION

In this section, the selective learning method based on the weighting Gaussian func-
tion has been applied to three different problems. Two of them are domains widely
used in the literature of RBNN: an artificial regression problem – the Hermite Poly-
nomial – and an artificial time series prediction problem – the Mackey-Glass time
series. The third one is a real time series prediction problem describing the behavior
of the water level at Venice Lagoon.

In the next subsections, the features of the different problems, the experimental
set-up description and results obtained for each domain are presented and analyzed.

3.1 Experimental Definition

The selective learning method to train RBNN has been validated in different do-
mains: the Hermite Polynomial, the Mackey-Glass time series and the water level
at Venice Lagoon times series. In the next the characteristics of all of them are
presented.

The Hermite Polynomial approximation

The Hermite Polynomial is a one-dimensional approximation problem given by
the following equation:

f(x) = 1.1(1− x+ 2x2)e−
1
2
x2

. (6)

The training and test patterns are obtained using a random sampling with a uni-
form distribution over the interval [−4, 4]. As in the works that appear in the
literature about this domain [5, 11, 18], 40 and 200 input-output points are
generated for the training and test data sets, respectively. Both sets have been
normalized in the interval [0, 1].

The Mackey-Glass time series prediction

This time series is widely regarded as a benchmark for comparing the generali-
zation ability of RBNN [13, 18, 9, 17]. It is a chaotic time series created by the
Mackey-Glass delay-difference equation [7]:

dx(t)

dt
= −bx(t) + a

x(t− τ)

1 + x(t− τ)10
. (7)

Following the studies mentioned above, the series has been generated using the
next values for the parameters: a = 0.2, b = 0.1, and τ = 17. The task for the

6 J.M. Valls, I.M. Galván, P. Isasi

RBNN is to predict the value of the time series at point x[t+P] from the earlier
points (x[t], x[t−6], x[t−12], x[t−18]). The number of sample steps P has been
set to 50, as in [18]. Thus, the function (whose dimension is 4) to be learned by
the network is:

x(t) = f(x(t− 50), x(t− 50− 6), x(t− 50− 12), x(t− 50− 18)). (8)

Fixing x(0) = 0, 5 000 values of the time series are generated using the Equa-
tion (8). The initial 3 500 samples are discarded in order to avoid the initiali-
zation transients. 1 000 data points, corresponding to the sample time between
3 500 and 4 499, have been chosen for the training set. The test set is composed
by the points corresponding to the time interval [4 500, 5 000]. All data points
are normalized in the interval [0, 1].

Prediction of water level at Venice Lagoon

The time series describing the water level at Venice Lagoon represents a real
time series prediction problem. The prediction of high tides has always been
the subject of intense interest to mankind, not only from a human point of
view, but also from an economic one, and the water level of Venice Lagoon is
a clear example of these events [10, 8]. The most famous example of flooding
in the Venice lagoon occurred in November 1966 when, driven by strong winds,
the Venice Lagoon rose by nearly 2 meters above the normal water level. That
phenomenon is known as “high water” and many efforts have been made in Italy
to develop systems for predicting sea level in Venice, mainly for the prediction
of the high water phenomenon [15].

Different approaches have been developed for the purpose of predicting the be-
havior of sea level at the Venice Lagoon [15, 16]. Multilayer feedforward neural
networks have also been used to predict the water level [19] obtaining same
advantages over linear and traditional models.

The goal in this work is to predict only the next sampling time and a nonlinear
model using the six previous sampling times, i.e. data of the six previous hours,
may be appropriate. Thus, the function to be learned, whose dimension is 6, is:

x(t) = f(x(t− 1), x(t− 2), x(t− 3), x(t− 4), x(t− 5), x(t− 6)). (9)

A training data set of 3000 points corresponding to the water level measured
each hour has been extracted from available data (water level of Venice Lagoon
between 1980 and 1994 sampled every hour). This set has been chosen in such
a way that both stable situations and high water situations appear represented
in the set (see Figure 1). High-water situations are considered when the level
of water is not lower than 110 cm. Test samples have also been extracted from
the available data and they represent a situation when the water level is higher
than 110 cm (see Figure 2).

Improving RBNN Using a Gaussian Selective Strategy 7

-100

-50

 0

 50

 100

 150

 0 500 1000 1500 2000 2500 3000

W
a
te

r
le

v
e
l

(c
m

)

Time

Fig. 1. Water level at Venice Lagoon during four months. Training set.

-100

-50

 0

 50

 100

 150

 655 660 665 670 675 680

W
a
te

r
le

v
e
l

(c
m

)

Time

Fig. 2. Water level at Venice Lagoon. Test set.

3.2 Experimental Conditions

To apply the selective learning method proposed in this work to train RBNN, the
width of the Gaussian Kernel function must be fixed as an external parameter of the
method. That parameter determines the number of patterns selected to train the
RBNN for each sample test. Hence, it is important to study the influence of that
parameter in the performance of the selective learning method. With this purpose
a set of experiments varying the value of the width parameter has been carried
out and the performance of the method has been measured. In all cases, the width
parameter is varied from 0.0 to 0.4 with a step of 0.05. Those maximum an minimum

8 J.M. Valls, I.M. Galván, P. Isasi

values of the width have been chosen in such a way that the shape of the Gaussian
function allows the selection of some training patterns.

In addition, experiments varying the number of hidden neurons have also been
realized in order to observe whether the number of hidden neurons is a crucial pa-
rameter when a selection of training patters is made. For all domains, architectures
with 5, 9, 13 and 17 hidden neurons have been tested. The different RBNN archi-
tectures have been trained during 300 learning cycles to reach the convergence of
the networks.

In order to show whether the selective learning method is able to improve the
generalization capability of RBNN, a set of experiments training the RBNN as
usual – traditional learning method – has been carried out. That is, networks
are also trained using the whole available training data set, and after the training
phase they are used to approximate the test o validation samples. For this set of
experiments, RBNN with different number of hidden neurons have been trained until
they reach the convergence.

In both cases – selective and traditional learning methods – the generalization
capability of the RBNN has been measured in terms of the mean error over the test
data set, which is given by

e =
1

n

n
∑

k=1

ek (10)

where n is the number of patterns in the test set and ek represents the error for the
kth test pattern, calculated as ek =| ỹk − yk |, being ỹk the output of the network
and yk the desired output for that pattern. In all the studied domains the output
is a real number.

3.3 Experimental Results

In this subsection, the results obtained with the selective learning Gaussian method
to train the RBNN for the different application domains, are shown and analyzed.
The results will be also compared with those obtained when RBNN are trained as
usual.

3.3.1 Approximation of Hermite Polynomial

The mean errors obtained for this approximation problem when a selection of pat-
terns is made to train the RBNN are shown in Table 1. In Figure 3 the variation of
those errors regard to the width parameter for the different architecture of RBNN
can be graphically appreciated.

It is possible to observe, on one hand, that errors decrease as the width increases,
although they reach high values if the width is bigger than 0.35. On the other hand,
it is also observed that architectures with few hidden neurons provide the smallest
errors. When the width parameter is small, the Gaussian function is tight and
high and few patterns are selected. Hence, the performance of the networks with

Improving RBNN Using a Gaussian Selective Strategy 9

Hidden neurons

Width 5 9 13 17

0.01 0.0982 0.2182 0.3432 0.3821
0.05 0.0283 0.1633 0.3238 0.3849
0.1 0.0121 0.1180 0.2352 0.3891
0.15 0.0134 0.0944 0.2113 0.3519
0.2 0.0133 0.0738 0.2133 0.2672
0.25 0.0123 0.0566 0.1832 0.3044
0.3 0.0134 0.0887 0.1923 0.2920
0.35 0.0135 0.0973 0.2398 0.3412
0.4 0.4513 0.4492 0.4457 0.4321

Table 1. Hermite Polynomial: Mean errors with the selective learning

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
e
a
n
 e

rr
o
r

Width

5 n
9 n

13 n
17 n

Fig. 3. Hermite Polynomial: Mean errors with the selective learning

few hidden neurons is better. When the width parameter increases, the Gaussian
function is wider and lower, selecting more training patterns and improving the
performance of the network. However, if the width parameter is bigger than 0.35,
a lot of patterns are selected and the generalization capabilities of the networks gets
worse.

3.3.2 Prediction of Mackey-Glass Time Series

In the same way as in the previous case, Table 2 shows the mean test errors obtained
for different values of the width parameter and different architectures. Those results
are graphically represented in Figure 4.

In the obtained results, it is possible to observe that the performance of the
selective learning strategy to predict the Mackey-Glass time series does not depend
significantly on the width parameter and on the number of hidden neurons in the

10 J.M. Valls, I.M. Galván, P. Isasi

network. There is a wide interval of width values in which the errors are very
similar for all architectures. Only when width parameter is fixed to small values,
for instance 0.01, or to values bigger than 0.35, the generalization of the selective
method is very poor as also happened in the previous domain. This is due to the
small number of selected patterns, insufficient to construct an approximation.

Hidden neurons

Width 5 9 13 17

0.01 0.3047 0.3138 0.3217 0.3376
0.05 0.0463 0.0467 0.0622 0.0808
0.1 0.0434 0.0349 0.0386 0.0466
0.15 0.0535 0.0381 0.0359 0.0393
0.2 0.0652 0.0398 0.0374 0.0411

0.25 0.0664 0.0425 0.0355 0.0406
0.3 0.0647 0.0417 0.0377 0.0413
0.35 0.0605 0.0427 0.0417 0.0511
0.4 0.5752 0.5752 0.5752 0.5752

Table 2. Mean errors with the selective learning method. Mackey-Glass time series.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
e
a
n
 e

rr
o
r

Width

5 n
9 n

13 n
17 n

Fig. 4. Mean errors with the selective learning method. Mackey-Glass time series.

3.3.3 Prediction of Water Level at Venice Lagoon

The results obtained in this application domain are shown in Table 3 and displayed
in Figure 5. As in the previous prediction problem, it is possible to observe that the
performance of selective learning method is, generally, not influenced by the value
of the width parameter and by the number of hidden neurons fixed in the network.

Improving RBNN Using a Gaussian Selective Strategy 11

The tendency is similar to the one observed with the Mackey-Glass time series: the
mean errors maintain its value nearly constant for all architectures when the width
parameter is bigger than 0.05 and lower than 0.35. As in the previous case, the big
errors committed by the networks when the width value is outside of that interval
are due to the shortage of selected training patterns.

Hidden neurons

Width 5 9 13 17

0.01 0.6344 0.6344 0.6344 0.6344
0.05 0.1490 0.1315 0.1324 0.1350
0.1 0.1059 0.1120 0.1255 0.1259
0.15 0.1239 0.1180 0.1072 0.0905
0.2 0.1300 0.1155 0.1164 0.1068
0.25 0.1342 0.1191 0.1138 0.1118
0.3 0.1298 0.1170 0.1115 0.1337
0.35 0.1023 0.1134 0.1332 0.1357
0.4 0.6344 0.6344 0.6344 0.6344

Table 3. Mean errors with the selective learning method. Venice lagoon time series.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
e
a
n
 e

rr
o
r

Width

5 n
9 n

13 n
17 n

Fig. 5. Mean errors with the selective learning method. Venice lagoon time series.

The experiments seem to point out that the width parameter does not affect
the performance of the network significantly if the width parameter neither too high
nor too small. The Gaussian function seems to be a good way of selecting training
patterns in a lazy way because the width of the function is not a critical parameter.

12 J.M. Valls, I.M. Galván, P. Isasi

3.3.4 Selective Learning Versus Traditional Learning

Having the aim of comparing both learning strategies, selective and traditional ones,
RBNN with different number of hidden neurons have been trained, using the whole
training data until the convergence of the network has been reached. In Table 4, test
mean errors obtained for different application domains are shown. It is important
to notice that the test mean errors cannot be improved even if more learning cycles
are performed using the whole training data set. In this case, the number of hidden
neurons must be higher because very poor results are obtained when using less than
10 neurons.

Hidden Hermite Mackey-Glass Venice Lagoon
Neurons Polynomial time series time series

10 0.1157 0.1330 0.2365
20 0.0270 0.1356 0.1341
30 0.0213 0.1271 0.1117
40 0.0190 0.1277 0.1120
50 0.0227 0.1123 0.0961
60 0.0221 0.1052 0.1029
70 0.0206 0.1274 0.1022
80 0.0226 0.1115 0.1065
90 0.0262 0.1177 0.1214
100 0.0214 0.1163 0.1254
110 0.0214 0.1027 0.1290
120 0.0233 0.1114 0.1380

130 0.0251 0.1277 0.1415

Table 4. Test mean errors with the traditional learning

In Table 5, the best results obtained in the different domains for both methods,
selective and traditional ones, are shown.

Hermite Mackey-Glass Venice Lagoon
Polynomial time series time series

Selective 0.0121 0.0349 0.0905
Method σ = 0.1, 5 neurons σ = 0.1, 9 neurons σ = 0.15, 17 neurons

Traditional 0.0190 0.1027 0.0961
Method 40 neurons 110 neurons 50 neurons

Table 5. Selective learning versus traditional learning

As it is possible to observe, in the Hermite polynomial and Mackey-Glass time
series the performance of RBNN can be enhanced when a weighted selection of
training patterns is made, reaching better precision levels. Moreover, in spite of the
different values of the parameters, nearly all the results achieved with the selective
method are better than the best result obtained by the traditional method. Due

Improving RBNN Using a Gaussian Selective Strategy 13

to the special characteristics of the Venice lagoon domain, the selection of patterns
made by the Gaussian function might not be appropriate since more training exam-
ples might be needed. As can be seen in the domain description (Section 3.1),
the test set patterns represent a high water situation, this kind of situations being
scarcely represented in the training set.

4 CONCLUSIONS

The generalization capabilities of RBNN depend not only on the learning methods
but also on the quality of the data used to train the network. The learning method
presented in this work provides an automatic mechanism to select the most appro-
priate training data in terms of the novel sample. It is inspired by the idea that the
use of the whole training data available about the domain might not be the best
choice to reach good generalization properties of RBNN.

The results presented in the previous sections show that if RBNN are trained
with such a selection of training patterns, the generalization performance of the
network is improved. The selection of the most relevant training patterns, taken
from the neighborhood region around the novel sample, and the replication of those
patterns helps RBNN obtain better results on approximation functions and time
series prediction. The Gaussian kernel function decides the relevance of training
patterns depending on its similarity to the novel pattern, measuring this similarity
in terms of the Euclidean distance. The number of patterns selected depends on the
width of the Gaussian function. If the width parameter is small, only patterns very
close to the new sample will be selected and they will be repeated a lot of times; if
the width parameter is big, more training patterns will be selected but they will be
repeated less times. However, the experimental results show that the performance of
the selective strategy does not depend significantly on the width parameter. There
is a wide interval of width values in which the errors are very similar. Only when the
width parameter is too small or too big, the generalization of the selective method
is very poor.

The proposed method has also some disadvantages. They are mainly given by
the use of the Euclidean distance to select the most appropriate patterns. It is
well known that in some domains the Euclidean distance does not provide a good
similarity measure. Evidently, in those cases, the proposed method will not work
in an efficient way. Anyway, the method is flexible to incorporate other different
similarity measures.

It is also necessary to mention some aspects related to the computational cost of
the lazy learning method proposed. The method involves storing the training data,
and finding relevant data to answer a particular test pattern. This fact implies a large
computational cost because the network has to be trained each time a new sample is
presented. However, the goal of this paper is to improve the generalization capability
even if the computational cost is higher. In some applications (for instance, time
series prediction) in which enough time is available between samples to train the

14 J.M. Valls, I.M. Galván, P. Isasi

network, the computational cost required by the method is not a disadvantage, as
long as the generalization capability is improved.

REFERENCES

[1] Abu-Mostafa, Y.: The Vapnik-Chervonenkis Dimension: Information Versus Com-
plexity in Learning. Neural Computation, Vol. 1, 1989, pp. 312–317.

[2] Broomhead, D.—Lowe, D.: Multivariable Functional Interpolation and Adapta-
tive Networks. Complex Systems, Vol. 2, 1988, pp. 321–355.

[3] Cohn, D.—Atlas, L.—Ladner, R.: Improving Generalization with Active Learn-
ing. Machine Learning, Vol. 15, 1994, pp. 201–221.

[4] Ghosh, J.—Nag, A.: An Overview of Radial Basis Function Networks.
R. J. Howlett and L.C. Jain (Eds), Physica Verlag, 2000.

[5] Leonardis, A.—Bischof, H.: An Efficient MDL-Based Construction of RBF Net-
works. Neural Networks, Vol. 11, 1998, pp. 963–973.

[6] Lowe, D.: Adaptative Radial Basis Function nonlinearities, and the Problem of
Generalization. First IEE International Conference on Artificial Neural Networks,
pp. 171–175, 1989.

[7] Mackey, M.—Glass, L.: Oscillation and Chaos in Physiological Control Systems.
Science, Vol. 197, 1977, pp. 287–289.

[8] Michelato, A.—Mosetti, R.—Viezzoli, D.: Statistical Forecasting of Strong
Surges and Aplication to the Lagoon of Venice. Boll. Ocean. Teor. Appl., Vol. 1,
1983, pp. 67–83.

[9] Moody, J.—Darken, C.: Fast Learning in Networks of Locally Tuned Processing
Units. Neural Computation, Vol. 1, 1989, pp. 281–294.

[10] Moretti, E.—Tomasin, A.: Un Contributo Matematico All-Elaborazione Previ-
sionale dei Dati di Marea a Venecia. Boll. Ocean. Teor. Appl., Vol. 1, 1984, pp. 45–61.

[11] Orr, M. J. L.: Introduction to Radial Basis Neural Networks. Technical Report.
Centre for Cognitive Science, University of Edinburgh, 1996.

[12] Park, J.—Sandberg, I.W.: Universal Approximation and Radial-Basis-Function
Networks. Neural Computation, Vol. 5, 1993, pp. 305–316.

[13] Platt, J.: A Resource-Allocating Network for Function Interpolation. Neural Com-
putation, Vol. 3, 1991, pp. 213–225.

[14] Powell, M.: The Theory of Radial Basis Function Approximation in 1990. Advances
in Numerical Analysis, Vol. 3, 1992, pp. 105–210.

[15] Tomasin, A.: A Computer Simulation of the Adriatic Sea for the Study of Its
Dynamics and for the Forecasting of Floods in the Town of Venice. Comp. Phys.
Comm., Vol. 5, 1973, pp. 51.

[16] Vittori, G.: On the Chaotic Features of Tide Elevation in the Lagoon Venice. Proc.
of the ICCE-92, 23rd International Coference on Coastal Engineering, pp. 4–9, 1992.

[17] Whitehead, B.A.—Choate, T.D.: Cooperative – Competitive Genetic Evolu-
tion of Radial Basis Function Centers and Widths for Time Series Prediction. IEEE
Transactions on Neural Networks, Vol. 5, 1995, pp. 15–23.

Improving RBNN Using a Gaussian Selective Strategy 15

[18] Yingwei, L.—Sundararajan, N.—Saratchandran, P.: A Sequential Learning

Scheme for Function Approximation Using Minimal Radial Basis Function Neural
Networks. Neural Computation, Vol. 9, 1997, pp. 461–478.

[19] Zaldvar, J.—Gutiérrez, E.—Galván, I.—Strozzi, F.—Tomasin, A.: Fore-

casting High Waters at Venice Lagoon Using Chaotic Time Series Analysis and Non-
linear Neural Networks. Journal of Hydroinformatics, Vol. 2, 2000, pp. 61–84.

José M. Valls received his Ph.D. in computer science at Uni-
versidad Carlos III of Madrid (Spain) in 2004. He joined the
Computer Science Department at the same university in 1998,
being associate professor since 2004. He is enrolled in the Neural
Networks and Evolutionary Computation Laboratory of this uni-
versity. His current research focuses on the application of neural
networks, evolutionary computation and other soft computing
techniques to engineering problems.

Inés M. Galv�an received a doctorate-fellowship as research
scientist in the European Commission, Joint Research Centre
Ispra (Italy) from 1992 to 1995. She received her Ph.D. in
computer sience at Universidad Politecnica de Madrid (Spain)
in 1998. She has joined the Computer Science Department at
the University Carlos III of Madrid in 1995 and she is associate
professor of that department from 2000. Her current research
focuses on artificial neural networks and other soft computing
techniques, such as evolutionary computation and multiagent
systems. Her research interests cover also applications fields,

such as time series prediction and control of dynamic process.

Pedro Isasi received his Ph.D. in computer science from Po-
litecnica de Madrid University in 1994. He joined the Computer
Science Department of Carlos III de Madrid University in 1991,
he was associate professor from 1997 until 2001, and he is now
full professor of that department. He is the founder and director
of the Neural Network and Evolutionary Computation Labora-
tory. His current research focuses on the application of soft com-
puting techniques (NN, evolutionary computation, fuzzy logic
and multiagent systems) to engineering problems such as power

plant control, robot control, cryptography or finances, mainly in
domains of prediction, classification, optimization and times series.

