
Computing and Informatics, Vol. 26, 2007, 627–647

A CASE STUDY OF ALGORITHMS
FOR MORPHOSYNTACTIC TAGGING
OF POLISH LANGUAGE

Marcin Kuta, Pawe l Chrzaszcz

Institute of Computer Science, AGH University of Science and Technology

al. Mickiewicza 30, Cracow, Poland

e-mail: mkuta@agh.edu.pl, pchrzasz@student.agh.edu.pl

Jacek Kitowski

Institute of Computer Science, AGH University of Science and Technology

al. Mickiewicza 30, Cracow, Poland

&

Academic Computer Centre CYFRONET AGH

ul. Nawojki 11, Cracow, Poland

e-mail: kito@agh.edu.pl

Manuscript received 29 May 2007; revised 20 June 2007

Communicated by Michal Laclav́ık

Abstract. The paper presents an evaluation of several part-of-speech taggers, re-
presenting main tagging algorithms, applied to corpus of frequency dictionary of
the contemporary Polish language. We report our results considering two tagging
schemes: IPI PAN positional tagset and its simplified version. Tagging accuracy
is calculated for different training sets and takes into account many subcategories
(accuracy on known and unknown tokens, word segments, sentences etc.) The com-
parison of results with other inflecting and analytic languages is done. Performance
aspects (time demands) of used tagging tools are also discussed.

Keywords: Machine learning, part-of-speech tagging, natural language processing

Mathematics Subject Classification 2000: 68T50, 68T05, 68T35

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics, SAS,...

https://core.ac.uk/display/267941291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

628 M. Kuta, P. Chrza̧szcz, J. Kitowski

1 INTRODUCTION

With information systems becoming more and more complex it would be desirable to
express users’ demands in natural language. This requires sophisticated natural lan-
guage processing tools, which cannot be developed without efficient part-of-speech
(POS) tagging algorithms, i.e., algorithms assigning to each word values of cate-
gories like part of speech, gender, case, etc. A set of values of these categories is
called a tag.

POS tagging is a foundation of applications like word sense disambiguation
sentence chunking, syntactic and semantic parsing, automatic translation ontology
construction from text or message understanding [5].

The tagger builds a model of language, i.e., distribution of tags over tokens,
which is adjustable by many parameters. The parameters are determined during
the training process on the basis of a set of examples, called a training set. The
quality of a language model is verified against a test set.

If tagging analytic languages (e.g. English) seems to be well studied, efficient
POS tagging of inflective or agglutinative languages is still a challenge due to large
tagset sizes required for such languages.

In the case of inflective languages tags describe much more morphological ca-
tegories than only part of speech and we speak then rather about morphosyntactic
tagging than POS tagging.

Due to the MULTEXT-East project [29] based on the Orwell’s 1984 annotated
novel results on tagging of inflecting and agglutinative languages (Czech, Estonian,
Hungarian, Romanian, Slovene) have appeared. However, as reported in [1] about
POS taggers, “their availability is highly dependent on the language, from almost

unlimited numbers for English, over a few different POS taggers for German or

Swedish, to practically nothing for a language like Polish.”

The aim of the paper is to provide evaluation of baseline tagging algorithms on
Polish corpus, continuing in this way so far work done, e.g., for the Slovene [8] or
German [28]. We tested freely available, universal tagging tools and the obtained
results can be used as a reference point for comparison with more sophisticated,
state of the art taggers. Our results are informally compared with those already
obtained for the Polish language [19, 20].

The evaluation of these universal tools would be useful when natural language
processing is intended to support modern information technologies based on seman-
tics and ontology-based knowledge while not only tagging accuracy but also other
factors, like performance and flexibility, are in focus. One of such examples is sup-
port for ontology generation from free text notes [17].

The rest of the paper is organized as follows. Section 2 presents state of the
art in the area of tagging algorithms. Section 3 introduces the most important
POS tagging libraries. Section 4 discusses algorithms selected to evaluation in more
details. Section 5 describes the structure of evaluated corpora. A tagging experiment
is discussed in Section 6 and the obtained results supplied in Section 7. Section 8
gives conclusions and short summary closes the paper.

A Case Study of Algorithms for Morphosyntactic Tagging of Polish Language 629

2 OVERVIEW OF TAGGING ALGORITHMS

Up to now many approaches to the problem of POS tagging have been subject of
research.

The first two algorithms belong to statistical methods. Statistical algorithms
map sequence of tokens into sequence of tags with probability model, which describes
the occurrence of the most probable sequence of tags for a given sequence of tokens.

Hidden Markov Model (HMM) taggers were first applied historically and are the
most popular type of taggers. Such taggers are most suitable for POS tagging
of the analytical languages due to their weak inflection. A gentle introduction
to the HMM methodology can be found in [24].

Maximum entropy taggers aim to maximize the entropy function by joining the
HMM approach with selection of binary features, reflecting dependency in the
training corpus. The method was introduced into the NLP area by A. Rat-
naparkhi [25]. Applying the maximum entropy method to inflecting languages
comes with difficulties because of usually large tagset sizes and intra dependen-
cies occurring in such languages.

The next two algorithms are called rule based methods. The rule based methods take
into account a wide context, what is desirable in the case of languages containing
distant syntax dependencies.

Memory-based learning (a.k.a. lazy learning, example-based learning) taggers
acquire examples from training corpora, which are later used in the tagging
process [6].

Transformation-based error-driven learning (a.k.a. transformation-based or
Brill [2]) taggers are the most popular type of taggers not based on probabilistic
models. The main advantage of exploited method is a possibility of supply-
ing and modifying rules by linguists. Beside the training and test corpora the
method requires additional patch corpus.

Support Vector Machines SVM approach to POS tagging has been investigated
in [11]. The SVMTool achieved accuracy of 97.16 % for English and 96.89 % for
Spanish.

Decision trees taggers have much in common with conventional HMM taggers,
but in contrast to them estimate transition probabilities with binary decision
trees [26].

Neural networks Neural networks as a POS tagging tool have been subject of
research in [27]. The reported results for the English language are comparable
with HMM approach. The disadvantage of the method is a slow training process.

Genetic programming A tagger making use of genetic programming operators
(selection, crossing etc.) for rules acquisition has been proposed in [10].

630 M. Kuta, P. Chrza̧szcz, J. Kitowski

Manual finite state rules In this approach linguistic distributional rules are con-
verted to finite-state machines [30]. Expert knowledge may be required to write
the rules.

The following two methods clearly divide task of morphosyntactic tagging into con-
text free morphological analysis and context morphosyntactic disambiguation.

Hajič method The Hajič method is based on the maximum entropy approach. In
order to relax computational complexity of the problem (Lagrangian minimisa-
tion) a naive Bayes assumption is made. The algorithm achieves satisfactory
results for inflecting language (like Czech [14, 15]).

Rules of striking off The method is a modification of transformation-based tag-
ging [3]. In the first stage each token is assigned many tags. Next, special rules
eliminate (strike off) redundant tags.

The next method is not a standalone tagging algorithm but tries to compensate
errors of different approaches.

Combined classifying A few independent taggers are involved in task in parallel
or sequential manner [16]. Their outputs are compared and combined using se-
veral voting strategies. The combined system acts better than the most accurate
component.

More thorough discussion of some of the above algorithms can be found in [7].

3 POS TAGGING LIBRARIES

POS tagging algorithms have been subject to many implementations. The im-
plementations come as standalone programs or appear as part of versatile systems
supporting research and development in NLP. The advantage of such complex frame-
works is that besides POS tagging they provide other NLP services such as: sentence
boundaries detection, named entity recognition, lemmatisation, chunking, syntactic
parsing, etc. Frameworks provide also API to integrate the offered functionality
with user’s programs. The platforms described below are available at no cost for
academic research.

QTag library for Java provides a probabilistic HMM tagger. QTag is chosen by
authors of the Baseline Information Extraction (BALIE) system [33] as tagging
component. BALIE is prepared for tagging of English, German, French, Spa-
nish and Romanian. The small tagset consists of the tags common to all above
languages.

MAXENT library for Java [36] is a part of openNLP environment [39]. The tagger
exploits maximum entropy approach. It especially supports English (tagger
pretrained on the Wall Street Journal and Brown Corpus) and Spanish.

A Case Study of Algorithms for Morphosyntactic Tagging of Polish Language 631

NLTK library [38] is a NLP toolkit written in Python equipped with a HMM
tagger. Without additional effort the tagger can be used to annotate English
texts with tags from the Brown tagset. The simplicity of the Python language
decides that NLTK is a choice when a rapid prototype of a NLP application is
required. NLTK is distributed with various interesting corpus resources.

LingPipe [35] is a suite of Java libraries containing among others a HMM tagger.
The tagger is initially prepared for working on general English texts (pretrained
on the Brown corpus) and for applications in biomedical domain (pretrained on
English biomedical corpora: GENIA and MedPost).

FreeLing [34] is a set of C++ tools that comes with two types of taggers: a HMM
tagger and a relaxation labelling tagger [18]. Currently FreeLing supports En-
glish and Romance languages: Spanish, Catalan, Galician, and Italian. The
library would be advised when overhead introduced by interpreted languages is
unacceptable.

µ-TBL [37] system is a suite of tools for transformation-based learning. µ-TBL is
easily extensible and efficient system that uses capabilities of the Prolog pro-
gramming language to implement a generalized form of transformation-based
learning. µ-TBL supports transformation-based and constraint grammar tag-
gers.

4 EVALUATED ALGORITHMS

In our work we investigate further a selected set of four algorithms, discussed below
in more detail.

Hidden Markov Model Given sequence of tokens, w1, . . . , wn, the HMM tagger
assigns a sequence of tags, T = (t1, . . . , tn), according to the formula

T̂ = arg max
T

n∏

i

p(wi|ti) · p(ti|ti−1, . . . , ti−N), (1)

where p(wi|ti) is the conditional probability of occurrence of word wi given tag ti
occurred and p(ti|ti−1, . . . , ti−N) is the conditional probability of occurrence of tag ti
given tag sequence ti−1, . . . , ti−N previously occurred.

Markov model of N -th order is called (N + 1)-gram model. The most probable
sequence of tags is computed with help of Viterbi algorithm. The learning of tagger
is based on maximum likelihood estimation.

Maximum entropy The model assumes a set of binary features, fj, is defined on
the combination of a tag ti and its context c. The probabilistic model is built from
family of models

p(ti, c) = πµ
∏

j

α
fj(ti,c)
j , (2)

632 M. Kuta, P. Chrza̧szcz, J. Kitowski

where p(ti, c) stands for joint distribution of tags and contexts and π, µ are norma-
lisation factors in order that p(·, ·) forms the probability function.

During the training of the tagger weights, αj, are computed by iterative scaling
procedure.

Memory-based learning Memory-based learning algorithms may differ in defi-
nition of similarity, the way the instances are stored in memory and the way the
search through memory is conducted.

During the learning process memory-based taggers store in memory a set of
examples (ti, ci), where ti denotes the tag and ci its context. Given a token w in
context c, the memory-based tagger assigns it a tag tk, such that distance between c

and ck is minimal.

The following distance metrics have been proposed: overlap metric, informa-
tion gain weighting, chi-squared feature weighting, modified value difference metric,
Jeffrey divergence metric and dot-product metric. The examples can be stored in
memory as tables, trees or even self-organising maps.

A good representation of memory-based learning technique is the IGTree algo-
rithm, which uses information gain metric and tree representation of stored examples
with special heuristic of its searching.

Transformation-based error-driven learning The tagger starts with assigning
a trivial sequence of tags to a given tokenised text. The target sequence of tags is
determined by applying series of transformations. Each transformation, F , is a
rule in the form: ”Replace value of tag t with value y if current context c fulfils
condition φ.” The core of learning process is the algorithm for finding suitable
transformations.

4.1 Sample Results of the Evaluated Algorithms

Used for Other Languages

Accuracy of tagging algorithms applied to analytic language (English) and inflective
language (Slovene) is compared in Table 1. Accuracy is defined as a ratio of the
number of correctly tagged tokens to the number of all tokens (see Equation (3) for
further details).

From the table one can infer that the HMM algorithm is best performing both
for English and Slovene languages, but the results are not comparable directly.
The accuracy can be influenced by several factors, e.g., profile of training and test
corpus, structure of tagset, ambiguity of corpus, presence of morphological analyser,
whether punctuation characters were excluded while computing accuracy (accuracy
on tokens vs. accuracy on words), etc.

The reported results come from evaluation on the Wall Street Journal Corpus
for English and on the Orwell’s novel 1984 for Slovene.

A Case Study of Algorithms for Morphosyntactic Tagging of Polish Language 633

Algorithm Tagger
accuracy [%]

English Slovene [8]

HMM TnT [4] 96.7 [4] 89.22

Maximum entropy MET [25] 96.63 [25] 86.36

Memory based MBT [6] 96.4 [6] 86.42

Transformation based RBT [2] 96.6 [2] 85.95

Table 1. Accuracy of tagging algorithms applied to analytic and inflecting languages (in
square brackets the source of data is given)

5 STRUCTURE OF EVALUATED DATA

In the study a corpus of frequency dictionary of contemporary Polish [31], which
is based on texts published between 1963 and 1967 is used. The tagged corpus
available under GNU licence since 2001 consists of 5 parts of approximately equal
size representing different themes: scientific texts, news, essays, fiction, plays and
thus represents also different styles of the language.

In the purpose of taggers evaluation we examine 2 versions of the corpus:
(1) structured with the IPI PAN positional tagset [32] (we call this tagset a complex
tagset), (2) structured with the reduced version of complex tagset with only POS
attribute considered (referred to as simple tagset further).

By a token we mean the smallest entity being subject of tagging. The specific
feature of the IPI PAN tagset is that certain input lexemes are divided into sequence
of tokens, each token has its tag assigned (e.g. lexeme chcia-lbym is represented in
corpus by 3 tokens: chcia-l-by-m). Such a construction of tagset is motivated by
the phenomenon called mobile or floating inflection and is more widely discussed
in [22, 23] as a part of justification of the tagset design. A token is classified as
a word segment if it contains at least one alphanumeric character (including Polish
diacritics) or digit. The remaining tokens represent punctuation marks.

A small part of the corpus data (tokens) is inherently ambiguous and has more
than one tag assigned. For the purpose of training all taggers require that each
token has exactly one tag assigned in the training set. To fulfil this assumption at
first the corpus is preprocessed to eliminate all cases of inherent ambiguity.

If token wi has been assigned a sequence of correct tags, ti1, . . . , tiki (ki – number
of tags assigned to token wi), in the original corpus, the annotation (wi; ti1, . . . , tiki)
is replaced by (wi; tij), with tag tij selected in random manner amongst ti1, . . . , tiki.

5.1 Design of Data Structure for the Experiment

To carry out the experiment the corpus is processed in the following way. Five
subcorpora Si (1 ≤ i ≤ 5) are created from the available corpus, each subcorpus
corresponding to different theme (see Figure 1). Each of the five subcorpora, Si,
is next divided into twenty subparts Sij (1 ≤ i ≤ 5, 1 ≤ j ≤ 20) of equal size so
that Si = ∪20

j=1Sij. Further, the subparts Sij (1 ≤ j ≤ 20) are coalesced into parts

634 M. Kuta, P. Chrza̧szcz, J. Kitowski

Pj according to formula Pj = ∪̄5
i=1Sij , where ∪̄ denotes coalescing operator defined

in the following way: Pα = Sβ ∪̄ Sγ (α, β, γ ∈ N) if and only if set Pα is created
by appending set Sβ to the end of Sα

1. We get twenty parts Pj , each containing
5 % of the full corpus. Next, it suffices to coalesce relevant number of parts Pj to
create training and test sets. The test set is created as P10 ∪̄P20 (ten percent of full
corpus), remains constant for all experiments with a given tagset and is independent
from the training sets. The training sets are generated in the following sizes: 5, 10,
20, 40, 80 and 90 percent of corpus. The entire process is depicted in Figure 1.

Scientific texts News Essays Fiction Plays

Corpus of frequency dictionary of contemporary Polish

Partitioning corpus

into pieces of size

1% each

Training Set Test Set

Partitioned Corpus

Patch Set

Shuffling pieces between

training and test set

Lexicon

S1 S2 S3 S4 S5

S1,1 S5,20

(∪̄9

i=1
Pi) ∪̄ (∪̄19

i=11
Pi) P10 ∪̄ P20

Fig. 1. Preparation of test set and example training corpus (the split into lexicon and
patch corpus used by fnTBL tagger)

The most important parameters of corpus, test and training sets are summarized
in Tables 2 and 3.

While presenting corpus parameters we face the choice of different ways of cal-
culating mean token ambiguity, referred to in [12] as automatic and independent
dictionary methods. The independent method takes into account, for a given to-
ken, all possible tags proposed by the morphological analyser, while the automatic
method considers only those tags, which are found in corpus as a possible tagging
of the considered token. As we do not investigate the influence of the morphologi-
cal analyser on tagging accuracy, the automatic method was chosen for computing
mean token ambiguity.

6 THE EXPERIMENT

In order to keep training and test corpus profiles similar and to ensure they are
representative samples of the language, the scenario depicted in Figure 1 has been
applied.

1
Pj = ∪̄i Sij implies Pj = ∪i Sij , but the reverse does not hold in general

A Case Study of Algorithms for Morphosyntactic Tagging of Polish Language 635

Training set Test Full
5 % 10 % 20 % 40 % 80 % 90 % 10 % 100 %

tokens 32 949 65 876 131 837 263 739 527 601 593 511 66 000 659 511
word segments 27 472 55 315 110 318 221 186 442 328 497 533 55 206 552 739
sentences 2 119 3 878 8 120 16 258 32 746 36 647 4 215 40 862
different tokens 11 712 19 689 32 828 52 754 81 567 87 160 19 580 92 942

Simple tagset

tagset size 28 28 29 29 30 30 29 30
ambiguous tokens, % 26.67 26.93 26.21 26.38 26.36 26.42 26.44 26.43
mean token ambig. 1.48 1.49 1.47 1.48 1.48 1.48 1.48 1.48
different base forms 6 797 10 249 15 450 22 522 32 114 33 890 10 215 35 736

Complex tagset

tagset size 653 756 896 1 031 1 206 1 228 812 1 270
ambiguous tokens, % 49.35 49.82 48.93 49.25 49.33 49.40 49.29 49.93
mean token ambig. 3.42 3.40 3.36 3.38 3.40 3.40 3.40 3.40
different base forms 6 796 10 248 15 450 22 522 32 114 33 890 10 217 35 739

Table 2. Corpus parameters

Size of training set
5 % 10 % 20 % 40 % 80 % 90 %

unseen tokens, % 29.07 23.49 17.86 13.45 9.90 9.37
tokens with unseen lemmas, % 14.68 10.58 7.08 4.93 3.40 3.21
unseen different lemmas, % 61.47 49.88 37.28 27.31 19.20 18.07

Simple tagset

tokens with unseen tags 388 386 360 327 316 315
unseen different tags, % 3.48 3.48 0 0 0 0

Complex tagset

tokens with unseen tags 3 563 3 524 3 249 2 895 2 539 2 442
unseen different tags, % 28.69 20.69 13.42 9.11 5.17 5.17

Table 3. Parameters of test corpus in relation to training corpus size

We evaluate five taggers cited in Table 4, all of them are freely available. For
their descriptions we refer the reader to [4, 9, 28].

6.1 Optimisation Algorithm

Given training and test sets a problem of finding optimal parameters of training
process arises. The aim of the optimisation algorithm is to find, for each tagger
independently, training parameters, which allow to obtain the highest accuracy on
tagging.

Each of the considered taggers contains a set of parameters pk1, . . . , p
k
nk

(nk is the
number of parameters of k-th tagger, pki stands for i-th parameter of k-th tagger,
each pki accepts the values belonging to set V k

i) influencing tagging accuracy (quality

636 M. Kuta, P. Chrza̧szcz, J. Kitowski

k Tagger name Algorithm Package

1 T3 HMM ACOPOST

2 TnT HMM TnT

3 MET Maximum entropy ACOPOST

4 fnTBL Transformation based fnTBL

5 ET Memory based ACOPOST

Table 4. Characteristics of taggers used in experiment

of solution). In order to find optimal set of parameters of the kth tagger we had
to approximate maximum of function fk : V k

1 × V k
2 × · · · × V k

nk
7→ [0, 1] describing

tagging accuracy. The following optimization algorithm, making use of direction set
(Powell’s) method [21], has been applied:

1: for k := 1 to 5 do

2: for i := 1 to nk do

3: vki := default value of parameter pki
4: end for

5: iteration := 0
6: last := 0
7: finish := false

8: repeat

9: for i := 1 to nk do

10: if last = i or (last = 0 and iteration > 0) then

11: finish := true

12: continue

13: end if

14: train k-th tagger on training set for different values of pki belonging to V k
i

with other parameters frozen
15: find value pMax of parameter pki for which fk (accuracy on all tokens mea-

sured on test set) is the biggest. If maximum of function fk is reached for
more than one value of parameter pki , accuracy on sentences is deciding.

16: if pMax 6= vki then

17: vki := pMax

18: last := i

19: end if

20: end for

21: iteration := iteration + 1
22: until finish

23: end for

Additionally the algorithm guarantees to find global maximum (with accuracy of
one step) if fk (viewed as a function of one parameter with others parameters frozen)
is unimodal for each parameter and global maximum is located inside the space

A Case Study of Algorithms for Morphosyntactic Tagging of Polish Language 637

V k
1 ×V k

2 ×· · ·×V k
nk

. While these assumptions cannot be guaranteed theoretically, they
are of no high practical significance – experimental verification of the optimisation
procedure has shown that high accuracy could be obtained (cf. Section 6). The
algorithm does not evaluate gradient, what would be highly problematic for space
of parameters with many dimensions taking discrete and binary arguments.

The experiments were performed at the ACC Cyfronet AGH-UST site under
SUSE Linux Enterprise Server 9 on the SGI Altix 3 700 supercomputer equipped
with 128 Itanium 2 processors and 256 GB memory. The advantage of using the
Altix 3 700 machine was in availability of large operational memory.

To automate corpora preparation, tagset manipulations, taggers invocations and
results evaluation, special framework in Java and Perl has been prepared. The JVM
used was BEA JRockit 1.5, virtual machine optimised for Intel architectures.

The optimisation algorithm has been executed in semi-manual manner due to
constraints and occurring instabilities like server restarts, JVM and tagger crashes
or time limits imposed by queuing system.

7 RESULTS

Assuming the reference test corpus contains n tokens w1, . . . , wn, token wi is anno-
tated in the corpus with tags ti1, . . . , tiki and tagger guesses for token wi tag gi, the
accuracy is defined as follows:

accuracy =
#correctly tagged tokens

#all tokens
=

∑n

i=1 |{gi} ∩ {tij}|

n
, (3)

where tag tij was randomly selected from {ti1, . . . , tiki} during preprocessing stage
of corpus data preparation for the experiment.

In most cases token wi is annotated with exactly one tag, ti1, but notation also
reflects the possibility of inherent ambiguity.

Figures 2, 3 and 4, 5 show dependency between training set accuracy and size.
Detailed results for taggers trained on 90 % of the corpus are gathered in Tables 5
and 6. Table 6 presents the mean wall clock time of execution of a tagger instance.
The time relevant to initial disk operations (reading of configuration files, training
and test corpora, internal taggers’ files) was not taken into account.

The T3 tagger is not able to operate on larger tagsets, what explains lack of
results for this tagger on complex tagset. Consecutive trainings of the fnTBL tagger
on the same training set and with the same values of parameters lead to slightly
different accuracy values achieved on test set. This is due to random feature of the
fnTBL tagger.

8 CONCLUSIONS

Based on the gathered results the following conclusions can be drawn:

638 M. Kuta, P. Chrza̧szcz, J. Kitowski

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

size of training set [% of corpus size]

ac
cu

ra
cy

 [%
]

T3 tagger

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

size of training set [% of corpus size]

ac
cu

ra
cy

 [%
]

TnT tagger

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

size of training set [% of corpus size]

ac
cu

ra
cy

 [%
]

MET tagger

size of training set [% of corpus size]
All tokens

Known tokens
Unknown tokens

Ambiguous tokens
Word segments

Segments with known tags

Segments with unknown tags
Sentences

Fig. 2. Accuracy for simple tagset in relation to training corpus size (T3, TnT and MET
taggers)

A Case Study of Algorithms for Morphosyntactic Tagging of Polish Language 639

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

size of training set [% of corpus size]

ac
cu

ra
cy

 [%
]

fnTBL tagger

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

size of training set [% of corpus size]

ac
cu

ra
cy

 [%
]

ET tagger

size of training set [% of corpus size]
All tokens

Known tokens
Unknown tokens

Ambiguous tokens
Word segments

Segments with known tags

Segments with unknown tags
Sentences

Fig. 3. Accuracy for simple tagset in relation to training corpus size (fnTBL and ET
taggers)

• Optimisation procedure allows to achieve high tagging accuracy.

• The considered taggers differ slightly in tagging accuracy but significantly in
speed performance.

• fnTBL tagger combines very good time performance with high accuracy (the
highest accuracy on all tokens for both simple and complex tagset). Its training
process is, however, significantly longer than in case of other taggers (except
MET) and clearly depends on tagset size. It results from the fact that for
large tagset the number of generated rules is significantly larger. If applied to
texts with many tokens unseen during training, fnTBL is outperformed by TnT.

640 M. Kuta, P. Chrza̧szcz, J. Kitowski

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

size of training set [% of corpus size]

ac
cu

ra
cy

 [%
]

TnT tagger

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

size of training set [% of corpus size]

ac
cu

ra
cy

 [%
]

MET tagger

size of training set [% of corpus size]
All tokens

Known tokens
Unknown tokens

Ambiguous tokens
Word segments

Segments with known tags

Segments with unknown tags
Sentences

Fig. 4. Accuracy for complex tagset in relation to training corpus size (TnT and MET
taggers)

fnTBL guesses correct tags for tokens with previously unseen tags in over one
fourth of cases.

• TnT is definitely the fastest and remains insensitive to enlargement of tagset.

• T3 tagger is not suitable for large tagsets due to rapidly growing time and
memory requirements. However, when applied to small tagset it achieves both
satisfactory performance and accuracy.

• MET is characterized by extremely slow training and for large tagsets also by
slow tagging. Thus, despite its high accuracy it compares unfavourably with
TnT and fnTBL.

A Case Study of Algorithms for Morphosyntactic Tagging of Polish Language 641

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

size of training set [% of corpus size]

ac
cu

ra
cy

 [%
]

fnTBL tagger

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

size of training set [% of corpus size]

ac
cu

ra
cy

 [%
]

ET tagger

size of training set [% of corpus size]
All tokens

Known tokens
Unknown tokens

Ambiguous tokens
Word segments

Segments with known tags

Segments with unknown tags
Sentences

Fig. 5. Accuracy for complex tagset in relation to training corpus size (fnTBL and ET
taggers)

• ET tagger is characterized by fast training, yet its accuracy is worse than that
of the other taggers.

• The results are satisfactory if simple tagset information is required by NLP task,
but all taggers achieve low results when considering the sentence accuracy. For
the complex tagset the results would require improvement by a morphologi-
cal analyser or more sophisticated algorithms (parallel combination of taggers,
exponential method).

To summarize, there is no versatile tagger for morpho-syntactic tagging of Polish.
If high accuracy is required, fnTBL tagger is most suitable. If fast training is crucial,
TnT tagger would be advised.

642 M. Kuta, P. Chrza̧szcz, J. Kitowski

T3 TnT MET fnTBL ET

Simple tagset

All tokens 96.24 96.20 96.49 96.50 94.45
Known tokens 96.97 96.98 97.23 97.46 97.13
Unknown tokens 89.10 88.64 89.42 87.14 68.51
Ambiguous tokens 89.59 89.59 90.46 91.32 90.11
Word segments 95.50 95.45 95.81 95.81 93.37
Word segments with known tags 96.93 96.94 97.24 97.52 97.12
Word segments with unknown tags 0 0 0 2.54 0.31
Unknown word segments 89.09 88.64 89.42 87.14 68.52
Sentences 61.56 61.51 63.58 63.32 51.22

Complex tagset

All tokens – 84.27 82.39 84.86 78.80
Known tokens – 86.84 85.07 87.71 83.41
Unknown tokens – 59.42 56.45 57.29 34.25
Ambiguous tokens – 75.45 72.20 77.26 69.07
Word segments – 81.20 78.95 81.91 74.66
Word segments with known tags – 88.35 86.08 87.98 83.94
Word segments with unknown tags – 0 0 28.46 0
Unknown word segments – 59.42 56.44 57.28 34.23

Sentences – 22.11 19.97 23.70 15.37

Table 5. Tagging accuracy for taggers trained on 90 % of corpus, [%]

T3 TnT MET fnTBL ET

Simple tagset

number of iterations 74 20 43 30 54
Average training time [sec] 30 3 42 · 102 23 · 102 2 · 102

Average tagging speed [tokens/sec] 30 · 102 220 · 102 35 · 102 9 · 102 110 · 102

Complex tagset

number of iterations – 20 5 19 62
Average training time [sec] – 6 977 · 102 289 · 102 4 · 102

Average tagging speed [tokens/sec] – 94 · 102 5 16 · 102 6 · 102

Table 6. Time performance of an instance of tagger trained on 90 % of corpus

Few work has been done in POS tagging of Polish. A rule-base tagger with three
types of rules (acquired directly from training set, discovered by genetic algorithm
and constructed manually) has been presented in [19] achieving 90.0 % accuracy.
An architecture of the tagger has been developed in [20]. The tagging process is
divided into three phases where grammatical class, number and gender, and case of
the token are established subsequently. The tagger has achieved 93.11 % accuracy
with a single classifier (C4.5 algorithm) and 93.53 % accuracy with multiclassifier
approach.

A Case Study of Algorithms for Morphosyntactic Tagging of Polish Language 643

If setting these results against ours, the following important factors have to be
taken into account:

• Accuracy values are evaluated on different corpora, which are not of equal quality
(corpus of frequency dictionary of the contemporary Polish language vs. IPI PAN
Corpus).

• In our work we do not exploit morphological analyser, special dictionaries or
manually created rules.

• Accuracy values are computed differently – compare Equation (3) to [20], where
accuracy is computed only on part of speech, number and gender, and case.
Other morphological categories are not taken into account. Additionally, in the
latter work noun and gerund forms are treated as indistinguishable.

Finally, we shortly compare our results with the case of Slovene [8] (cf. Table 1).

• For all algorithms our results are slightly lower than those reported for Slovene.
This may arise from two reasons:

– Polish is more difficult for morphosyntactic tagging than Slovene.

– We used corpus not homogeneous thematically, being compilation from va-
rious sources, containing varied styles, e.g. news and plays (drama) while the
Slovene corpus is uniform (the Orwell’s novel).

• For Slovene the HMM tagger (TnT) proved to be the best choice. In the case
of Polish a choice between the Brill (fnTBL), HMM (TnT) and even maximum
entropy taggers (MET) should be considered (see previous conclusions).

• Surprisingly, according to Džeroski et al., maximum entropy tagger, as the only
one, has the ability to predict correctly tags for word segments with unknown
tags (in one third of cases). Our experience claims that this ability should be
attributed to fnTBL tagger and in very residual degree to ET tagger.

9 SUMMARY

In the paper we evaluated five baseline taggers on the corpus of frequency dictionary
of contemporary Polish. The obtained results have shown that they differ slightly in
accuracy but significantly in performance speed. We are convinced that they could
be useful in NLP support for many contemporary applications, like semantic web,
knowledge-supported workflow construction or contract-based formation of virtual
organisation, that constitute the challenges of modern information technologies.

In the future we plan to investigate more sophisticated techniques for morpho-
syntactic tagging of the Polish language.

Acknowledgments

Authors thank to Prof. K. Boryczko for his valuable remarks on batch queueing
systems. ACC CYFRONET AGH is also acknowledged for the computing time.

644 M. Kuta, P. Chrza̧szcz, J. Kitowski

REFERENCES

[1] Borin, L.: Enhancing Tagging Performance by Combining Knowledge Sources. Asso-
ciation Suédoise de Linguistique Appliquée (ASLA) Symposium Corpora in Research
and Teaching, pp. 19–31, Växjö University, Sweden, November 11–12, 1999.

[2] Brill, E.: Transformation-Based Error-Driven Learning and Natural Language Pro-
cessing: A Case Study in Part of Speech Tagging. Computational Linguistics, Vol. 21,
1995, No. 4, pp. 543–565.

[3] Brill, E.: Unsupervised Learning of Disambiguation Rules for Part of Speech Tag-
ging. In Proceedings of the Third Workshop on Very Large Corpora, Association for
Computational Linguistics, pp. 1–13, Massachusetts, USA, 1995.

[4] Brants, T.: TnT – A Statistical Part-of-Speech Tagger. In Proceedings of
the 6th Applied Natural Language Processing Conference (ANLP 2000), pp. 224–231,
Seattle, Washington, USA, April 29–May 4, 2000.

[5] Byrne, E.: A Logical Framework for Identifying and Explaining Unexpected News.
Computing and Informatics, Vol. 25, 2006, No. 2–3, pp. 153–171.

[6] Daelemans, W.—Zavrel, J.—Berck, P.—Gillis, S.: MBT: A Memory-Based
Part of Speech Tagger-Generator. In Proceedings of the 4th Workshop on Very Large
Corpora, pp. 14–27, Copenhagen, Denmark, 1996.

[7] Dȩbowski, L.: Tagging and Morphosyntactic Disambiguation. A Review of Methods
and Software, IPI PAN Reports, No. 934, Warsaw, Poland, Nov. 2001 (in Polish).

[8] Džeroski, S.—Erjavec, T.—Zavrel, J.: Morphosyntactic Tagging of Slovene:
Evaluating PoS Taggers and Tagsets. In the Proceedings of the 2nd International
Conference on Language Resources and Evaluation (LREC 2000), pp. 1099–1104,
Athens, Greece, 31 May–2 June 2000.

[9] Florian, R.—Ngai, G.: Fast Transformation-Based Learning Toolkit Manual.
John Hopkins University, USA, 2001, http://nlp.cs.jhu.edu/~rflorian/fntbl.

[10] Gawe l, B.: Application of Genetic Programming Methods to Annotation of Words
in Polish Text. M. Sc. thesis, Wroc law University of Technology, Wroc law, Poland,
2001 (in Polish).

[11] Giménez, J.—Màrquez, L.: SVMTool: A General POS Tagger Generator Based
on Support Vector Machines. In Proceedings of the 4th International Conference on
Language Resources and Evaluation (LREC ’04), pp. 43–46, Lisbon, Portugal, 2004.

[12] Hajič, J.: Morphological Tagging: Data vs. Dictionaries. In Proceedings of the
First Conference on North American Chapter of the Association for Computational
Linguistics, pp. 94–101, Seattle, Washington, USA, 2000.

[13] Hajič, J.—Hladká, B.: Probabilistic and Rule-Based Tagger of an Inflective Lan-
guage – A Comparison. In Proceedings of the 5th Conference on Applied Natural
Language Processing, pp. 111–118, Washington DC, USA, 1997.

[14] Hajič, J.—Hladká, B.: Tagging Inflective Languages: Prediction of Morphological
Categories for a Rich, Structured Tagset. In Proceedings of 17th International Confe-
rence on Computational Linguistics, Vol. 1, pp. 483–490, Montréal, Quebec, Canada,
1998.

A Case Study of Algorithms for Morphosyntactic Tagging of Polish Language 645

[15] Hajič, J.—Krbec, P.—Květoň, P.—Oliva, K.—Petkevič, V.: Serial Com-

bination of Rules and Statistics: A Case Study in Czech Tagging. In Proceedings
of the 39th Annual Meeting of the Association for Computational Linguistics (ACL
2001), pp. 260–267, Toulouse, France, July 9–11, 2001.

[16] van Halteren, H.—Zavrel, J.—Daelemans, W.: Improving Data Driven Word-
class Tagging by System Combination. In Proceedings of the 36th Annual Meeting on
Association for Computational Linguistics, Vol. 1, pp. 491–497, Montréal, Canada,
1998.

[17] Kuta, M.—Polak, S.—Palacz, B.—Mi loś, T.—S lota, R.—Kitowski, J.:
TeToN – A Jena-Based Tool for Text-to-Ontology Approach. In Proceedings of the
Cracow Grid Workshop ’06, ACC Cyfronet AGH, Cracow, 2006 (to appear).

[18] Padró, L.: A Hybrid Environment for Syntax-Semantic Tagging. Ph. D. thesis, Dept.
Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, February
1998.

[19] Piasecki, M.—Gawe l, B.: A Rule-Based Tagger for Polish Based on Genetic
Algorithm. In Proceedings of Intelligent Information Processing and Web Mining
Conference, pp. 247–255, Gdańsk, Poland, June 13–15, 2005.

[20] Piasecki, M.—Wardyński, A.: Multiclassifier Approach to Tagging of Polish. In
Proceedings of First International Symposium on Advances in Artificial Intelligence
and Applications, pp. 169–178, Wis la, Poland, November 6–10, 2006.

[21] Press, W.—Teutolsky, S.—Vetterling, W.—Flannery, B.: Numerical
Recipes in C: The Art of Scientific Computing (second ed.). Cambridge University
Press, 1992.

[22] Przepiórkowski, A.—Woliński, M.: The Unbearable Lightness of Tagging.
A Case Study in Morphosyntactic Tagging of Polish. In Proceedings of the 4th In-
ternational Workshop on Linguistically Interpreted Corpora (LINC ’03, EACL 2003),
pp. 109–116, Budapest, Hungary, April 12–17, 2003.

[23] Przepiórkowski, A.—Woliński, M.: A Flexemic Tagset for Polish. In Proceed-
ings of the Workshop on Morphological Processing of Slavic Languages (EACL 2003),
pp. 33–40, Budapest, Hungary, April 12–17, 2003.

[24] Rabiner, L. R.: A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proceedings of the IEEE, Vol. 77, 1989, Issue 2, pp. 257–286.

[25] Ratnaparkhi, A.: A Maximum Entropy Model for Part-of-Speech Tagging. In Pro-
ceedings of the First Conference on Empirical Methods in Natural Language Process-
ing, pp. 133–142, University of Pennsylvania, USA, 1996.

[26] Schmid, H.: Probabilistic Part-of-Speech Tagging Using Decision Trees. In Proceed-

ings of International Conference on New Methods in Language Processing, pp. 44–49,
Manchester, England, 1994.

[27] Schmid, H.: Part-of-Speech Tagging with Neural Networks. In Proceedings of the

International Conference on Computational Linguistics, pp. 172–176, Kyoto, Japan,
1994.

[28] Schröder, I.: A Case Study in Part-of-Speech Tagging Using the ICOPOST Toolkit,

Technical report FBI-HH-M-314/02, Department of Computer Science, University of
Hamburg, Hamburg, Germany, 2002.

646 M. Kuta, P. Chrza̧szcz, J. Kitowski

[29] Véronis, J.: Multext-East Resources. http://www.lpl.univ-aix.fr/projects/

multext-east.

[30] Voutilainen, A.: A Syntax-Based Part of Speech Analyser. In Proceedings of
the 7th Conference of the European Chapter of the Association for Computational

Linguistics (EACL ’95), pp. 157–164, Dublin, Ireland, 1995.

[31] Corpus of Frequency Dictionary of Contemporary Polish. http://www.mimuw.edu.
pl/polszczyzna.

[32] IPI PAN Corpus Resources. http://korpus.pl.

[33] Baseline Information Extraction System. http://balie.sourceforge.net.

[34] Freeling Project. http://garraf.epsevg.upc.es/freeling/index.php.

[35] LingPipe Project. http://www.alias-i.com/lingpipe.

[36] MAXENT Package. http://maxent.sourceforge.net.

[37] µ-TBL Tools for Transformation-Based Learning. http://www.ling.gu.se/~lager/
mutbl.html.

[38] Natural Language Toolkit. http://nltk.sourceforge.net/index.php.

[39] openNLP Project. http://opennlp.sourceforge.net.

Marcin Kuta received the M. Sc. degree in computer science
in 2001 at the AGH University of Science and Technology in
Kraków (Poland). Since 2003 he works at the Institute of Com-
puter Science of the AGH University of Science and Technology,
where he teaches compiler techniques and formal languages. His
research interests comprise natural language processing, ontolo-
gy usage, question answering systems and knowledge engineer-
ing.

Pawe l Chrzaszz is currently a masters student of computer
science at the AGH University of Science and Technology in
Kraków (Poland). His research interests are in natural language
processing, computational complexity problems, parallel and dis-
tributed computing environments. At present he works as a de-
veloper of web-based applications.

A Case Study of Algorithms for Morphosyntactic Tagging of Polish Language 647

Jacek Kitowski professor of computer science, graduated in

1973 at the Electrical Department of the AGH University of
Science and Technology in Kraków (Poland). He obtained Ph. D.
in 1978 and D. Sc. (habilitation) in 1991 in computer science from
the same University. He is the Head of the Computer Systems
Group at the Institute of Computer Science of the AGH Univer-
sity of Science and Technology in Cracow, Poland. Full professor
since 2001. He also works for the Academic Computer Centre
CYFRONET-AGH, where he is responsible for developing high-
performance systems. He is the author or co-author of about

200 scientific papers. His topics of interest include, but are not limited to, large-scale
computations, multiprocessor architectures, high availability systems, network comput-
ing, Grid services and Grid storage systems, knowledge engineering. He participates in
program committees of many conferences, and has been involved in many national and
international projects, most notably in EU IST CrossGrid, EU IST Pellucid and EU IST
K-WfGrid projects. At present he participates in EU GREDIA and EU int.eu.grid

projects.

