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Abstract. A method for segmentation of cardiac structures especially for mitral
valve in echocardiographic sequences is presented. The method is motivated by the
observation that the structures of neighboring frames have consistent locations and
shapes that aid in segmentation. To cooperate with the constraining information
provided by the neighboring frames, we combine the template matching with the
conventional snake model. It means that the model not only is driven by conven-
tional internal and external forces, but also combines an additional constraint, the
matching degree to measure the similarity between the neighboring prior shape and
the derived contour. Furthermore, in order to automatically or semi-automatically
segment the sequent images without manually drawing the initial contours in each
image, generalized Hough transformation (GHT) is used to roughly estimate the

initial contour by transforming the neighboring prior shape. Based on the expe-
riments on forty sequences, the method is particularly useful in case of the large
frame-to-frame displacement of structure such as mitral valve. As a result, the ac-
tive contour can easily detect the desirable boundaries in ultrasound images and
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has a high penetrability through the interference of various undesirables, such as

the speckle, the tissue-related textures and the artifacts.

Keywords: Echocardiographic sequence, snake, generalized hough transformation,
template matching

1 INTRODUCTION

Endocardial boundary detection in ultrasound images is a necessary step to obtain
both qualitative measurements (i.e., the detection of pathological deformation) and
quantitative measurements (i.e., area, volume etc.). Unfortunately, this is a diffi-
cult task due to the poor spatial and contrast resolutions, a high level of speckle
noise etc. To overcome these problems, various algorithms are proposed to extract
the boundaries of the region of interest (ROI) in echocardiographic images. These
approaches can be mainly categorized based on Markov random field [5], artificial
neural network [9], mathematical morphology [13] and deformable model [4], etc. In
these schemes, the deformable model [7], which is also known as the snake model, is
the most important and popular model for noisy and low contrast image segmenta-
tion. In this paper, the main reason for using the snake model is that it allows the
incorporation of geometric constraints.

However, the conventional deformable models have some deficiencies for bound-
ary detection in ultrasound images. First, the initial contour generally has to be
placed quite close to the desirable boundary. Second, when the snake model is used
to track the object in an image sequence by using the final contour from the pre-
vious frame as the initial contour in the current frame, the tracking works well only
for small frame-to-frame displacement of anatomical structure [10]. Otherwise, the
derived contour may be easily trapped in a local minimum formed by the noise. To
remedy this problem, many techniques were proposed, for example, gradient vector
flow (GVF) [14], dual snake [2] and discrete snake [11]. In this paper, it is no-
ticed that the boundaries of any two adjacent images in a sequence are correlated
to a certain degree. The result found in one image can be used as the shape tem-
plate for the adjacent one. Thus, the only one rough shape template in a sequence
needs to be given manually in the first step. For large frame-to-frame displacement
of the structure, such as the mitral valve in the ROI, GHT is utilized to trans-
form the shape template to an initial contour in the ROI. It has been proven that
GHT is able to detect any arbitrary shape undergoing an affine transformation in
an image [1].

Our method is based on template matching which incorporates the prior shape
template which is the outline detected in the adjacent frame into the snake model.
Optimizing the deformation energy between the shape template and the active con-
tour, the shape of the active contour is constrained to be similar to the template in
global while still allowing slight deformation locally.
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2 METHODS

Let Ω be a bounded open subset of R2. Let u0 : Ω → R be a given image, andC(s) =
(x (s) , y (s)) (s ∈ [0, 1]) be a parameterized contour with s being the parameter of
length. The shape-based snake model is to minimize the following energy:

E (u0, Cd, Ct) = αEint (Cd) + βEext (u0, Cd) + ηEcon (Cd, Ct) (1)

where Cd is the active contour, Ct is the shape template.

Eint(Cd) is the internal energy that controls the smoothness of the contour [7]:

Eint (Cd) =
∫
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2
ds+

∫

1

0

∣

∣

∣C
′′

d (s)
∣

∣

∣

2
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Eext (u0, Cd) is the external energy that attracts of the active contour evolving to
the boundary of object. In this paper, it is calculated from the texture information
instead of the local gradient in the ultrasound image. However, the blurred texture
feature probably loses some object boundary information. Hence, the original image
feature is also used to retain the boundary information. Let T (x, y) denote the
texture image after applying the texture analysis to the original image u0(x, y). The
texture analysis of a point P (x, y) is to calculate the average variance of the region,
centered at point P (x, y), with size of 3 × 3 pixels. The blurring Gaussian filter is
applied to the texture image T (x, y) to obtain the blurred texture image TG(x, y)
(see Figure 1). Now the external energy Eext is defined as:

Eext (u0, Cd) = − |∇u0 (Cd (s))| − |∇TG (Cd (s))| . (3)

Two terms on the right side of Equation (3) represent the gradient of the original
image and the texture image, respectively.

a) b)

Fig. 1. a) original image; b) texture image blurred by Gaussian filter

Econ (Cd, Ct) is the energy to measure the similarity between the active contour
and the shape template. In this paper, our method has been inspired by the approach
due to [6], where a scheme for matching two contours is proposed based on the
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minimization of a quadratic fitting criterion, which consists of a curvature dependent
bending energy term and a smoothness term.

The curvature is a key descriptor of the shape because it satisfies the following
requirements:

1. The curvature is invariant under rotation and translation.

2. The curvature is a local and scale-dependent feature.

These allow to introduce a local bending energy measure of the form:

Ecurvature =
∫

(kCd
(s′)− kCt

(s))
2
ds. (4)

where kCd
(s′) is the curvature of the active contour Cd at s′ as well as kCt

(s).

We also wish the displacement vector field to vary smoothly along the active
contour:

Esmooth =
∫

∥

∥

∥

∥

∥

∂ (Cd (s
′)− Ct (s))

∂s

∥

∥

∥

∥

∥

ds. (5)

So the criterion is composed of the curvature constraint and the smooth con-
straint:

Eelastic = Ecurvature + λEsmooth (6)

where λ is a relative weighting factor (a high λ value means heavy smoothing).
One of the successful choices for λ seems to be the heuristically defined adaptive
weighting parameter as follows:

λ =
1

1 + kCt
(s)

. (7)

Duncan [6] finds a displacement field by direct minimization of a discrete form of
Equation (6), the resulting displacement vectors in his approach may, however, map
points not belonging to the two contours. This problem was solved by Cohen [3].
His mathematical model can be summarized as follows: Given two contours Cd

and Ct parameterized by s′ ∈ [0, 1] and s ∈ [0, 1], we have to determine a function
f : [0, 1] → [0, 1] ; s′ → s satisfying and

f (1) = 1 (8)

and

f = argmin {f1 7→ Eelastic (f1)} . (9)

Cohen [3] obtains the function f , which satisfies Equation (9) and conditions (8).
It is obvious that it is complicated and difficult to solve. Our intention is to find
a simplified equation, without losing the bending energy and smoothness require-
ments.
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Equation (5) can be rewritten as:

Esmooth =
∫
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According to the triangular inequality, we have:
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In the limit, the arc length can be approximated as:

lim
∆s′→0

∆s′ = ‖∆Cd (s
′)‖ lim

∆s→0
∆s = ‖∆Ct (s)‖ (12)

Substituting this relation in Equation (11), we get:
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where f (s)− sis the displacement due to the deformation.

Equation (12) establishes that the newly introduced smoothness term

Esmooth =
∫
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is more simple and leads to a more simple equation:

Eelastic =
∫
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In this paper, the energyEelasticof template matching is treated as the global
shape constraint Econ in Equation (1).

3 INITIALIZATION OF THE ACTIVE CONTOUR

AND MINIMIZATION OF THE ENERGY

The shape template must be approximated as a vector containing a sequence of
discrete points in order to solve by numerical method, W = [w1, w2, . . . , wn], where
wi = (wix, wiy) ∈ {(x, y) : x, y = 1, 2, . . . ,M}. The same method is used for the
active contour, V = [v1, v2, . . . , vn].

Before processing the boundary detection by the snake, an initial contour must
be drawn. The purpose of the initialization is to place the initial contour as close
as possible to the boundary in ROI in order to obtain a fast convergence in the
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boundary detection. In this paper, the GHT is applied to solve this problem. Let
us define a geometric transformation of the shape template by [12]:

V = AW + t =

[

aA bA
cA dA

]

. . .

[

Wx

Wy

]

+

[

tx
ty

]

(aAdA − bAcA 6= 0) (16)

where A and tcorrespond to a linear transformation and to a translation vector,
respectively. The potential location of the position parameters t for the potential
parametersA of the linear transformation can be expressed as t (W,V, A) = V −AW .
This method traces an initial contour in the parameter space, and after gathering
all evidence for all ROI pixels, the maximum of the accumulator array defines the
best values A∗ and t∗ which correspond to the transformation that maps the shape
template to the echocardiographic image. The GHT can deliver a reliable estimation
of the ROI position or a coarse initial contour.

During minimization of Equation (1), the ideal approach is to search every point
in the region of interest to get the vector V = {v1, v2, . . . , vn). However, the complex-
ity of this algorithm in O(nm3) increases rather rapidly with m (m is the number of
points within the search region, nis the number of points to represent the contour.
During searching optimization contour process, each point is evolving in the search
region. It is not only influenced by its own, but also by the other n − 1 points; so
the complexity is mn, and, for all the n points, the complexity is nmn. In order to
reduce the complexity, we assume that the evolving result of one point be influenced
only by the two adjacent and its own points; so the complexity is m3 and the whole
complexity for contour is nm3).

Here a search strategy is adopted to encompass large search regions without
drastically increasing m. The basic idea is to concentrate the initial search in
regions that will more likely yield the solution, instead of spreading them out
evenly [8].

In the initial stage, we desire to rapidly inflate or deflate parts of V to locate
the neighbourhoods of the global minimum. This can be achieved by searching in
the normal directions ofvi.

The region of searching is: Θ =
n
∪
i=1

Θi, where Θi contains all the points on the

normal vector hi. Θi =
{

vi = vi + khi; k = 0,±1, . . . ,±m−1

2

}

, m is odd.

In this paper, the stratified line search algorithm was used: Θi =
m/l
∪
j=1

Θij ,

Θij =
{

vi = vi + (lj + k)hi; k = 0,±1, . . . ,± l−1

2

}

l is odd, and the complexity is

O(nm3/l2).

The stratified line search is performed in the initial stage of minimization to
quickly locate the regions, which contain the global minimum. This can then be
followed by basic line search and completed by searching in 3× 3 regions.
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3.1 Experiments and Results

In this section, several examples are presented to illustrate the efficiency of the
shape-based snake model for boundary detection in echocardiographic sequences.
Forty sequent ultrasound images with size 180× 180 pixels were obtained from the
Philip 5500 system, each covering one complete cardiac cycle and containing F = 16
frames. The algorithm has been implemented using an Intel Pentium IV 2.4GHZ
with 1GB RAM, under the Visual C++ 6.0 environment.

To assess the performance of our segmentation method, we compared automati-
cally detected cardio structure boundaries with the manual outlines. In this paper,
four sets of manual outlines are given for each of the sequences.

Two sets of parameters are employed: the mean, the standard deviation (SD),
and the maximum of the minimal distances from the derived boundary points to
the manual outline. They are used to measure the difference between the derived
contour and the outline in one frame of a sequence. Let Cd and Cmdenote the
derived contour and the manual outline, respectively.

1. For each pi ∈ Cd, find p∗i ∈ Cm so that p∗i = argmin∀p∗
j
∈Cm

∥

∥

∥pi − p∗j

∥

∥

∥, where
∥

∥

∥pi − p∗j
∥

∥

∥ means the Euclidean distance between the two pixels.

2. For all (pi, p
∗
i ), compute the Euclidean distance d.

3. Compute the mean, the SD and the maximum of {d |∀pi ∈ Cd }.

We need another set of parameters to evaluate the segmentation results for the
whole sequence, so the mean and the SD of the mean absolute distance (MAD) are
defined as follows:

1. The MAD between two contours A and B is defined as:

D (A,B) =
1

2

{

1

n

n
∑

i=1

d (ai, B) +
1

m

m
∑

i=1

d (bi, A) .

2. Compute the mean, the SD of {D |∀D ∈ S }, where S is all the MADs need to
be calculated for a sequence.

3.2 Process of Segmentation

For a 2-D echocardiographic sequence, we first obtained the initial contour of the
image k using our algorithm. The final contour of the image k is obtained after the
deformation process, which is then transformed by GHT in order to be treated as
the initial contour of the next image k + 1. That is, the final contour of the kth

image is taken to be the initial contour of the (k + 1)th image, and so on. By this
method, all initial contours can be obtained from the final contours of the previous
images.
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Figure 2 shows the segmentation process for a mitral valve sequence. The
initial contour of the (k + 1)th image obtained directly from the final contour of
the kth image is shown in Figure 2 c). Figure 2 b) presents the initial contour, which
has been transformed by GHT. In Figure 2 d) we can see that the segmentation
result rather coincides with the contour manually defined by an independent doctor
in Figure 2 e) when using GHT to locate the initial contour. On the other hand, we
can see that the shape-based snake model treats well when there is a gap in the tip
of the leaflet under the shape constraint. It may be reasonable to say that the seg-
mentation result closely follows the desired boundary. Nevertheless, the algorithm
fails when using the initial contour in Figure 2 c) because of trapping in a local
minimum, although the same energy weighting factors (α = 1.0, β = 1.0, η = 0.5)
are given.

b) d)

a) e)

c)

Fig. 2. Example of segmentation for mitral valve; a) the kth image with finial con-
tour; b) the (k + 1)th image with initial contour from the kth image using
GHT; c) the (k + 1)th image with initial contour direct from the kth image;
d) the (k + 1)th image with segmentation result using initial contour in b); e) manual
outline for the (k + 1)th image

GHT is not needed in all situations such as the small frame-to-frame displace-
ment of the structure. Figure 3 e) shows the segmentation result for the left ventricle
with the initial contour direct from the previous image is identical to that using GHT
to locate the initial contour (Figure 3 d)). The evaluated parameters of the segmen-
tation results are shown in Table 1. Both the mean and the SD of the minimal
distances are near to each other.

Based on the experiments on forty sequences, it was indicated that when the
displacement of the structure in the adjacent two images is larger than half the
size of itself, the use of GHT to estimate the initial contour could achieve more
satisfactory result.
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b) d)

a) f)

c) e)

Fig. 3. Example of segmentation for left ventricle; a) the kth image with finial con-
tour; b) the (k + 1)th image with initial contour from the kth image using
GHT; c) the (k + 1)th image with initial contour direct from the kth image;
d) the (k + 1)th image with segmentation result using initial contour in b);
e) the (k + 1)th image with segmentation result using initial contour in c); f) manual
outline for the (k + 1)th image

Minimal distances Mean [?] SD [?] Max [?]

Using GHT 1.5 1.06 5.2

Without using GHT 1.4 1.15 5.1

Table 1. The mean, the SD and the maximum of the minimal distances for Figure 3

3.3 Segmentation of Endorcardial Boundaries in Sequences

In twenty sequences, the algorithmwas used to segment the endorcardial boundaries.
Some frames from the first sequence are shown in Figure 4.

Four sequences selected, Table 2 shows the mean and the SD of the MADs for
the whole sequence between the algorithm-generated contours and the four sets of
manual outlines (the number of MADs needs to be calculated is F ×m, where F is
the number of frames in the sequence and m is the number of manual outlines for
each frame) and between different manual outlines (the number of MADs needs to
be calculated is F × C2

m). These experiments show that the segmentation results
compare well to the manual outlines for the endocaridal boundaries.

Fig. 4. Characteristic frames showing the segmentation results of the left ventricle
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Seq1 Seq2 Seq3 Seq4

Mean of MADs between snake and outlines [?] 1.22 1.75 1.61 1.18

SD of MADs between snake and outlines [?] 0.26 0.35 0.45 0.31

Mean of MADs between different manual outlines [?] 1.32 1.65 1.41 1.24

SD of MADs between different manual outlines [?] 0.22 0.34 0.30 0.28

Table 2. Results of the comparison between the algorithm-generated contours and the
manual outlines

3.4 Segmentation of Mitral Valve Sequences

The algorithm performance was evaluated on twenty sequences of long axis view
images of the mitral valve. Characteristic frames from the first sequence are shown
in Figure 5. As one could expect, the differences of ROI between any two adjacent
frames are larger, but the algorithm performance is still comparable to the manual
segmentations. Table 3 shows the evaluated results for two selected mitral valve
sequences. In this table we can see that the mean and the SD are larger than those
in Table 2. This may be ascribed to at least two factors. The first one is that the
manual outlines may vary with experts. The second factor is that the contours in
the mitral valve images are open. The starting and the ending points defined by the
experts may vary largely. As a result, the MAD between the open contours may be
larger than that between closed contours.

Fig. 5. Characteristic frames showing the segmentation results of the mitral valve

Seq1 Seq2

Mean of MADs between snake and outlines [?] 2.14 2.02

SD of MADs between snake and outlines [?] 0.71 0.56

Mean of MADs between different manual outlines [?] 1.81 1.63

SD of MADs between different manual outlines [?] 0.69 0.52

Table 3. Results of the comparison between the algorithm-generated contours and the
manual outlines for sequences containing images of the mitral valve

3.5 Determination of Weighting Factors

In our experiments, the weighting factors α, β, η are set in Table 4. The motion
of the mitral valve is very irregular, frame-to-frame displacements are several times
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larger than the leaflet thickness. At those phases, the leaflet rotates, translates
and deforms at the same time. As a result, the difference of shape between two
adjacent images may be large. So, for the mitral valve sequences, the constraint
energy weighting factor is set lower than that for the others.

α β η

Endocardial sequences 1.0 1.0 2.0

Mitral valve sequences 1.0 1.0 0.5

Table 4. Values of parameters used in the algorithm

GHT algorithms are known to be computationally expensive [12] (about 6 min
for a sequence in our experiments) and they are not needed in all situations. So, in
our method, the GHT was separated from the snake deformation process. A user can
intervene when or where to use GHT. However, these algorithms do not need user’s
supervision during the segmentation process. The user’s interaction was needed in
just one frame for a sequence.

4 CONCLUSIONS

In this paper, an innovative model has been proposed for echocardiographic image
segmentation, namely, the shape-based snake model. The proposed shape-based
model aims at incorporating the template matching and the GHT with the snake
model. The model can resist the speckle noise, tissue-related textures and artefacts,
and guide the active contour deform to the desirable boundary. The principal idea
of this model is to use GHT to estimate the initial contour, and then using the
elastic deformation energy between the shape template and the active contour to
guide the contour deform from the local minimum. Our method does not need to
draw a precise shape template, but rather a rough contour regardless of its position,
scaling and rotation only once in a sequence.
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