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Abstract. Most learning algorithms assume that all the relevant data are available
on a single computer site. In the emerging networked environments learning tasks
are encountering situations in which the relevant data exists in a number of geo-

graphically distributed databases that are connected by communication networks.
These databases cannot be moved to other network sites due to security, size, pri-
vacy, or data-ownership considerations. In this paper we show how a k-nearest
classifier algorithm can be adapted for distributed data situations. The objective of
our algorithms is to achieve the learning objectives for any data distribution encoun-
tered across the network by exchanging local summaries among the participating
nodes.
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1 INTRODUCTION

Recent advances in computing and communications have made it possible to gather
and store large volumes of data in digital form. However, it is difficult to work with
the information obtained from a different scientific community. These difficulties
arise because of the large volume of information that would need to be moved
around or because of the constraints imposed by the autonomy of the data collected
by a particular institution (e.g., privacy constraints). Thus, the current technology
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is not sufficient for the need of collaborative and interdisciplinary e-Science, but
fortunately, new technologies are emerging with the potential to revolutionize the
ability of scientists to do collaborative work, for example [5].

Privacy-preserving data mining becomes an important enabling technology for
mining data from multiple private databases provided by different and possibly
competing organizations. For example, many insurance companies collect data on
disease incidents, seriousness of the disease and patient background. One way for the
Center for Disease Control to identify disease outbreaks is to train a classifier across
the data held by the various insurance companies for patterns that are indicative
of disease outbreaks and use it to classify a query pattern as an outbreak or the
opposite. However, commercial and legal reasons prevent the insurance companies
from revealing their data. It is important and beneficial to have a distributed data
mining algorithm that is capable of identifying potential outbreaks while respecting
the privacy requirements of its participants.

Distributed Data Sources. A number of geographically distributed databases to-
gether form an implicitly specified global dataset that contains all the data rele-
vant for a computation. For example, some pattern discovery tasks may require
simultaneous consideration of data, parts of which reside in census databases,
labor statistics databases, and employment related databases. Each of these is
a huge database and resides on a different site in a different city. Consequently,
it is neither desirable nor feasible to gather all of the data in a centralized loca-
tion for analysis. Hence, there is a need for knowledge acquisition systems that
can perform the necessary analysis of data at the locations where the data and
the computational resources are available and transmit the results of analysis to
the locations where they are needed [2, 9, 26].

Distributed Learning. The problem of learning from distributed data sets can be
accomplished by an agent that visits the different sites to gather the information
needed to generate a suitable model from the data. Alternatively, the different
sites can transmit the information necessary to the learning agent situated at
a Learner location. Consequently, the Learner has to rely on information (e.g.,
statistical summaries) extracted from the sites.

Contributions. We present a methodology for constructing a k-NN classifier across
multiple private distributed databases. This methodology consists of a general
model for decomposable k-NN classification and a set of algorithms for realizing
this model. Our approach to learn from distributed data sets involves identify-
ing the information requirements of existing learning algorithms, and designing
efficient means of providing the necessary information to the Learner, while
avoiding the need to transmit large quantities of data.

2 INTEGRATION OF DISTRIBUTED DATA

We consider a situation in which there are n sites of a network and each site i

contains a local database, named Di. There can be arbitrary overlaps in the schema
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for these databases, that is, any two databases may share a number of attributes,
and all of them together constitute the dataset D. The set of attributes contained
in Di is represented by Xi. For any pair of relations, (Di and Dj), the corresponding
sets Xi and Xj may have a set of shared attributes given by Sij .

The implicit data set D with which the computation is to be performed is the
set of tuples generated by a Join operation performed on all the participating re-
lations D1, D2, . . . , Dn. However, the tuples of D cannot be made explicit at any
one network site by any site. The tuples of D, therefore, must remain implicitly
specified only to one agent. This inability of an agent to make explicit the tuples of
D is the main problem addressed in the generalized decomposition of global algo-
rithms and is discussed in later sections. To facilitate computations with implicitly
specified sets of tuples of D, we define a set (S) that is the union of all the attribute
intersection sets (Sij), that is,

S =
⋃

i,j,i 6=j

Sij. (1)

The set S, thus contains the names of all those attributes that are visible to
more than one agent because they occur in more than one participating Di. We
define a relation (Shared) containing all possible enumerations for the attributes in
the set S.

Agent
1

AgentnAgent2

D1 D2 Dn...................

 x1   x2   x3   x4             x3   x4    x5    x6                          x1      x5       x12         Attributes

Network

Databases

Interface Agents

Fig. 1. Distributed data/knowledge sources

2.1 Nature of Data Distribution

There are two primary ways in which the databases, together, may be seen as forming
an implicit global dataset D.

Horizontal Partitioned. A datasetD is partitioned into a set of databasesD1, D2,

. . . , Dn each of which have the same set of attributes Xi, and a subset of tuples
of the original dataset D. Each tuple of D is in exactly one database. The set
of shared attributes S is the same as Xi for each database. The union of all
databases Di constitutes the complete dataset D, i.e., D1 ∪D2 ∪ . . .∪Dn = D.
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Vertical Partitioned. A dataset D is partitioned into a set of databases D1, D2,

. . . , Dn where each database contains a subset of the attributes of the original
dataset D. In this case each component Di, may share some attributes with
other databases Dj , j 6= i. Each Di may also contain some attributes not
shared with any other database.

Vertically partitioned datasets are of more interest because they provide an op-
portunity to share knowledge across the participating nodes.

2.2 Stationary and Mobile Agents

We define Agent as a piece of software which performs a given task using information
gleaned from its environment to act in a suitable manner so as to complete the task
successfully. An agent should be able to adapt itself based on changes occurring
in its environment, so that a change in circumstances will still yield the intended
result. Agents are used to represent actors in a cooperative effort, and give the users
of the agent system support for doing efficient negotiation, and exchange of data.

Each database Di is represented by an agent acting on behalf of it with some
degree of autonomy. This agent knows all about its underlying database and can
access any part of it. Each agent also can know about other participating sites. It
then determines the local computations that it needs to perform, keeping in mind
the constraints of shared data with other sites; and also the local results that it
needs to share with other agents in order for the global result to evolve at either
one or each of participating agent. An alternative to communicating with agents at
other site is that a single agent visits each of the participating sites and performs
some local computation at each site when it visits.

Agents may be classified by their mobility i.e., by their ability to move around
some network. This yields the classes of stationary agents as shown in Figure 1; or
mobile agents as shown in Figure 2.

Stationary Agents. Stationary agents that stay at their respective data sites per-
form the local computations and send them to a Learner agent who applies the
aggregation operation to all the local results. They interact with other similar
agents at other sites for exchanging (sending/receiving) simple computational
summaries. They use message passing as a communication mechanism. Each
message is generally of a very small length, but the number of messages may
grow very fast.

Mobile Agents. The mobile agent is free to migrate during execution from one
site to another, to perform local computation at each site that they visit, and at
the end to compose the gathered results for performing the global computations.
Mobile agent aggregates two things: data (data collected and process states) and
code (instructions that direct the behavior).
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Fig. 2. Mobile agent

2.3 Agent’s Decomposition Task

The objective of a Learner agent is to perform the global computation by commu-
nicating with other similar agents at other sites, where each agent performs some
computation with its local database in the context of and as constrained by the
sharing of attributes across the participating agents (see Figure 1).

Our general strategy for transforming a batch learning k-nearest classifier al-
gorithm into a distributed learning algorithm involves identifying the information
requirements of the algorithm and designing efficient means for providing the needed
information to the learning agent while avoiding the need to transmit large amounts
of data.

Suppose we decompose a batch learning algorithm L in terms of an information
extraction operator I that extracts the necessary information from data set and
a hypothesis generation operator H that uses the extracted information to produce
the output of the learning algorithm L. That is,

L(D) = H(I(D)). (2)

We define a distributed information extraction operator Idi that generates the
corresponding information Idi(Di), from the data set Di, and an operator G ag-
gregates this information from all sites to produce I(D). That is, the information
extracted from the distributed data sets is the same as that used by L to infer
a hypothesis from the complete dataset D. Thus,

G[Id1(D1, S), Id2(D2, S), . . . , Idn(Dn, S)] = I(D). (3)

Thus, we can guarantee that

L(D) = H(I(D)) = H(G[Id1(D1, S), Id2(D2, S), . . . , Idn(Dn, S)]). (4)



360 A.M. Khedr

The set S of shared attributes determines what explicit D would be generated
by the individual data components. An implementation of G in Equation (3), for
some S, can be engineered by a functionally equivalent formulation. That is, a local
computation Idi(Di, S) is performed by agent agenti using the database Di and the
knowledge about the attributes shared among all the data sites (S). The results of
these local computations are aggregated by an agent using the operation G.

..........

..........

Implicit Data D G-Computations

Id1 Id2 Idn

D1 D2 Dn

Explicit Data DI- Computation

Computation With Explicity Specified Data

Compuation with Implicity Specified Data 

Aggregation Using "G"

Relation Join or Cross Product

Explicit Databases

Local Computations

Fig. 3. Computations in explicit vs. implicit data spaces

The schematic in Figure 3 shows the process by which the agent would com-
pute Idi from the Dis. The component operators of a decomposition (G and
Idis), therefore, need to be dynamically determined by the agent for each instance
of L(D) depending on the participating nodes; the attributes contained in their
native databases; and the sharing pattern of attributes.

2.4 Cost Model for Algorithmic Complexity

Traditionally, the complexity of algorithms has been measured in terms of the CPU
time and the required memory. This cost model is well-suited for computations
on a single computer and the closely-coupled processors model. When a number
of loosely networked nodes are involved in a cooperative computation the commu-
nication cost becomes the overwhelmingly dominant component of the total cost.
Complexity for distributed query processing in databases has been discussed in [25].
In our experience with the design and analysis of decomposable network algorithms,
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we have found that each step of the algorithm must exchange a number of messages
for evaluating the various quantitative values. Each message is generally of a very
small length, but the number of messages may grow very fast. Here and in other
similar works [9, 10] we have used cost models involving the number of messages
exchanged and reflecting the efficiency of decomposition carried out by the network
algorithm. We choose the following two cases for analyzing the complexity of our
algorithm.

Stationary Agents Case. We choose the following two cost models for analyzing
the complexity of our algorithm. In these cost models we count the number of
messages that must be exchanged among all the participating sites in order to
complete the execution of the algorithm.

• Exchanging One Summary per Message (Unoptimized). One mes-
sage exchange includes only one local computation request at a time. The
messages are exchanged in a sequential manner, that is, one site is asked for
one local computation, the corresponding summary is obtained, and then
the request is sent to the next participating database.

• Exchanging All Summaries per Message (Optimized). One message
exchange includes all local computation requests which correspond to all
tuples of S and receive all corresponding summaries in one message.

Mobile Agent Case. In this case, submission of a task by a user; dispatching of
mobile agent to data sites; and its return with global results. In this case, the
complexity can be measured in term of the number of agent hops from one site
to another or in term of the number of agent visits to each site. The number of
hops is independent of the size of implicit dataset D.

3 RELATED RESEARCH

Most of the learning algorithms in the literature assume that all the relevant data are
available in a single computer site. In the context of database research much work
has been done towards learning from distributed databases. Among these, most of
the existent algorithms work for horizontal data distributions, with a few exceptions.
Many of the approaches to distributed learning come from the desire to scale up
algorithms to large data sets [17, 18]. Conceptually there is a big difference between
approaches to distributed learning coming from scaling up algorithms, where the
data are distributed by the algorithm in order to increase the overall efficiency, and
approaches that assume that data are inherently distributed and autonomous, and
thus restrictions and constraints may need to be taken into account. The work in
this paper falls into the second category.

Ensembles Approach to Distributed Learning. Several distributed learning
algorithms have their roots in ensemble methods. [3, 16] used an ensemble of
classifiers approaches to learn from horizontally distributed data, which involves
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learning separate classifiers from each dataset, and combining them typically
using a weighted voting scheme. In general, this combination requires gathering
a subset of data from each of the data sources at a Learner site to determine
the weights to be assigned to the individual hypotheses which is not desirable.
Besides the need to transmit some subset of data to the Learner site, there
are other potential drawbacks such that the resulting ensemble of classifiers is
typically much harder to comprehend than a single classifier, and the lack of
guarantees concerning generalization accuracy of the resulting hypothesis rela-
tive to the hypothesis obtained in the centralized setting.

Cooperation-based Distributed Learning. Although learning with coopera-
tion scenarios could be very often met in real world situations, there are not
many distributed learning algorithms that use the cooperation in an active way
to obtain the final result, with a few notable exceptions. [19] proposed a power-
ful, yet practical distributed rule learning (DRL) algorithm using cooperation.
They make use of several criteria to estimate the probability that a rule is cor-
rect. In [11], the authors proposed an algorithm for learning to share distributed
probabilistic beliefs. As opposed to collaboration by exchanging models between
learners, in [22] data could be moved from one site to another in order to fully
exploit the resources of the network. One practical example of a learning algo-
rithm that uses cooperation to exchange data is described in [7].

Learning from Vertically Distributed Data. Although most of the distributed
learning algorithms assume horizontal data distribution, there are a few notable
exceptions. [2] proposed algorithms for learning decision tree classifiers from
vertically distributed data. [1] is a collaborative approach to concept learning
from vertically distributed data. It works by computing the cardinal distribution
of feature values in the individual data sets, followed by propagation of this dis-
tribution across different sites. Features with strong correlations to the concept
to be learned are identified based on the first order statistical approximation
to the cardinal distribution. Being based on first order approximations, this
approach is impractical for problems where higher order statistics are needed.
[21] proposed an ensemble approach to combine local classifiers. They used an
order statistics-based technique for combining high variance models generated
from heterogeneous sites. [15] observed that inter-site patterns cannot be cap-
tured by aggregating heterogeneous classifiers. To deal with this problem, at
each site, they constructed a subset of the data that a particular classifier can-
not classify with high confidence and ship such subsets of data at the Learner
site, where a classifier is built. Although this approach gives better results than
simply aggregating the classifiers, it requires data shipping and its performance
is sensitive to the sample size.

Privacy Preserving Distributed Data Mining. Several approaches of distri-
buted data mining appeared from the need to preserve the privacy of the in-
formation that is mined. In [12] the summaries of the data need to be used
instead of raw data. Some work has focused on specific algorithms design in the
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presence of privacy constraints: [4] introduced an algorithm for building decision
trees on private data; [6, 20] dealt with privacy-preserving distributed mining of
association rules from horizontally partitioned data, while [23] proposed an algo-
rithm that works when data are vertically partitioned; [8] proposed an algorithm
for computing correlations in a vertically distributed scenario while preserving
privacy; [13, 14] presented algorithms for privacy preserving clustering using
EMmixture modelling and generative models from horizontally distributed data,
while [24] proposed a k-Means clustering over vertically partitioned data. In [26]
the authors presented an algorithm for determining k-nearest neighbor tuples for
a given tuple in a set of geographically distributed databases. These databases
form a vertical partitioning of some implicit global database. The computation
is performed by exchanging minimum number of higher level summaries.

Central to our approach is a clear separation of concerns between hypothesis
construction and extraction of sufficient statistics from data. This separation makes
it possible to explore the use of sophisticated techniques for query optimization that
yield optimal plans for gathering sufficient statistics from distributed data sources
under a specified set of constraints describing the query capabilities and operations
permitted by the data sources.

4 DISTRIBUTED K-NEAREST NEIGHBORS CLASSIFIER

The k-nearest neighbors classifier (k-NNC) simply consists of two main phases
(learning and classification phases). The learning phase consists of storing the data,
and the information extraction is done during the classification phase. It is a simple
example of instance-based learning. In the k-NNC algorithm, the nearest neighbors
are defined in terms of a metric distance d(., .) between instances. If we assume that
yt = 〈b1t, . . . , bdt〉, t ∈ (1, 2, . . . , l), and C = {c1, c2, . . . , cm} be the set of instances,
and class labels, and D = {(yt, cj) : t ∈ (1, 2, . . . , n), j ∈ (1, 2, . . . , m)} is the set
of training examples. Then the class label for a new instance x = 〈a1, a2, . . . , ad〉
is given by the most common class label among the k training examples nearest
to x.

4.1 Sufficient Statistics for k-NNC

Given a new instance x to be classified, the sufficient statistics with respect to h(x)
(h(x) = arg Maxc∈C

∑k
j=1 δ(c, ytj) where δ(a, b) = 1 if a = b and δ(a, b) = 0 other-

wise) consist of the k nearest neighbors of the new example x. Given the k nearest
neighbors, the class of the new instance is determined by taking a majority vote
among those examples, independent of the rest of the data. Therefore, the mini-
mal sufficient statistics are given by the smallest k distances, and the corresponding
classes. In what follows we will show how the minimal sufficient statistics can be
computed, when data are horizontally and vertically distributed.
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4.2 Algorithm for Horizontally Distributed Data

In the horizontally distributed setting, we compute the minimal sufficient statistics
by computing the k nearest neighbors at each site i and ship the class labels cor-
responding to these neighbors together with the distance from each of them to the
new instance x. Thus, we ship pairs (d(x, yitj), c(y

i
tj
)) for every nearest neighbor

yitj at the site i (we denote by ditj = d(x, yitj) the distance between x and yitj ac-

cording to the metric used by the algorithm and by citj = C(yitj) the class citj of the

example yitj . At the Learner site, we determine the k smallest distances among all
the distances received and take a majority vote among the classes associated with
those instances. The majority class will be the class of the new instance x. The
pseudocode for horizontally distributed data is shown below:

At Local Sites:

1. Given a new instance x= (a1,a2, . . ., ad) to be classified:

2. Send x to each site i.

3. For (each data source Di)

(a) Find the distance between x and every tuple in Di

(b) Return to the Learner site the minimum k distances dit and the corresponding
class cit, i.e., return the pair (dit, c

i
t).

At Learner Site:

1. Compute the k nearest distances among all the received distances.

2. From the returned k pairs, classify the instance x to the class with maximum
number of cases.

4.2.1 Complexity Computing

We show below an expression for the number of messages that need to be exchanged
among the stationary and mobile agents for executing the horizontally k-nearest
neighbor classifier.

Stationary Agents Implementation

One Summary Per Message (Un-Optimized). In this case the messages
are exchanged in a sequential manner, that is, one site is asked for its k dis-
tances, an answer is obtained, and then the request is sent to the next parti-
cipating database. We transfer only one Idi(Di, S) summary at a time. The
complexity will be n exchanged messages. The result shows that the number
of messages that need to be exchanged among the sites is not dependent on
the size of the database at each site. This is significant because it shows that
as the sizes of the individual databases grow, the communication complexity
of our algorithm would remain unaffected.
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Exchanging All the Summaries in One Message (Optimized). It is pos-
sible to send a request to all agents for Idi(Di, S) values in one request and
receive all the summaries in one message. This reduces the number of mes-
sages exchanged to be only one message.

The trade-off between the two approaches is that the first one may be considered
more secure for transmission over a network because each message contains only
little information about the participating databases. The second alternative
requires very few messages but each message contains more information about
each database.

Mobile Agents Implementation. In the case of mobile agents, during a visit to
a data site, it can compute the local Idi for that site. Once all the sites have
been visited, the G aggregator can be applied to the collected local results from
all the sites. If there are n participating sites, the minimum k distances can
be gathered during a single visit to each site. Thus, the computation of the
distances can be done with one pass through the data.

On the other hand, if we move all the data to one site and then run k-NNC algorithm,
the total complexity will be the communication time of moving all the data to one
site. The computational resources will be needed to concatenate the data tables
plus the complexity of running k-NNC algorithm with n ∗N tuples, where N is the
average number of tuples at each site.

Assertion 1. The algorithm for learning k-NNC from horizontally distributed data
returns the same results with respect to the algorithm for learning k-NNC from
centralized data.

Proof. If mink(T ) returns the smallest k distances in a set of distances T corre-
sponding to the set of examples D, and a new instance x to be classified, mink(Ti)
returns the smallest k distances in a set of distances Ti corresponding to the set of
examples Di and an instance x to be classified. Since D = D1

⋃

D2
⋃

. . .
⋃

Dn, from
the observation

min
k

(T ) = min
k

(min
k

(T1)
⋃

min
k

(T2)
⋃

. . .
⋃

min
k

(Tn)). (5)

The set of class labels used for majority vote in the distributed case is the same as
the set of class labels used for majority vote in the centralized case. 2

4.3 Algorithm for Vertically Distributed Data

To compute the minimal sufficient statistics in the vertically distributed setting,
we compute the k-nearest neighbors and the corresponding class labels from a new
instance x by calling the distributed k nearest neighbors (DkNN) algorithm. The
k-NNC pseudocode for vertically distributed data is shown below:
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At Local Sites:

1. Given a new instance x to be classified.

2. Call DkNN(x, (D1, D2, . . . , Dn)) to compute the k-nearest neighbors from ver-
tically distributed data.

At Learner Site:

1. From the returned k pairs 〈distance, class〉, classify the instance x to the class
with maximum number of cases.

2. End Algorithm.

The nearest k neighbors will be determined by (DkNN) algorithm and then at the
Learner site the instance x will be classified into the class with maximum number
of cases.

In the following subsection, we introduce the DkNN algorithm for finding the
nearest k points from a given one in vertically distributed databases.

4.3.1 The Distributed k-Nearest Neighbors (DkNN) Algorithm

The objective of this algorithm is to find the k-nearest neighbors from a given
instance q in vertically distributed databases. We use Euclidean distance as the
metric for determining the distance between a pair of tuples p1, p2. If there are d

attributes, the implicit tuples can be interpreted as points in Rd, and the distance
between p1, p2 is given by

d(p1, p2) =

√

√

√

√

d
∑

t=1

(xt − yt)2, (6)

where p1=(x1, x2, . . . , xd), and p2= (y1, y2, . . . , yd). Since each tuple includes two
types of attributes – Shared, and Unshared – Equation (6) can be rewritten as:

d(p1, p2) =
√

∑

shared

(xt − yt)2 +
∑

unshared

(xt − yt)2. (7)

Definition 1. Let Shared be the indexed shared relation; we define Shared l as
the shared tuple with index l, and index l as set of all implicit tuples corresponding
to l.

Definition 2. In Equation (7), we define the first summation as the shared distance
that can be computed at the Learner site, where the Shared relation and the given
point q are known. The second summation is defined as the unshared distance that
can be computed by finding the minimum unshared distances inside each index
at each local site (Local Computation), and then we aggregate the results at the
Learner site to get the global minimum unshared distance for each index (Global
Computation).
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DkNN (q, Di, D2, . . . , Dn) Outlines

Step 1: Shared Relation Computing. We create a relation called PreShared at
the Learner site, that contains all possible enumerations for the attributes in
the set S. Then we generate the relation Shared from PreShared by removing
the tuples with zero count.

Step 2: Local and Global Computations.

1. Data Structure. A table called Distance resides at the Learner site. It has
five attributes: the Index attribute stores the index of the Shared tuples, the
Shared-Distance attribute stores the distance between the Shared attributes
(the first summation in Equation (7)), and the Unshared-Distance attribute
stores the distance between the Unshared attributes (the second summation in
Equation (7)). The sum and the square root of Shared and Unshared distances
will be stored in the Total-Distance attribute. The Class attribute contains the
corresponding class labels.

2. Index the Shared relation beginning with zero.

3. Local Computation. For every Shared tuple l, every site Di computes the set
of ordered pairs UnsharedDisti(l) = {〈unshared distance (the distances between
the Unshared attributes in a tuple corresponding to shared l at Di, and the
Unshared attributes in q), the corresponding class label〉}. The detailed steps
will be as follows:

(a) for every Shared l do

(i) for every participating site Di in database do

A. Select all tuples that belong to Shared l

B. for each selected tuple v create the ordered pair which consists of

• the distance dv =
∑

(Unshared)(xj − yj)
2, where xj is the value of

Unshared attribute in v, and yj is the corresponding value of the
Unshared attribute in the given point q,

• the corresponding class label cv, if Di contains the class label at-
tribute, otherwise we set cv to empty character (’ ’),

C. store all the ordered pairs in a set UnsharedDisti(l),

D. arrange UnsharedDisti(l) in increasing order according to the distance
value,

E. send the UnsharedDisti(l) back to the Learner site.

(ii) end for

(b) end for

4. Global Computation. This computation will be executed at the Learner site.
For every Shared l, we compute the distance in Equation (7) as follows:
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(a) for every Shared l

(i) The shared distance can be directly computed as the distance between
the Shared attributes in the Shared l and the corresponding values in
the given point q using

∑

(Shared)(xt − yt)
2.

(ii) The unshared distance can be computed by creating the matrix
UnshardMatrix(l)[m][n+ 1] from the following matrices:
(1) UnshardMatrix(l)[m][n] the cross product of the distances from the
n sites,
(2) UnshardMatrix(l)[m][1] the corresponding class label of each cross
product by taking the concatenation of the second part of the ordered
pairs. Therefore, the distance table will be filled as follows:

A. for i = 1 to m

• sum-unshared [i] = 0
• for j = 1 to n

– sum-unshared [i] = sum-unshared [i] + UnsharedMatrix(l)[i][j]

• end for j
• Distance[l][Unshared-Distance]= sum-unshared[i]
• Distance[l][class ] = UnsharedMatrix(l)[i][n+ 1]

B. end for i
C. Distance[l][Shared-Distance] = sum-shared
D. Distance[l][Total-Distance]= the square root of the sum values in

columns Shared-Distance and Unshared-Distance.

(b) end for

5. Arrange Distance table in increasing order according to the Total-Distance.

6. Return to the Learner site the first k- distances and their corresponding class
type (〈distance, class〉).

End Algorithm

4.3.2 Example Scenario

We show here an example execution of vertically 5-classifier algorithm, where three
databases exist at three different network sites across a wide area network. The local
databases from the three sites are shown in Table 1. The three databases together
implicitly define a global database D consisting of points in a 6-dimensional space.
The algorithm’s objective here is to classify the instance q = (1, 2, 2, 3, 4, 5).

• From Table 1, the Shared attributes are a, b and c, and the Shared values are
{1, 2}, {1, 2, 3} and {1, 2} for a, b, and c, respectively. According to step 1, the
relation PreShared will be as in Table 2.
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Site1

a b e

1 1 2

1 3 4

3 2 2

2 1 4

3 1 5

2 2 2

1 1 1

Site2

b c f

1 1 1

3 2 4

2 2 9

7 2 8

4 1 6

1 1 2

1 2 8

Site3

a c d class

2 2 3 0

1 1 9 1

2 1 8 0

1 1 10 0

2 1 11 1

2 2 4 0

2 1 4 1

Table 1. Explicit component databases at local sites

• For every tuple in PreShared, we compute its count by multiplying its counts
at the three sites; the relation Shared will be as in Table 3.

PreShared

a b c

1 1 1

1 1 2

1 2 1

1 2 2

1 3 1

1 3 2

2 1 1

2 1 2

2 2 1

2 2 2

2 3 1

2 3 2

Table 2. The PreShared relation

Index a b c

0 1 1 1

1 2 1 1

2 2 1 2

Table 3. The indexed Shared relation

• Local Computation. For every Shared tuple l, every site i will compute the
unshared distance set UnsharedDisti(l). Below we execute the local computation
for Shared 0.

– At Site1: the Unshared attribute e has two values 2,1, and has the value 4 at
the instance q, and then the ordered pairs set of unshared distances and the
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corresponding class labels UnsharedDist1(0)= {〈4,’ ’〉, 〈9,’ ’〉}, where d1=4,
and d2=9.

– At Site2: The Unshared attribute f has two values 2,1, and has the value
5 at the instance q, and then UnsharedDist2(0) = {〈9,’ ’〉, 〈16,’ ’〉}, where
d1=16, and d2=9.

– At Site3: The Unshared attribute d has two values 9, 10, and has the value
3 at the instance q, and then UnsharedDist3(0) = {〈36, ’1’〉, 〈49, ’0’〉}, where
d1 = 36, and d2=49.

• Global Computations. The global unshared distance matrix
UnshardMatrixl(m, n) will be computed as the Cartesian product of all received
UnsharedDisti(l)s. Below we execute the global computation for Shared 0.

– Unshared Distances Computing. Since the count of tuples that meet the
Shared 0 is 8, i.e,m = 8, and the number of participating sites is 3, i.e, n = 3.

UnsharedMatrix(0)(8, 4)=































4 9 36 1
4 9 49 0
4 16 36 1
4 16 49 0
9 9 36 1
9 9 49 0
9 16 36 1
9 16 49 0































The sum of distances in each row gives the total of unshared distances for
a tuple in Shared 0 and the corresponding class label (column 4).

sum-unshared =






























49 1
62 0
56 1
69 0
54 1
67 0
61 1
74 0































– Shared Distances Computing. The shared distance for shared 0 will be
Sum − Shared = 2, where the Shared attributes a, b, c take the values 1,
1, 1 in Shared 0 and the values 1, 2, 2 in q.

By executing the algorithm with every Shared tuple, the ordered Distance table
will be as in Table 4. From the first five rows, the class type of q will be 0.
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Index Shared Distance Unshared Distance Total Result Class

2 2 9 3.32 0

2 2 10 3.46 0

1 3 10 3.61 1

1 3 17 4.47 1

1 3 34 6.08 0

1 3 41 6.63 0

0 2 49 7.14 1

0 2 54 7.48 1

0 2 56 7.62 1

0 2 61 7.94 1

0 2 62 8.00 0

0 2 67 8.31 0

0 2 69 8.43 0

0 2 74 8.72 0

1 3 73 8.72 1

1 3 80 9.11 1

Table 4. The Distance table after updating and ordering

4.3.3 Complexity Computing

We show below an expression for the number of messages that need to be exchanged
among the stationary and mobile agents for running the k-NNC from vertically
distributed data. Let us say there are: n relations reside at n different network
sites, r tuples in PreShared relation, and t tuples in relation Shared (r ≤ t).

• Stationary Agents Implementation

– One Summary Per Message (Un-Optimized)
Exchanged Messages for Computing Shared Relation. If there are n partici-
pating agents then one agent would be sending one request to each agent to
get all shared values for computing the relation PreShared; then for each
tuple in PreShared, one agent would be sending one request to each agent to
check the tuple count. Therefore, amounting to a total of n+r∗n = n(1+r)
messages are required for computing the Shared relation.
Exchanged Messages for Computing UnsharedDisti(l): For each Shared l,

we need n messages for computing UnsharedDisti(l), so t∗n exchanged mes-
sages are required.
Therefore, the total number of exchanged messages of our algorithm will be:

Total Exchanged Messages = n(t+ r + 1). (8)

– Exchanging all the Summaries in one Message (Optimized)
It is possible to send a request to an agent for all Idi(Di, S) values, that is,
the values corresponding to all tuples condj of S in one request, and receive
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all the summaries in one message. This reduces the number of messages
exchanged to be

Total Exchanged Messages = 4n. (9)

The first approach may be considered more secure for transmission over
a network because each message contains only little information about the
participating databases. The second alternative requires very few messages
but each message contains more information about each database.

• Mobile Agents Implementation
Exchanged Messages for computing Shared Relation. The local results for com-
puting, the shared values sets at each site can be gathered during a single visit to
each site and then the local results are aggregated by finding the cross product.
We need to visit each site once again for computing the Shared relation from
PreShared.
Exchanged Messages for computing UnsharedDisti(l). For each Shared l,

UnsharedDisti(l) can be gathered during a single visit to each site. Then, the
number of exchanged messages to perform this step will be t. Therefore, the
total number of exchanged messages for our algorithm will be

Total Exchanged Messages = t+ 2. (10)

Assertion 2. The algorithm for learning k-NN classifiers from vertically distributed
data returns the same results with respect to the algorithm for learning k-NN clas-
sifiers from centralized data.

Proof. It is obvious from Equation (7) that the distances d(p1, p2) computed in
the distributed case are the same as the distances computed in the centralized case.
Then their corresponding sets of class labels are identical, i.e., the set of class labels
used for majority vote in the centralized case is the same as the set of class labels
used for majority vote in the distributed case. 2

4.3.4 Simulation Results

We have performed a number of tests to demonstrate that the k-NN classifier can
be run in a distributed knowledge environment without moving all the databases
to a single site. These tests have been carried out on a network of workstations
connected by a LAN and tested against a number of databases of different sizes.
The algorithms have been tested on both test data and real life databases. We
have implemented the algorithm using Java, RMI (Remote Method Invocation),
and JDBC (Java Database Connectivity) to interface with the databases. This has
been done to provide a standard interface and platform independence.

Figure 4 shows how the time taken to compute k-NN classifier in an implicit
database D changes with the size of the individual databases. As we can see, when
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we exchange one summary per message, the time taken to run the k-NN classifier
varies exponentially as the size of the database increases. However, when we use the
optimized method the time taken to run the k-NN classifier reduces considerably
and depends on the number of participating nodes.
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Fig. 4. Time taken to run k-NN classifier on vertically distributed databases

Figure 5 shows how the number of messages exchanged between the Learner
site and the remote sites varies with the number of tuples in the database. It can
be easily seen that the number of messages exchanged varies exponentially with the
size of the database when we send one summary per message. The result validates
the expression for the total number of messages exchanged as given above. However,
in the optimized version when we receive all the summaries in a single message, the
number of messages exchanged was a constant depending upon the total number of
participating nodes.
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Fig. 5. Number of messages exchanged to run k-NN classifier on vertically distributed
databases
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5 CONCLUSION

In this paper, we have defined the problem of learning from distributed data, and
presented a general strategy for transforming algorithms for learning from centra-
lized data into algorithms for learning from distributed data. This strategy is based
on the decomposition of an algorithm into information extraction and hypothesis
generation components. The information extraction from distributed data entails
decomposing each statistical query posed by the information extraction component
of the Learner into local computations that can be performed by the individual
data sources, and a procedure for combining the results of local computations into
an answer for the original query. We have applied this strategy to design algorithms
for learning the k-NN classifiers from horizontally and vertically distributed data.
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