
Computing and Informatics, Vol. 27, 2008, 341–354

SOLVING THE MAXIMALLY BALANCED
CONNECTED PARTITION PROBLEM IN GRAPHS
BY USING GENETIC ALGORITHM

Brankica Djurić

Faculty of Mathematics
University of Belgrade
Studentski trg 16/IV
11 000 Belgrade, Serbia
e-mail: mickob@sbb.co.yu

Jozef Kratica

Mathematical Institute
Serbian Academy of Sciences and Arts
Kneza Mihajla 35/I, pp. 367
110 01 Belgrade, Serbia
e-mail: jkratica@mi.sanu.ac.yu

Dušan Tošić, Vladimir Filipović

Faculty of Mathematics
University of Belgrade
Studentski trg 16/IV
11 000 Belgrade, Serbia
e-mail: {dtosic, vladaf}@matf.bg.ac.yu

Manuscript received 10 October 2006; revised 31 May 2007
Communicated by Vladimı́r Kvasnička

Abstract. This paper exposes a research of the NP-hard Maximally Balanced Con-
nected Partition problem (MBCP). The proposed solution comprises of a genetic
algorithm (GA) that uses: binary representation, fine-grained tournament selection,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics, SAS,...

https://core.ac.uk/display/267941220?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

342 B. Djurić, J. Kratica, D. Tošić, V. Filipović

one-point crossover, simple mutation with frozen genes and caching technique. In

cases of unconnected partitions, penalty functions are successfully applied in or-
der to obtain the feasible individuals. The effectiveness of presented approach is
demonstrated on the grid graph instances and on random instances with up to 300
vertices and 2 000 edges.

Keywords: Balanced partitions, evolutionary computation, metaheuristics, com-
binatorial optimization.

1 INTRODUCTION

A lot of researchers used genetic algorithms for solving NP-hard optimization prob-
lems in the field of combinatorial optimization. Practical orientation and the use
of graph problems make them very interesting for research. In most cases it is
necessary that involved graphs or subgraphs should be connected.

We considered problem (named the Maximally Balanced Connected Partition
Problem – MBCP) and proposed a solution based on genetic algorithm. Our goal
was to partition a graph into the two connected subgraphs with minimal misbalance,
i.e. having sums of weights that are as much equal as possible.

Solving MBCP problems using GAs can be applied on finding solutions to prac-
tical organizational problems in education. As an example, educational course plan-
ning usually consists of multiple cases when partitions of single course into two may
become necessary. The other example would be partition of a study group into two
student subgroups that follow complex assignment criteria.

This problem is considered in [5] and the polynomial-time approximation algo-
rithm, with excellent guaranteed bound 1.072, is proposed. However, that paper
contains only theoretical results. It also contains detailed proof of the NP-hardness
of the MBCP.

2 PROBLEM DEFINITION

Let G = (V, E) be connected graph where V represents a set of vertices and E is set
of edges. The solution of previously described problem is a partition (V1, V2) of V,
resulting in two non-empty disjoint sets (V1, V2 ⊂ V , V1 ∪ V2 = V and V1 ∩ V2 = ∅),
which induces subgraphs G1 = (V1, E1), E1 ⊂ E and G2 = (V2, E2), E2 ⊂ E, of G.
Those two subgraphs are connected.

We proposed to use B(V1, V2) = |w(V1) − w(V2)| as objective function, where
w(V1) =

∑

i∈V1

w(i) and w(V2) =
∑

i∈V2

w(i) and our goal was to minimize that function.

The following example clearly illustrates the definition of our problem.

Example 1. For a graph given in Figure 1, the sum of all weights is 3 + 7 +
1 + 4 + 9 = 24. The minimum of |w(V1) − w(V2)| can be 0 only in case when

Solving the MBCP Problem in Graphs by Using GA 343

V1 = {A, F}, V2 = {B,C,D} because w(V1) = w(A) + w(F) = 3 + 9 = 12 and
w(V2) = w(B)+w(C)+w(D) = 7+1+4 = 12, are equal. However, both subgraphs
G1, G2 are unconnected ((A, F) /∈ E and (B,C) /∈ E). Therefore, the optimal
solution can not be 0, but at least 2, because the sum of all weights is even. Let
V1 = {A,B, C}, V2 = {D,F}, with |w(V1)| = 11, |w(V2)| = 13. In this case,
G1, G2 are connected subgraphs ((A,B) ∈ E, (A,C) ∈ E and (D,F) ∈ E), so
B(V1, V2) = |w(V1) − w(V2)| = 2 is an optimal value.

A

D F

C

B

3

7

1

4 9

Fig. 1. Graph used in Example 1

3 GA IMPLEMENTATION FOR SOLVING THE MBCP

The main idea of genetic algorithms (GAs) was introduced by Holland [8], and in the
last three decades GAs have emerged as effective, robust optimization and search
methods. The GAs operate on the population of individuals, each representing
a possible solution to a given problem. The encoding of individual entities along
with their fitness function definition are important aspects of each GA efficiency.
In most cases, successful application of a GA requires a binary encoding (where
possible), which assigns a code of predefined length consisting of elements {0, 1}.
Some examples of successful applications based on binary encoding can be found
in [6, 12, 13, 20, 21].

Each individual has an assigned fitness value according to the quality of the
corresponding solution, comparing the value of the individual to those of its peers in
the population. Actual comparison becomes possible only after individual objective
values have been calculated, as only all of them become available. The individual
fitness values represent their relative impacts on the whole population. The popu-
lation evolves towards better solutions by means of randomized processes known as
selection, crossover, and mutation. Through the selection mechanism, the indivi-
duals with better fitness values are favored to reproduce more often than the worse
ones. The crossover allows combining of parental information when it is passed to
their descendants. The result of crossover is a structured, randomized exchange
of genetic material between individuals, with the possibility that good solutions
can generate better ones. The mutation involves modification of a individual gene
value with some small probability pmut. Typical role of mutation in GAs is to

344 B. Djurić, J. Kratica, D. Tošić, V. Filipović

restore lost or unexplored genetic material in the population. The mutation can
be used to prevent premature convergence of GA to suboptimal solutions. The
initial population is usually randomly initialized. For general information about
GAs see [1, 2, 7, 12, 16, 20].

In the past, GAs have been often successfully used to solve NP-hard combi-
natorial optimization problems. Some of these effective applications are presented
in [2, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

The sketch of GA proposed to solve maximally balanced connected partition
problem is given in Figure 2.

Input Data();
Population Init();
while not Finish() do

for ind:= (Nelite + 1) to Npop do

if (Exists in Cache(ind)) then
ovind:= Get Value From Cache(ind);

else

if (Correct Individual(ind)) then
ovind:= Objective Function(ind);

else

ovind:= Objective Function(ind) + Penalty Function(ind);
Put Into the Cache Memory(ind, ovind);
if (Full Cache Memory)) then
Remove LRU Block From Cache Memory();

endif

endif

endif

endfor

Fitness Function();
Selection();
Crossover();
Mutation();

endwhile

Output Data();

Fig. 2. The basic scheme of this GA implementation

In the described algorithm Npop denotes the overall number of individuals in
a population, Nelite represents the number of elite individuals (described in detail
in Section 3.3) and ind and ovind are the individual and its objective value. At the
beginning, the call to Input Data() function reads problem instance as well as GA
parameters. After that, Population Init() function is used to randomly generate
the initial population. Within the for loop, a check of each population member
genetic code (ind) and value (ovind) is performed in the following manner: 1) a call

Solving the MBCP Problem in Graphs by Using GA 345

to the Boolean function Exists in Cache(ind) decides whether the currently pro-
cessed individual had been already stored in cache memory, 2) if it is cached, the
individual information is retrieved from the cache, 3) otherwise, the objective value
of correct individual ind is calculated using the Objective Function(ind), while the
objective value of incorrect individual ind is the sum of Objective Function(ind) and
Penalty Function(ind). Function Put Into the Cache Memory(ind,ovind) is used to
cache current individual information. If cache memory consumption becomes too
large, a call to Remove LRU Block From Cache Memory() function deallocates least
recently used (LRU) block from cache memory. In that way, current individual can
be stored into the previously deallocated block. In each generation, the fitness val-
ues for all individuals are calculated in the above mentioned way, and three GA
operators are subsequently applied to them by invoking Selection(), Crossover(),
and Mutation(). In the continuation, we presented detailed description of all these
GA aspects.

3.1 Representation

One of the key factors affecting the success and efficiency of a genetic algorithm is
the appropriate representation of the problem space. Therefore, it is difficult to find
a relatively short GA encoding dealing with specific constraints that usually direct
search to unfeasible solutions.

A candidate solution is represented by the vector x of |V | binary genes xi ∈
{0, 1}, i = 1, . . . , |V |. Each gene xi is associated to a vertex from V and indicates
whether the vertex i is included in the subset V1 (xi = 1) or in the subset V2 (xi = 0).
After that, the values of w(V1) and w(V2) are computed by summing of all weights
in the corresponding subsets, and the objective value is B(V1, V2) = |w(V1)−w(V2)|.

For each new chromosome, the previous procedure gives one partition of graphG.
This GA representation may generate unconnected partitions. Such solution is in-
correct and GA has to be oriented towards correct solution space. In order to
perform this task, the unconnected partitions are penalized. Properly regulated
penalty will increase probability for appearance of correct individuals in the popu-
lation, through the next generations. For every subgraph, a check of the number
of connected components is executed. This task is performed on both subgraphs of
the current partition via the well known breadth-first search algorithm. If both sub-
graphs have only one connected component, it means that subgraphs are connected.
Such individual is obviously correct and the penalty function will not be applied.

Nevertheless, dealing with unconnected subgraphs (the number of connected
components is more than one), it is convenient to explicitly incorporate that number
into the penalty function. An explicit formula for the penalty function is given in (1).

Penalty Function(ind) = (ncc2(ind)− 1) ∗max1 + (ncc1(ind)− 1) ∗max2 (1)

The value calculated would be added to the objective value in case of incorrect
individual ind. Here ncc1(ind) and nnc2(ind) denote the numbers of connected

346 B. Djurić, J. Kratica, D. Tošić, V. Filipović

components in the first and second subgraphs. The formula for maximal weights
of vertices in the first subgraph is max1 = max{w(j)|j ∈ V1}, and for the second
subgraph it is max2 = max{w(j)|j ∈ V2}.

The overall time complexity of the objective function is O(|V | + |E|). Its esti-
mation is based on the following facts: 1) time complexity for obtaining vector x
from genetic code is equal to O(|V |); 2) retrieval of connected components for sub-
graphs G1 = (V1, E1) and G2 = (V2, E2) is based of the Breadth First Search (BFS)
algorithm whose time complexity is equal to O(|V1| + |E1|) (for G1 = (V1, E1)) and
O(|V2| + |E2|) (for G2 = (V2, E2)), or implies O(|V | + |E|) for searching both sub-
graphs; 3) time complexity for summing of all weights in the corresponding subsets
is O(|V |); 4) time complexity for penalty function is O(1), because max1, max2,
ncc1 and ncc2 are computed in 2).

3.2 Genetic Operators

GA selection operator performs selection of population individuals that are eligible
for creation of the new generation. Selection operation is based on values returned
by the fitness function. So far, various selection operators have been reported (see for
example [1, 2, 12]): roulette wheel selection, ranking selection, tournament selection,
uniform selection, etc. In this paper, an improvement of the classical tournament
selection, fine-grained tournament selection – FGTS (as proposed in [6]) is adopted
as a reproduction operator. Such selection scheme proved to be successful in the
cases when it is desirable that the size of tournament group has rational instead of
integer values. This operator uses real (rational) parameter Ftour denoting desired
average tournament size. The first type of tournaments is held k1 times and its size
is ⌊Ftour⌋. As the second type is held k2 times with ⌈Ftour⌉ individuals participated,

the value of Ftour is calculated as Ftour ≈
k1·⌊Ftour⌋+k2·⌈Ftour⌉

Nnnel
. In this implementation

of FGTS, the value of Ftour = 5.4 is used, which corresponds to values k1 = 30 and
k2 = 20 for Nnnel = Npop −Nelite = 50 non-elitist individuals. The particular value
of 5.4 is chosen because it gave very acceptable results in solving similar problems
(see [6, 7, 13, 14]). The time complexity of FGTS operator is O(Nnnel · Ftour).
In practice, Ftour and Nnnel are considered constant (not depending on problem
dimension), and that effectively results in constant running time complexity. For
detailed information about FGTS see [6, 7].

After selecting pairs of parents, the crossover operator is applied to them in order
to produce offsprings. Provision of an effective penalty function for the unfeasible
individuals implied that standard one-point crossover is used. This operator is
performed with probability of pcross = 0.85, meaning that approximately 85% pairs
of individuals exchange their genetic material.

Finally, a modified simple mutation operator is used to perform randomly se-
lected gene changes in the genetic code of the individual, with certain mutation
rate. During the GA execution it may happen that (almost) all individuals in the
population have the same gene on certain position. These genes are called frozen. If
the number of frozen genes is l, the search space becomes 2l times smaller and the

Solving the MBCP Problem in Graphs by Using GA 347

possibility of the premature convergence increases rapidly. Selection and crossover
operators can not change the bit value of any frozen gene and basic mutation rate
is often insufficiently small to restore the lost search space subregions. If the basic
mutation rate is increased significantly, a genetic algorithm becomes random search.
For this reason, the mutation rate is increased on frozen genes only. Therefore, in
this implementation, mutation rate for frozen genes is 2.5 times higher (1.0/|V |)
when compared to non-frozen ones (0.4/|V |).

3.3 Other GA Aspects

The population size is Npop = 150 individuals. The steady-state generation re-
placement with elitist strategy is used. Initial population is randomly generated,
providing maximal diversity of genetic material.

Two thirds of the population are directly passing to the next generation, i.e. the
number of elite individuals is Nelite = 100. Genetic operators are applied on the rest
of population, so that only one third of the population (Npop − Nelite individuals)
is replaced in every generation. The objective value of every elite individual is
calculated only once, providing significant time saving.

Duplicated individuals are removed from each GA generation. Their fitness va-
lues are set to zero so the selection operator prevents them to enter next generation.
This method is very effective for keeping the desired level of genetic material diversity
and keeping the algorithm away from premature convergence. Individuals with the
same objective values, but different genetic codes may, in some cases, dominate in
the population. If their codes are similar, GA can lead to local optimum. For that
reason, it is useful to limit their appearance to some constant value Nrv (specifically,
it was set to 40 in this GA application).

In order to prevent undeserved domination of elite individuals over the popula-
tion, their fitness are decreased by applying the following formula:

find =

{

find − f, find > f
0, find ≤ f

; 1 ≤ i ≤ Nelite; f =
1

Npop

Npop
∑

i=1

find. (2)

In this way, even non-elite individuals preserve their chance to survive to the
next generation.

During the running of GA, some solutions are often generated repeatedly in
subsequent generations. The classical GA evaluates each solution irrespectively
of its repetition. To increase the efficiency, we used a caching technique [11, 12],
memorizing all newly generated solutions with their objective values. In the case of
a subsequent occurrence of a solution, the objective value can be quickly retrieved
instead of performing a new evaluation, as long as the solution resides in the cache.
The caching technique used applies a least-recently-used (LRU) strategy with a hash-
queue data structure [12]. In this implementation the number of individuals stored
in caching table is limited to constant Ncache = 5 000.

348 B. Djurić, J. Kratica, D. Tošić, V. Filipović

4 EXPERIMENTAL RESULTS

The computational experiments were carried out on a PC based on an AMD Sem-
pron CPU working at 1 597MHz, and with 256MB memory. The OS was Knop-
pix 3.7 Linux. The algorithm was implemented in C programming language.

To demonstrate the efficiency of the proposed genetic algorithm, two families of
graph instances were used. Since there are no standard instances for MBCP, the
instances for the k-cardinality tree problem (KCTP) that contains vertex-weights
appropriate for our problem were generated by grid graph instance’s generator,
mentioned in [3].

The interior vertices of the grid graph have 4 neighbors, the vertices along the
sides have 3 neighbors and only four of them have 2 neighbors (extreme vertices of
the rectangle). Hence, the grid graphs are very sparse. An example of such graph is
presented in Figure 3. According to [3, 4], these graphs represent the hardest test
instances for KCTP. This fact does not necessarily mean that the mentioned grid
graph instances are (too) difficult for our problem (MBCP).

Fig. 3. An example of grid graph

We have constructed 16 instances for each grid graph with n = 05 × 05 up to
15× 15 vertices. In the first case (instance name is ended with letter a), the vertex
weights were integers, chosen from a uniform distribution in the interval [1, 100]. In
the second case (instance name is ended with letter b), random interval chosen was
[1, 500]. The results of applying the proposed GA implementation on those instances
are summarized in Table 1.

Our research was especially focused at the behavior of GA implementation on
instances with weights defined as real numbers (non-integers). Since grid graphs
have symmetric structure, it was interesting to test GA on the other (non-symmetric)
random graph instances. So, we have generated connected random graphs with real
vertex weights, chosen from a uniform distribution in the interval (0, 100]. Specified
generation parameters are the number of vertices and the number of edges. The
edges were generated by choosing among the non-existing ones available at the
moment of generation. Once the graph is generated, a check if it is connected is run,
and if it is not, the procedure is repeated until a connected graph has been created.
Obviously, such process can be more time consuming than the only solution finding.
Additionally, it is very hard to provide a graphic representation of such graphs due to
their total randomness, i.e. effectively lacking any typical characteristics and inner

Solving the MBCP Problem in Graphs by Using GA 349

structure specific to grid graphs. The results related to sparse graphs of various
number of edges used in our experiments can be seen in Table 2.

As mentioned earlier, the parameters tending to be adequate and to demonstrate
GA robustness for this problem were used. The maximal number of generations is
Ngen = 5 000. The algorithm stops if the best individual or the best objective
value remains unchanged through Nrep = 2 000 successive generations, respectively.
Previous criterion allowed the convergence of GA to optimal solutions in all cases
of grid graph instances. On random graph instances, GA also converged to very
good solutions. Only minor improvements in the quality of final solutions can be
expected when prolonging the runs, that can be seen from the ttot and t columns of
Tables 1–2. All experiments were repeated 20 times using different random number
seeds.

Also, comparison between our GA implementation and balance implementation
was made. The only method for creation of the latter was found in [5]. Block-
articulation tree was done using the considerably efficient block-cut-tree implemen-
tation. Description of this method can be found in [10, 15], and its efficiency became
obvious as per results presented in the balancet column. Balance method was then
applied on the block-articulation tree generated in the above mentioned manner.

In first three columns, the instance’s name, the number of vertices and edges
are given, respectively. The next column (GAbest) contains the best solution of GA
on the current instance. Average time needed to detect the best value is given in
t column, while ttot represents the total time (in seconds) needed to meet finishing
criterion. On average, GA finished its execution in gen generations. The next
two columns are related to the caching: eval represents the average number of
evaluations, while cache displays savings (in percents) achieved by using caching
technique. The results, got by testing the mentioned balance implementation, are
given in the last two columns. balancesol represents the solution of balance algorithm
and the column balancet contains time (in seconds) needed for executing of balance
algorithm.

GA concept cannot prove optimality as adequate exit criteria. Therefore, as
column ttot in Tables 1-2 shows, our algorithm runs through additional ttot − t time
(until finishing criteria is satisfied), although it already reached optimal/best solu-
tion.

As can be seen from Table 1, GA reaches optimal solutions in all cases on the
grid graph instances, because the value of objective function B(V1, V2) = |w(V1) −
w(V2)| ≥ 0 and weights are integers. The obtained value of 0 is verified to be optimal
in case of w(V) =

∑

i∈V w(i) is even and value of 1 is verified to be optimal if w(V)
is odd.

The optimality of GA solutions, presented in Table 2, can not be verified, because
GA is not an exact method but only metaheuristic. Therefore, these results seem
to be promising because weights are chosen uniformly from interval (0, 100] and
balance is less than 0.02 in almost all cases.

350 B. Djurić, J. Kratica, D. Tošić, V. Filipović

Inst. |V | |E| GAbest t ttot gen eval cache balancesol balancet
(sec) (sec) (%) (sec)

05x05a 25 40 1 0.01 0.36 2 039 23 945 76.5 75 < 0.01

05x05b 25 40 1 0.02 0.37 2 113 22 949 78.4 215 < 0.01
05x06a 30 49 0 0.03 0.41 2 121 31 384 70.6 30 < 0.01
05x06b 30 49 1 0.05 0.43 2 223 31 289 71.7 241 < 0.01
05x10a 50 85 1 0.10 0.72 2 284 46 321 59.6 59 < 0.01
05x10b 50 85 0 0.30 0.91 2 894 59 114 59.2 36 < 0.01
05x20a 100 175 0 0.52 1.73 2 845 77 895 45.3 22 < 0.01
05x20b 100 175 1 0.62 1.77 2 939 79 153 45.9 103 0.01

07x07a 49 84 0 0.185 0.804 2 575 54 770 57.6 20 < 0.01
07x07b 49 84 1 0.135 0.743 2 425 49 687 58.9 209 < 0.01
07x10a 70 123 1 0.376 1.249 2 839 68 848 51.3 7 < 0.01
07x10b 70 123 0 0.306 1.186 2 676 64 921 51.5 28 < 0.01
10x10a 100 180 1 0.598 1.809 2 890 81 512 43.6 73 < 0.01
10x10b 100 180 1 0.426 1.633 2 678 72 829 45.7 213 < 0.01
15x15a 225 420 0 1.637 4.439 3 083 102 896 33.2 84 0.08
15x15b 225 420 0 2.132 4.669 3 349 108 240 35.3 290 0.07

Table 1. GA and balance results on grid-graph instances

Inst. |V | |E| GAbest t ttot gen eval cache balancesol balancet
(sec) (sec) (%)

rnd01 20 30 1.14274 0.19 0.52 3 079 37 560 75.6 298.89 < 0.01

rnd02 20 50 0.01965 0.12 0.49 2 609 43 500 66.7 283.79 < 0.01
rnd03 20 100 0.00626 0.25 0.68 3 155 55 751 64.7 338.45 0.01
rnd04 30 50 0.00915 0.17 0.58 2 841 47 652 66.5 332.88 < 0.01
rnd05 30 70 0.01036 0.20 0.65 2 879 55 696 61.6 133.94 < 0.01
rnd06 30 200 0.00029 0.32 0.93 2 962 66 923 54.8 35.64 < 0.01
rnd07 50 70 0.01608 0.31 0.92 3 010 62 175 58.9 2 172.22 < 0.01
rnd08 50 100 0.00531 0.39 1.10 3 131 70 911 54.9 3.22 < 0.01
rnd09 50 400 0.00024 0.88 1.92 3 410 90 822 46.3 272.12 0.01
rnd10 70 100 0.01328 0.59 1.40 3 298 77 341 53.2 1 347.74 < 0.01

rnd11 70 200 0.00023 0.784 1.737 3 438 87 888 48.9 228.12 0.01
rnd12 70 600 0.00232 1.275 2.910 3 325 102 261 38.1 331.02 0.02
rnd13 100 150 0.00859 0.954 2.032 3 405 90 886 46.8 2 378.97 < 0.01
rnd14 100 300 0.00137 0.924 2.355 3 216 91 851 42.9 125.77 0.02
rnd15 100 800 0.00155 1.472 3.812 3 169 103 405 35.1 176.28 0.05
rnd16 200 300 0.00574 3.216 4.972 4 232 133 738 36.9 3 821.85 0.04
rnd17 200 600 0.00058 2.567 5.255 3 535 116 925 34.4 40.58 0.16
rnd18 200 1500 0.00011 3.318 7.380 3 449 108 022 37.5 23 158.79 0.43
rnd19 300 500 0.00039 5.048 7.747 4 179 140 576 32.8 455.49 0.18
rnd20 300 1 000 0.00025 3.035 7.560 3 218 112 420 30.2 255.35 0.60
rnd21 300 2 000 0.00008 6.088 11.614 3 864 12 4274 35.5 51.25 1.21

Table 2. GA and balance results on random graph instances

Solving the MBCP Problem in Graphs by Using GA 351

The presented GA results clearly indicate very good quality of obtained so-
lutions. Also, the overall running times (ttot) are relatively short (not exceeding
12 seconds in the worst case). Although the optimality can not be proved in the
case of random instances, we believe that our GA obtained high-quality solutions
and that it represents significant contribution for solving MBCP.

Comparison of GAbest and balancesol shows that the latter implementation pro-
vides weaker results. Such outcome is expected since GA does not have gap upper
bound (gap = GAbest − opt, where opt denotes optimal solution) as the balance
method. Also, the value of gap upper bound in the balance implementation was
very good. It is taken from [5] as well as the very quick heuristics.

5 CONCLUSION

In this paper we have described a GA approach to MBCP solving. This heuris-
tic seems to work well for problems with up to 300 vertices and 2000 edges. The
proposed GA obtained the optimal solutions for all available grid graph instances.
For random instances, the obtained results are very promising, but we are not able
to prove their optimality by GA. Computational experiments demonstrate the ro-
bustness of our GA implementation with respect not only to the quality of obtained
solutions, but also to the running times.

Our work can be extended in several ways. Firstly, the investigation of the
possibility of hybridization with some exact methods could be done. The genetic
algorithm described in this paper can also be used to solve similar problems within
the acceptable time limits.

Acknowledgement

This research was partially supported by the SerbianMinistry of Science and Ecology
under project 144007. The authors are grateful to Christian Blum for grid graph
instance’s generator, Janka Chlebikova for information about the balance algorithm
and Ivana Ljubic for the efficient block-cut-tree implementation. We also thank Igor
Djurić, Zorica Stanimirović and anonymous referees for their useful comments on
this paper.

REFERENCES

[1] Bäck, T.—Fogel, D.B.—Michalewicz, Z.: Evolutionary Computation 1: Ba-
sic Algorithms and Operators. Institute of Physics Publishing, Bristol-Philadelphia,
2000.

[2] Bäck, T.—Fogel, D.B.—Michalewicz, Z.: Evolutionary Computation 2:
Advanced Algorithms and Operators. Institute of Physics Publishing, Bristol-
Philadelphia, 2000.

352 B. Djurić, J. Kratica, D. Tošić, V. Filipović

[3] Blum, C.—Ehrgott, M.: Local Search Algorithms for the k-Cardinality Tree

Problem. Discrete Applied Mathematics, Vol. 128, 2003, No. 2–3, pp. 511–540.

[4] Brimberg, J.—Urošević, D.—Mladenović, N.: Variable Neighborhood Search
for the Vertex Weighted k-Cardinality Tree. European Journal of Operational Re-
search, Vol. 171, 2006, pp. 74–84.

[5] Chleb́ıková, J.: Approximating the Maximally Balanced Connected Partition
Problem in Graphs. Information Processing Letters, Vol. 60, 1996, pp. 225, pp. 230.

[6] Filipović, V.: Fine-Grained Tournament Selection Operator in Genetic Algorithms.
Computing and Informatics, Vol. 22, 2003, No. 2, pp. 143–161.

[7] Filipović, V.: Selection and Migration Operators and Web Services in Parallel Evo-

lutionary Algorithms (in Serbian). Ph.D. thesis, Faculty of Mathematics, University
of Belgrade, 2006.

[8] Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, 1975.

[9] Juhos, I.—van Hemert, J. I.: Improving Graph Colouring Algorithms and Heuris-
tics Using a Novel Representation. Lecture Notes in Computer Science, Vol. 3906,
2006, pp. 123–134.

[10] Kersting, S.—Raidl, G.R.—Ljubic, I.: A Memetic Algorithm for Vertex-
Biconnectivity Augmentation. Applications of Evolutionary Computing: EvoWork-
shops 2002, Vol. 2279, 2002, pp. 102–111.

[11] Kratica, J.: Improving Performances of the Genetic Algorithm by Caching. Com-
puters and Artificial Intelligence, Vol. 18, 1999, No. 3, pp. 271–283.

[12] Kratica, J.: Parallelization of Genetic Algorithms for Solving Some NP-complete
Problems (in Serbian). Ph.D. thesis, Faculty of Mathematics, University of Belgrade,
2000.

[13] Kratica, J.—Stanimirović, Z.: Solving the Uncapacitated Multiple Allocation
p-Hub Center Problem by Genetic Algorithm. Asia-Pacific Journal of Operational
Research, Vol. 24, 2006, No. 4, pp. 425-437.

[14] Kratica, J.—Stanimirović, Z.—Tošić, D.—Filipović, V.: Two Genetic Algo-
rithms for Solving Uncapacitated Single Allocation Hub Location Problem. European

Journal of Operational Research, Vol. 182, 2007, No. 1, pp. 15–28.

[15] Ljubić, I.—Raidl, G. R.: A Memetic Algorithm for Minimum-Cost Vertex-
Biconnectivity Augmentation of Graphs. Journal of Heuristics, Vol. 9, 2003,
pp. 401–427.

[16] Ljubić, I.: Exact and Memetic Algorithms for Two Network Design Problems. Ph.D.
thesis, Institute of Computer Graphics, Vienna University of Technology, 2004.

[17] Ljubić, I.—Weiskircher, R.—Pferschy, U.—Klau, G.W.—Mutzel, P.—

Fischetti, M.: An Algorithmic Framework for the Exact Solution of the Prize-
Collecting Steiner Tree Problem. Mathematical Programming, Series B, Vol. 105,
No. 2–3, 2006, pp. 427-449.

[18] Puchinger, J.—Raidl, G. R.—Pferschy, U.: The Core Concept for the Multi-
dimensional Knapsack Problem. Lecture Notes in Computer Science, Vol. 3906, 2006,
pp. 195–208.

Solving the MBCP Problem in Graphs by Using GA 353

[19] Raidl, G. R.—Gottlieb, J.: Empirical Analysis of Locality, Heritability and

Heuristic Bias in Evolutionary Algorithms: A Case Study for the Multidimensional
Knapsack Problem. Evolutionary Computation, Vol. 13, 2005, No. 4, pp. 441–475.

[20] Stanimirović, Z.: Solving Some Discrete Location Problems by Using Genetic Algo-

rithms (in Serbian). Master’s thesis, Faculty of Mathematics, University of Belgrade,
2004.

[21] Stanimirović, Z.: An Efficient Genetic Algorithm for the Uncapacitated Multiple

Allocation p-hub Median Problem. submited for Control and Cybernetics.

[22] Stanimirović, Z.: A Genetic Algorithm Approach for the Capacitated Single Allo-
cation p-Hub Median Problem. Computing and Informatics, Vol. 27, 2008.

Brankica Djuri� received her B. Sc. degree in mathematics

(1999) from University of Belgrade, Faculty of Mathematics.
Since 2000 she works as a research assistant at the Faculty of
Mathematics. She is about to complete her M. Sc. studies in
teaching mathematics and computer science, with thesis con-
cerned with graph problems. Her research interests also include
genetic algorithms and combinatorial optimization.

Jozef Kratia received his B. Sc. degrees in mathematics

(1988) and computer science (1988), M. Sc. in mathematics
(1994) and Ph.D. in computer science (2000) from University
of Belgrade, Faculty of Mathematics. In 2002 he joined Mathe-
matical Institute as a researcher. As a delegation leader, he par-
ticipated in the International Olympiads in Informatics (IOI ’90
Minsk – Belarus, IOI ’93 Mendoza – Argentina). His research
interests include genetic algorithms (evolutionary computation),
parallel and distributed computing and location problems.

Dušan To�si� received his B. Sc. degree in mathematics (1972),
M. Sc. in mathematics (1977) and Ph.D. in mathematics (1984)
from the University of Belgrade, Faculty of Mathematics. Since
1985 he has been professor of computer science at the Faculty of
Mathematics. His research interests include parallel algorithms,
optimization and evolutionary computation, numerical solving
of the differential equations and teaching computer science.

354 B. Djurić, J. Kratica, D. Tošić, V. Filipović

Vladimir Filipovi� received his B. Sc. degree (1993), M. Sc.

(1998) and Ph.D. (2006) in computer science from University of
Belgrade, Faculty of Mathematics. In 2006, he became assistant
professor of computer science at the Faculty of Mathematics. His
research interests include genetic algorithms, parallel algorithms
and operational research.

