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Abstract. We consider an n-ary random Boolean function f such that Pr[f(α̃) = 1]
= p for α̃ ∈ {0, 1}n and study its geometric model, the so called interval graph. The
interval graph of a Boolean function was introduced by Sapozhenko and has been
used in construction of schemes realizing Boolean functions. Using this model, we
estimate the number of maximal intervals intersecting a given maximal interval of
a random Boolean function and prove that the asymptotic bound on the logarithm
of the number is (1 + ϕ(n)) log2 log1/p n · log2 n, where ϕ(n) → 0 as n → ∞.
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1 PRELIMINARIES

Local algorithms form an important subclass of algorithms for construction of opti-
mal schemes. The main idea of local algorithms is simple: they introduce a metric
on the “space” of all elements (building blocks of schemes) and a “measure of qua-
lity” of elements. Then for every element of the scheme under construction they
analyze its neighbouring elements, searching for better ones; if such elements exist,
local algorithms chose the best of them and substitute the original element. The
whole procedure is repeated until no replacement/improvement is possible.

Zhuravlev [12] studied the use of local algorithms in the minimization of disjunc-
tive normal form (d.n.f.). He introduced the notion of a conjunction neighbourhood

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics, SAS,...

https://core.ac.uk/display/267941205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


628 E. Toman, D. Olejár, M. Stanek

and proved that the optimal d.n.f. cannot be constructed in general by means of
local algorithms based on finite (local) conjunction neighbourhoods. Though it is
impossible to find an optimal solution by means of local algorithms, we can con-
struct a sub-optimal d.n.f. by analyzing the first order neighbourhoods in almost all
d.n.f.’s of a given Boolean function.

We shall use the standard notation of Boolean function theory [12] and therefore
we introduce only the notions and notation necessary for understanding the paper.
Boolean variables and their negations are called literals. The literal of a variable x
will be denoted by xα, (α ∈ {0, 1}), where

xα =

{

x if α = 1,
¬x if α = 0.

A conjunction K = x
αi1
i1

. . . x
αir
ir

of literals of different variables is called an elemen-

tary conjunction. The number of literals (r) in a conjunction K is called the rank

of K. A special case is the conjunction of rank 0; it is called empty and its value is
set to 1.

A formulaD = K1∨· · ·∨Km, the disjunction of distinct elementary conjunctions
is called a disjunctive normal form. The parameter m (the number of elementary
conjunctions in D) is called the length of D. The d.n.f. with m = 0 is called empty

and its value is 0. A d.n.f. D represents a Boolean function f if the truth tables
of f and D coincide. Let us consider the class of all d.n.f.’s representing an n-ary
Boolean function f ; the d.n.f. with the minimal number of literals in this class is
called a minimal d.n.f. of f , and the d.n.f. with the minimal length (in this class)
is called a shortest d.n.f. of f .

We use a geometric representation of Boolean functions. The Boolean n-cube Bn

is a graph Bn with 2n vertices α̃ = (α1, . . . , αn);αi ∈ {0, 1} where edges are joining
those pairs of vertices which differ in exactly one coordinate. For an n-ary Boolean
function f let Nf denote the subset of vertices {(α1, . . . , αn); f(α1, . . . , αn) = 1}.
As can be easily seen, there is a one-to-one correspondence between the sets Nf and
Boolean functions f . The set of vertices NK ⊆ {0, 1}n corresponding to an elemen-
tary conjunction K od rank r is called the interval of order r. Obviously, to every
elementary conjunction K = x

αi1
i1

. . . x
αir
ir

corresponds an interval of order r consist-
ing of all vertices (β1, . . . , βn) of B

n, such that βij = αij for j = 1, . . . , r (the values
of other vertex coordinates can be chosen arbitrarily). Consequently, every vertex
of Bn represents an interval of order n and the vertex set of Bn itself corresponds
to the interval of order 0. In the geometric model, every interval of order r repre-
sents an (n − r)-dimensional subcube of Bn . An interval NK is called a maximal
interval of a Boolean function f if NK ⊆ Nf and there is no such interval NK′ ⊆ Nf

such that NK ⊆ NK′ . For every elementary conjunction K from the d.n.f. D the
neighbourhood of K of the first order (with respect to the d.n.f. D) is defined as
the set of all elementary conjunctions Kj from D, such that (in algebraic notation)
K ∧Kj 6≡ 0 or (in our geometric model) NK

⋂

NKj 6= ∅. (Since we study mainly
the neighbourhoods of the first order in this paper, the notion “neighbourhood” will
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denote the neighbourhood of the first order.) For an arbitrary Boolean function f
and each of its d.n.f.’s K1 ∨K2 ∨ · · · ∨Km we have that

Nf =

m
⋃

j=1

NKj .

In other words, every d.n.f. of a Boolean function f corresponds to a covering of Nf

by intervals NK1
, . . . , NKm such that NKj ⊆ Nf . Conversely, every covering of Nf by

intervals NK1
, . . . , NKm contained in Nf corresponds to some d.n.f. of f . Using the

geometric interpretation of d.n.f.’s, we can express the “irreducibility” of d.n.f.: the
d.n.f. D of a Boolean function f cannot be simplified if and only if every interval NK

of the covering, corresponding to D contains at least one vertex belonging to just
one interval of the covering. Let rj denote the order of an interval NKj . Then the
number of literals in a d.n.f. is r =

∑m
j=1 rj and the construction of the minimal d.n.f.

can be formulated in the geometric model as a problem of constructing a covering
of Nf by intervals NKj ⊆ Nf with minimal r. On the other hand, the construction
of the covering corresponding to a shortest d.n.f. requires to minimize the number
of intervals in a covering of Nf . Various metrical parameters of “typical” Boolean
functions have been studied in the context of Boolean functions minimization in the
class of d.n.f.’s [5, 6, 7, 8, 9, 10]. We introduce a more general model of Boolean
functions, a concept of random Boolean function, now. A random Boolean function
is defined on vertices of the Boolean n-cube in the following way:

f(α1, . . . , αn) =

{

1 with probability p,

0 with probability 1− p,

where the value f(α̃) does not depend on the values which the Boolean function f
attains on other vertices. Recall that the set Nf contains all vertices α̃ ∈ {0, 1}n

with f(α̃) = 1. The subgraph of the Boolean n-cube induced by the set Nf is called
the graph of f and will be denoted by G(f). The probability that the graph G(f)
of random Boolean function f is realized by a subgraph G of the Boolean n-cube is

Pr[G(f) = G] = pm · (1− p)2
n
−m,

where m denotes the number of vertices in G. Let A be a certain property that
a Boolean function may or may not have. If

lim
n→∞

Pr[f has the property A] = 1,

we say that a random Boolean function has the property A almost surely. Sa-
pozhenko [5] studied some parameters of the graph G(f) for p = 1

2
associated with

local minimization algorithms. Some of his results were generalized and improved by
Toman in [8] for 0 < p ≤ 1. In [5] Sapozhenko introduced and studied the interval
graph of a Boolean function f . The interval graph Γ(f) is a graph associated with
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a Boolean function f ; its vertices correspond to maximal intervals of f and the
vertices corresponding to intervals NKi and NKj are joined by an edge in Γ(f) if
and only if Ki ∧Kj 6≡ 0, or equivalently, NKi

⋂

NKj 6= ∅. We study the degree of
a vertex in Γ(f); namely we estimate the lower and upper bounds of this parameter.
The main result of the paper is an asymptotic bound on the logarithm of the vertex
degree of a interval graph Γ(f). This bound enables us to estimate both the accuracy
of the obtained results and the computational complexity of local algorithms for the
minimization of d.n.f.’s.

Škoviera [6, 7], Glagoliev [2] and Weber [10] studied some properties of ran-
dom Boolean functions. They used combinatorial-probabilisticmethods, considering
metric parameters of Boolean functions as random variables, estimated the expec-
tations and variances of these variables and finally they estimated their values by
means of Markov’s and Chebyshev’s inequalities. The same approach will be used
in the present paper. Let X be a random variable and let the symbols E(X) and
Var(X) = E(X − E(X))2 denote the expectation and variance of a random variab-
leX, respectively. (We only use nonnegative random variables in the present paper.)

2 THE SIZE OF THE NIEGHBOUROOD

OF A GIVEN MAXIMAL INTERVAL

Let X α̃
n,k be a random variable denoting the number of k−dimensional intervals

containing a fixed vertex α̃.

Lemma 1.

E(X α̃
n,k) =

(

n

k

)

· p2
k

. (1)

Proof. Let f be an n-ary random Boolean function. For every k-dimensional sub-
cube (interval) NK of the n-cube Bn we introduce a random variable ηK(f) (called
an indicator) defined as follows:

ηK(f) =

{

1 if NK ⊆ Nf ,

0 otherwise.

Obviously, the random variable X α̃
n,k is the sum of all indicators:

X α̃
n,k =

∑

NK

ηK(f),

where the summation ranges over all k-dimensional subcubes of Bn. The Boolean
function f attains the value 1 on all vertices of an k-dimensional interval NK with
probability

Pr[NK ⊆ Nf ] = p2
k

= E(ηK(f)).
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There are
(

n
k

)

k-dimensional subcubes (intervals) in Bn containing a fixed vertex α̃.
Consequently,

E(X α̃
n,k) =

(

n

k

)

· p2
k

.

�

Now we estimate the variance of the random variable X α̃
n,k.

Lemma 2.

Var
(

X α̃
n,k

)

≤

(

n

k

)2

p2
k+1

[

k3

np2
+

k

p2k
(

n
k

)

]

.

Proof. We express the expectation of the random variable (X α̃
n,k)

2 and then we
compute its variance. Let NK and NK′ be two k-dimensional subcubes of Bn con-
taining a vertex α̃. To abbreviate the notation, we denote the probability that both
subcubes NK and NK′ belong to Nf by the symbol Pn,k(NK , NK′). Since both NK

and NK′ contain the vertex α̃, they have a nonempty intersection, an interval of
dimension j; 0 ≤ j ≤ k. Therefore

E((X α̃
n,k)

2) =
∑

NK ,NK′

Pn,k(NK , NK′) =
k
∑

j=0

(

n

j

)(

n− j

k − j

)(

n− k

k − j

)

p2
k+1

−2j ,

and

Var(X α̃
n,k) =

k
∑

j=0

(

n

j

)(

n− j

k − j

)(

n− k

k − j

)

p2
k+1

−2j −

(

n

k

)2

p2
k+1

.

Now we can derive an upper bound on the variance.

Var
(

X α̃
n,k

)

=
k
∑

j=0

(

n

j

)(

n− j

k − j

)(

n− k

k − j

)

p2
k+1

−2j −

(

n

k

)2

p2
k+1

=

(

n

k

)(

n− k

k

)

p2
k+1

−1 +

k
∑

j=1

(

n

j

)(

n− j

k − j

)(

n− k

k − j

)

p2
k+1

−2j −

(

n

k

)2

p2
k+1

≤

(

n

k

)2

p2
k+1

−

(

n

k

)2

p2
k+1

+

k
∑

j=1

(

n

j

)(

n− j

k − j

)(

n− k

k − j

)

p2
k+1

−2j

=

k
∑

j=1

(

n

j

)(

n− j

k − j

)(

n− k

k − j

)

p2
k+1

−2j =

(

n

k

)

p2
k+1

k
∑

j=1

(

k

j

)(

n− k

k − j

)

p−2j .

We denote
(

k
j

)(

n−k
k−j

)

p−2j by bj and estimate the ratio

bj+1

bj
=

p−2j(k − j)2

(j + 1)(n− 2k + j + 1)
.
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Since
bj+1

bj
:

{

< 1 if j < ⌊log2 log1/p n⌋,

> 1 otherwise,

the maximal value of bj is b1 or bk. Therefore

k
∑

j=1

bj ≤ k(b1 + bk) ≤ k

(

k

(

n− k

k − 1

)

p−2 + p−2k
)

,

and

Var(X α̃
n,k) ≤

(

n

k

)

p2
k+1

(

k2

(

n− k

k − 1

)

p−2 + kp−2k
)

≤

(

n

k

)2

p2
k+1

[

k3

np2
+

k

p2k
(

n
k

)

]

.

�

Škoviera [6] proved that dimension k of a maximal interval of a random Boolean
function satisfies the following inequalities:

⌊log2 log1/p n⌋ ≤ k ≤ ⌊log2 log1/p n+ log2 log2 log1/p n⌋+ 1. (2)

Corollary 1. Let k be an integer satisfying (2). Then

Var(X α̃
n,k) ≤ E(X α̃

n,k)
c1 log1/p n

n
,

where c1 is a positive constant.

Let Y α̃
n,k be the random variable, expressing the number of k-dimensional maxi-

mal intervals containing a vertex α̃ and let E
(

Y α̃
n,k

)

be its expectation. Then we
have

Lemma 3.

E(Y α̃
n,k) =

(

n

k

)

p2
k
(

1− p2
k
)n−k

.

Proof. Let P (NK) denote the probability that a fixed maximal interval NK con-
taining a vertex α̃ belongs to the set Nf of a random Boolean function f . Obviously,

P (NK) = p2
k
(

1− p2
k
)n−k

and the number of such intervals is
(

n
k

)

. Combining these

two facts completes the proof of our lemma. �

Now we shall estimate the variance Var(Y α̃
n,k).

Lemma 4. Let k be an integer satisfying (2). Then

Var(Y α̃
n,k) ≤ c2

log1/p n

n
E2(X α̃

n,k),

where c2 is a positive constant.
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Proof. Using Lemma 3 we have

Var(Y α̃
n,k) =

k
∑

j=0

(

n

j

)(

n− j

k − j

)(

n− k

k − j

)

P ′

j(NKs , NKt)−

((

n

k

)

p2
k

(1− p2
k

)n−k

)2

,

where P ′

j(NKs, NKt) denotes the probability that a random Boolean function con-
tains k-dimensional maximal intervals NKs and NKt, both containing a fixed ver-
tex α̃ and NKs

⋂

NKt is a j-dimensional interval. The probability P ′

j(NKs, NKt) can
be estimated in the following way:

P ′

j(NKs, NKt) ≤ Pj(NKs , NKt) = p2
k+1

−2j ,

where Pj(NKs , NKt) denotes the probability that a random Boolean function con-
tains k-dimensional intervals NKs and NKt , both containing the fixed vertex α̃ and
NKs

⋂

NKt is a j-dimensional interval. We have

Var(Y α̃
n,k) ≤

k
∑

j=0

(

n

j

)(

n− j

k − j

)(

n− k

k − j

)

Pj(NKs, NKt)−

((

n

k

)

p2
k

(1− p2
k

)n−k

)2

≤

(

n

k

)(

n− k

k

)

p2
k+1

−1 +

(

n

k

) k
∑

j=1

(

k

j

)(

n− k

k − j

)

p2
k+1

−2j −

((

n

k

)

p2
k

(1− p2
k

)n−k

)2

≤

((

n

k

)

p2
k

)2

−

((

n

k

)

p2
k

(1− p2
k

)n−k

)2

+

(

n

k

) k
∑

j=1

(

k

j

)(

n− k

k − j

)

p2
k+1

−2j

≤

((

n

k

)

p2
k

)2
(

1− (1− p2
k

)2(n−k)
)

+

(

n

k

) k
∑

j=1

(

k

j

)(

n− k

k − j

)

p2
k+1

−2j

≤ E2
(

X α̃
n,k

)

(

1− (1−
1

n
)2
)

+ c1
log1/p n

n
E2
(

X α̃
n,k

)

≤ c2
log1/p n

n
E2
(

X α̃
n,k

)

.

�

Definition 1. A vertex α̃ ∈ Nf , satisfying the condition

|(Y α̃
n,k − E(Y α̃

n,k)| ≥
1

log1/p n
E(X α̃n,k)

will be called a bad vertex of random Boolean function f , otherwise, the vertex α̃
will be called a good vertex of random Boolean function f .

The following lemma is a direct consequence of Chebyshev’s inequality and
Lemma 4.
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Lemma 5. Let k be an integer satisfying (2), and let Pn(α̃) be the probability
that α̃ is a bad vertex of an n-ary random Boolean function. Then

Pn(α̃) ≤
c2 log

3
1/p n

n
.

Now we estimate the number of bad vertices in a random Boolean function.

Lemma 6. Let bk(f) be a random variable expressing the number of bad vertices
of a random Boolean function f . Let δn be the probability that

bk(f) ≤ 2n
log1/p n

n
.

Then δn ≥ 1− c3/ log1/p n, where c3 is a positive constant.

Proof. A vertex α̃ is a bad vertex of an n-ary random Boolean function f with
probability Pn(α̃). The expectation of the number of bad vertices in f is

E(bk(n)) = Pn(α̃) · 2
n ≤

c2 log
3
1/p n

n
· 2n.

It follows from the Markov’s inequality that the probability that

bk(f) ≤
log41/p n

n
· 2n

is at least 1− c3/ log1/p n. �

Let NK denote a fixed maximal interval of a random Boolean function f . Let
b′k(f) be a random variable expressing the number of bad vertices in NK . Then

E(b′k(f)) ≤
2k log41/p n

n

and consequently (by Markov’s inequality)

b′k(f) ≤
2k log41/p n

n
= o(2k),

for ⌊log2 log1/p n⌋ ≤ k ≤ ⌊log2 log1/p n+log2 log2 log1/p n⌋+1 with probability tending
to 1 as n → ∞. Hence, an n-ary random Boolean function f , containing NK as
a maximal interval (and a k-dimensional subcube of n-cube Bn) contains at least
one good vertex.

By the symbol Θ(NK) we denote the neighbourhood of the first order of a maxi-
mal interval NK , that is the set of all maximal intervals of a Boolean function f
having a nonempty intersection with NK .
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Theorem 1. Let f be an n-ary random Boolean function and letNK induce a maxi-
mal interval of f . Then the following inequalities hold with probability tending to 1
as n → ∞:

n(1−εn) log2 log1/p n ≤ |Θ(NK)| ≤ n(1+ε′n) log2 log1/p n,

where εn, ε
′

n → 0 as n → ∞.

Proof. If a fixed subcube of Bn induces a maximal interval of a random Boolean
function f , then this interval contains at least one good vertex. The following
inequalities follow from Lemma 5:

E(Y α̃
n,k)−

E(X α̃
n,k)

log1/p n
≤ Y α̃

n,k ≤ E(Y α̃
n,k) +

E(X α̃
n,k)

log1/p n
.

Now we use the bounds (2) on the dimension of maximal intervals in Nf to fi-
nish the proof. To abbreviate the notation, we set k0 = ⌊log2 log1/p n⌋ and k1 =
⌊log2 log1/p n+ log2 log2 log1/p n⌋+ 1.

Upper bound.

|Θ(NK)| ≤
∑

α̃

k1
∑

k=k0

[

E(Y α̃
n,k) +

E(X α̃
n,k)

log1/p n

]

≤
k1
∑

k=k0

[

E(Y α̃
n,k) +

E(X α̃
n,k)

log1/p n

]

p2
k

≤
k1
∑

k=k0

[

(

n

k

)

p2
k

(1− p2
k

)n−k +

(

n

k

)

p2
k

log1/p n

]

· p2
k

≤
k1
∑

k=k0

[

(

n

k

)

p2
k+1

2k

(

(1− p2
k

)n−k +
1

log1/p n

)]

≤
k1
∑

k=k0

(

n

k

)

p2
k+1

· 2k

(

(1−
1

n2
) +

1

log1/p n

)

≤ (k1 − k0 + 1)

(

n

k1

)

p2
k0+1

2k1 ≤ (k1 − k0 + 1)p2
k0+1

2k1nk1

≤ n(1+ε′n) log2 log1/p n,

where ε′n → 0 as s → ∞.
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Lower bound.

|Θ(NK)| ≥
∑

α̃

k1
∑

k=k0

[

E(Y α̃
n,k)−

E(X α̃
n,k)

log1/p n

]

≥
k1
∑

k=k0

[

E(Y α̃
n,k)−

E(X α̃
n,k)

log1/p n

]

p2
k

≥
k1
∑

k=k0

(

n

k

)

p2
k+1

(

(1− p2
k

)n−k −
1

log1/p n

)

≥
k1
∑

k=k0

(n

k

)k

p2
k+1

· 2k

(

(1− p2
k

)n−k −
1

log1/p n

)

≥ (k1 − k0 + 1) ·
nk0

kk1
1

· p2
k1+1

(

(

1−
1

n2

)n−k0

−
1

log1/p n

)

≥ n(1−εn) log2 log1/p n,

where εn → 0 as n → ∞. �

3 CONCLUSIONS

Two important facts follow from the obtained results. In general, the application of
the local analysis of the first order neighbourhood in the minimization algorithms
increases their complexity at most by a multiplicative factor of n(1+εn) log2 log1/p n,
where εn → 0 as n → ∞. On the other hand, the local analysis improves the
performance of approximative algorithms.

Let us consider the well known greedy algorithm. For every interval NK under
processing we create a list of the intervals from its neighbourhood of the first order
and sort them with respect to their dimensions. Then we check the intervals from
the list (starting with intervals of the smallest dimension); if all of the vertices
of the interval being processed are covered by other intervals from the list, we do
not need this interval and delete it from the list. Finally we find a vertex of Nf

which is covered only by the tested interval (and maybe by some previously omitted
intervals, too); the corresponding elementary conjunction must be included in the
d.n.f. Having gradually checked all the intervals in the list, we obtain a d.n.f. which
can not be simplified. The length of this d.n.f. is at most c · log2 log1/p n-times larger
(where c is a positive constant) than the length of the shortest d.n.f. of this Boolean
function [7].
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