
Computing and Informatics, Vol. 29, 2010, 1337–1348

OPTIMIZING AN LTS-SIMULATION ALGORITHM

Lukáš Hoĺık, Jǐŕı Šimáček

Faculty of Information Technology
Brno University of Technology
Božetěchova 2
612 66 Brno, Czech Republic
e-mail: {holik, isimacek}@fit.vutbr.cz

Revised manuscript received 11 May 2010

Abstract. When comparing the fastest algorithm for computing the largest simu-
lation preorder over Kripke structures with the one for labeled transition systems
(LTS), there is a noticeable time and space complexity blow-up proportional to the
size of the alphabet of an LTS. In this paper, we present optimizations that suppress
this increase of complexity and may turn a large alphabet of an LTS to an advan-
tage. Our experimental results show significant speed-ups and memory savings.
Moreover, the optimized algorithm allows one to improve asymptotic complexity of
procedures for computing simulations over tree automata using recently proposed
algorithms based on computing simulation over certain special LTS derived from
a tree automaton.

1 INTRODUCTION

A practical limitation of automated methods dealing with LTSs – such as LTL model
checking, regular model checking, etc. – is often the size of generated LTSs. One of
the well established approaches to overcome this problem is the reduction of an LTS
using a suitable equivalence relation according to which the states of the LTS are
collapsed. A good candidate for such a relation is simulation equivalence. It strongly
preserves logics like ACTL∗, ECTL∗, and LTL [6, 7, 8], and with respect to its
reduction power and computation cost, it offers a desirable compromise among the
other common candidates, such as bisimulation equivalence [10, 12] and language
equivalence. The currently fastest LTS-simulation algorithm (denoted as LRT –
labeled RT) has been published in [1]. It is a straightforward modification of the
fastest algorithm (denoted as RT, standing for Ranzato-Tapparo) for computing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics, SAS, Bratislava)

https://core.ac.uk/display/267941193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1338 L. Hoĺık, J. Šimáček

simulation over Kripke structures [11], which improves the algorithm from [8]. The
time complexity of RT amounts to O(|PSim ||δ|), space complexity to O(|PSim ||S|).
In the case of LRT, we obtain time complexity O(|PSim ||δ|+ |Σ||PSim ||S|) and space
complexityO(|Σ||PSim ||S|). Here, S is the set of states, δ is the transition relation, Σ
is the alphabet and PSim is the partition of S according to the simulation equivalence.
The space complexity blow-up of LRT is caused by indexing the data structures of
RT by the symbols of the alphabet.

In this paper, we propose an optimized version of LRT (denoted OLRT) that
lowers the above-described blow-up. We exploit the fact that not all states of an
LTS have incoming and outgoing transitions labeled by all symbols of an alphabet,
which allows us to reduce the memory footprint of the data structures used during
the computation. Our experiments show that the optimizations we propose lead to
significant savings of space as well as of time in many practical cases. Moreover, we
have achieved a promising reduction of the asymptotic complexity of algorithms for
computing tree-automata simulations from [1] using OLRT.

2 PRELIMINARIES

Given a binary relation ρ over a set X, we use ρ(x) to denote the set {y | (x, y) ∈ ρ}.
Then, for a set Y ⊆ X, ρ(Y) =

⋃

{ρ(y) | y ∈ Y }. A partition-relation pair
over X is a pair 〈P,Rel〉 where P ⊆ 2X is a partition of X (we call elements of P
blocks) and Rel ⊆ P × P . A partition-relation pair 〈P,Rel〉 induces the relation
ρ =

⋃

(B,C)∈Rel B × C. We say that 〈P,Rel〉 is the coarsest partition-relation pair

inducing ρ if any two x, y ∈ X are in the same block of P if and only if ρ(x) = ρ(y)
and ρ−1(x) = ρ−1(y). Note that in the case when ρ is a preorder and 〈P,Rel 〉 is
coarsest, then P is the set of equivalence classes of ρ∩ρ−1 and Rel is a partial order.

A labeled transition system (LTS) is a tuple T = (S,Σ, {δa | a ∈ Σ}), where S is
a finite set of states, Σ is a finite set of labels, and for each a ∈ Σ, δa ⊆ S × S is an
a-labeled transition relation. We use δ to denote

⋃

a∈Σ δa. A simulation over T is
a binary relation ρ on S such that if (u, v) ∈ ρ, then for all a ∈ Σ and u′ ∈ δa(u),
there exists v′ ∈ δa(v) such that (u′, v′) ∈ ρ. It can be shown that for a given LTS T
and an initial preorder I ⊆ S × S, there is a unique maximal simulation SimI on T
that is a subset of I , and that SimI is a preorder (see [1]).

3 THE ORIGINAL LRT ALGORITHM

In this section, we describe the original version of the algorithm presented in [1],
which we denote as LRT (see Algortihm 1).

The algorithm gradually refines a partition-relation pair 〈P,Rel〉, which is ini-
tialized as the coarsest partition-relation pair inducing an initial preorder I . After
its termination, 〈P,Rel〉 is the coarsest partition-relation pair inducing SimI . The
basic invariant of the algorithm is that the relation induced by 〈P,Rel〉 is always
a superset of SimI .

Optimizing an LTS-Simulation Algorithm 1339

Algorithm 1: (O)LRT Algorithm

Input: an LTS T = (S,Σ, {δa | a ∈ Σ}), partition-relation pair 〈PI ,Rel I 〉
Output: partition-relation pair 〈P,Rel〉

/* initialization */

1 〈P,Rel〉 ← 〈PI ,Rel I〉 /* ← 〈PI∩Out ,Rel I∩Out〉 */

2 forall the B ∈ P and a ∈ Σ do /* a ∈ in(B) */

3 forall the v ∈ S do Counta(v, B) = |δa(v) ∩
⋃

Rel(B)| ; /* v ∈ δ−1
a (S)

*/

4 Removea(B)← S \ δ−1
a (

⋃

Rel(B)) /* ← δ−1
a (S)\δ−1

a (
⋃

Rel(B)) */

/* computation */

5 while exists B ∈ P and a ∈ Σ such that Removea(B) 6= ∅ do
6 Remove ← Removea(B);
7 Removea(B)← ∅;
8 〈Pprev,Relprev〉 ← 〈P,Rel〉;
9 P ← Split(P,Remove);

10 Rel ← {(C,D) ∈ P × P | (Cprev, Dprev) ∈ Rel prev};
11 forall the C ∈ P and b ∈ Σ do /* b ∈ in(C) */

12 Remove b(C)← Remove b(Cprev);
13 forall the v ∈ S do Count b(v, C)← Count b(v, Cprev) ;

/* v ∈ δ−1
b (S) */

14 forall the C ∈ P such that C ∩ δ−1
a (B) 6= ∅ do

15 forall the D ∈ P such that D ⊆ Remove do
16 if (C,D) ∈ Rel then
17 Rel ← Rel \ {(C,D)};
18 forall the b ∈ Σ and v ∈ δ−1

b (D) do /* b ∈ in(D) ∩ in(C) */

19 Count b(v, C)← Count b(v, C)− 1;
20 if Count b(v, C) = 0 then
21 Remove b(C)← Remove b(C) ∪ {v}

The while-loop refines the partition P and then prunes the relation Rel in each
iteration of the while-loop. The role of the Remove sets can be explained as follows:
During the initialization, every Removea(B) is filled by states v such that δa(v) ∩
⋃

Rel(B) = ∅ (there is no a-transition leading from v “above” B wrt. Rel). During
the computation phase, v is added into Removea(B) after δa(v)∩

⋃

Rel(B) becomes
empty (because of pruning Rel on line 17). Emptiness of δa(v)∩Rel(B) is tested on
line 20 using counters Counta(v, B), which record the cardinality of δa(v)∩Rel(B).
From the definition of simulation, and because the relation induced by 〈P,Rel〉 is
always a superset of SimI , δa(v) ∩

⋃

Rel(B) = ∅ implies that for all u ∈ δ−1
a (B),

(u, v) 6∈ SimI (v cannot simulate any u ∈ δ−1
a (B)). To reflect this, the relation

Rel is pruned each time Removea(B) is processed. The code on lines 8–13 prepares
the partition-relation pair and all the data structures. First, Split(P,Removea(B))

1340 L. Hoĺık, J. Šimáček

divides every block B′ into B′ ∩ Removea(B) (which cannot simulate states from
δ−1
a (B) as they have empty intersection with δ−1

a (Rel(B))), and B′ \ Removea(B).
More specifically, for a set Remove ⊆ S, Split(P,Remove) returns a finer partition
P ′ = {B \ Remove | B ∈ P} ∪ {B ∩ Remove | B ∈ P}. After refining P by the
Split operation, the newly created blocks of P inherit the data structures (counters
Count and Remove sets) from their “parents” (for a block B ∈ P , its parent is the
block Bprev ∈ Pprev such that B ⊆ Bprev). Rel is then updated on line 17 by removing
the pairs (C,D) such that C ∩ δ−1

a (B) 6= ∅ and D ⊆ Removea(B). The change of
Rel causes that for some states u ∈ S and symbols b ∈ Σ, δa(u)∩

⋃

Rel(C) becomes
empty. To propagate the change of the relation along the transition relation, u will
be moved into Remove b(C) on line 20, which will cause new changes of the relation
in the following iterations of the while-loop. If there is no nonempty Remove set,
then 〈P,Rel〉 is the coarsest partition-relation pair inducing SimI and the algorithm
terminates. Correctness of LRT is stated by Theorem 1.

Theorem 1 ([1]). With an LTS T = (S,Σ, {δa | a ∈ Σ}) and the coarsest partition-
relation pair 〈PI ,Rel I 〉 inducing a preorder I ⊆ S×S on the input, LRT terminates
with the coarsest partition-relation pair 〈P,Rel 〉 inducing SimI .

4 OPTIMIZATIONS OF LRT

The optimization we are now going to propose reduces the number of counters
and the number and the size of Remove sets. The changes required by OLRT are
indicated in Algorithm 1 on the right hand sides of the concerned lines.

We will need the following notation. For a state v ∈ S, in(v) = {a ∈ Σ | δ−1
a (v) 6=

∅} is the set of input symbols and out(v) = {a ∈ Σ | δa(v) 6= ∅} is the set of output
symbols of v. The output preorder is the relation Out =

⋂

a∈Σ δ−1
a (S)× δ−1

a (S) (this
is, (u, v) ∈ Out if and only if out(u) ⊆ out(v)).

To make our optimization possible, we have to initialize 〈P,Rel〉 by the finer
partition-relation pair 〈PI∩Out ,Rel I∩Out〉 (instead of 〈PI ,Rel I 〉), which is the coars-
est partition-relation pair inducing the relation I ∩ Out . As both I and Out are
preorders, I ∩Out is a preorder too. As SimI ⊆ I and SimI ⊆ Out (any simulation
on T is a subset of Out), SimI equals the maximal simulation included in I ∩Out .
Thus, this step itself does not influence the output of the algorithm.

Assuming that 〈P,Rel〉 is initialized to 〈PI∩Out ,Rel I∩Out〉, we can observe that
for any B ∈ P and a ∈ Σ chosen on line 5, the following two claims hold:

Claim 1. If a 6∈ in(B), then skipping this iteration of the while-loop does not affect
the output of the algorithm.

Proof. In an iteration of the while-loop processing Removea(B) with a 6∈ in(B), as
there is no C ∈ P with δa(C)∩Rel(B) 6= ∅, the for-loop on line 16 stops immediately.
No pair (C,D) will be removed from Rel on line 17, no counter will be decremented,
and no state will be added into a Remove set. The only thing that can happen is that
Split(P,Remove) refines P . However, in this case, this refinement of P would be

Optimizing an LTS-Simulation Algorithm 1341

done anyway in other iterations of the while-loop when processing sets Remove b(C)
with b ∈ in(C). To see this, note that correctness of the algorithm does not depend
on the order in which nonempty Remove sets are processed. Therefore, we can
postpone processing all the nonempty Removea(B) sets with a 6∈ in(B) to the end
of the computation. Recall that processing no of these Remove sets can cause that
an empty Remove set becomes nonempty. Thus, the algorithm terminates after
processing the last of the postponed Removea(B) sets. If processing some of these
Removea(B) with a 6∈ in(B) refines P , P will contain blocks C,D such that both
(C,D) and (D,C) are in Rel (recall that when processing Removea(B), no pair of
blocks can be removed from Rel on line 17). This means that the final 〈P,Rel〉
will not be coarsest, which is a contradiction with Theorem 1. Thus, processing the
postponed Removea(B) sets can influence nor Rel neither P , and therefore they do
not have to be processed at all. 2

Claim 2. It does not matter whether we assign Removea(B) or Removea(B) \ (S \
δ−1
a (S)) to Remove on line 6.

Proof. Observe that v with a 6∈ out(v) (i.e., v ∈ S \ δ−1
a (S)) cannot be added into

Removea(B) on line 20, as this would mean that v has an a-transition leading to D.
Therefore, v can get into Removea(B) only during initialization on line 4 together
with all states from S \ δ−1

a (S). After Removea(B) is processed (and emptied) for
the first time, no state from S \ δ−1

a (S) can appear there again. Thus, Removea(B)
contains states from S \ δ−1

a (S) only when it is processed for the first time and then
it contains all of them. It can be shown that for any partition Q of a set X and any
Y ⊆ X, if Split(Q, Y) = Q, then also for any Z ⊆ X with Y ⊆ Z, Split(Q,Z) =
Split(Q,Z \ Y). As P refines PI∩Out , Split(P, S \ δ−1

a (S)) = P . Therefore, as S \
δ−1
a (S) ⊆ Removea(B), Split(P,Removea(B)) = Split(P,Removea(B)\(S\δ−1

a (S))).
We have shown that removing S \ δ−1

a (S) from Remove does not influence the result
of the Split operation in this iteration of the while-loop (note that this implies that
all blocks from the new partition are included in or have empty intersection with
S \ δ−1

a (S)). It remains to show that it also does not influence updating Rel on
line 17. Removing S \ δ−1

a (S) from Remove could only cause that the blocks D
such that D ⊆ S \ δ−1

a (S) that were chosen on line 15 with the original value of
Remove will not be chosen with the restricted Remove . Thus, some of the pairs
(C,D) removed from Rel with the original version of Remove could stay in Rel with
the restricted version of Remove . However, such a pair (C,D) cannot exist because
with the original value of Remove , if (C,D) is removed from Rel , then a ∈ out(C)
(as δ(C) ∩B 6= ∅) and therefore also a ∈ out(D) (as Rel was initialized to Rel I∩Out

on line 1 and (C,D) ∈ Rel). Thus, D ∩ (S \ δ−1
a (S)) = ∅, which means that (C,D)

is removed from Rel even with the restricted Remove . Therefore, it does not matter
whether S \ δ−1

a (S) is a subset of or it has an empty intersection with Remove . 2

As justified above, we can optimize LRT as follows. Sets Removea(B) are
computed only if a ∈ in(B) and in that case we only add states q ∈ δ−1

a (S) to

1342 L. Hoĺık, J. Šimáček

Removea(B). As a result, we can reduce the number of required counters by main-
taining Counta(v, B) if and only if a ∈ in(B) and a ∈ out(v).

5 IMPLEMENTATION AND COMPLEXITY OF OLRT

We first briefly describe the essential data structures (there are some additional
data structures required by our optimizations) and then we sketch the complexity
analysis. For the full details, see the technical report [9].

Data Structures. The input LTS is represented as a list of records about its
states. The record about each state v ∈ S contains a list of nonempty δ−1

a (v)
sets1, each of them encoded as a list of its members. The partition P is encoded as
a doubly-linked list (DLL) of blocks. Each block is represented as a DLL of (pointers
to) states of the block. Each block B contains for each a ∈ Σ a list of (pointers on)
states from Removea(B). Each time when any set Removea(B) becomes nonempty,
block B is moved to the beginning of the list of blocks. Choosing the block B on
line 5 then means just scanning the head of the list of blocks. The relation Rel is
encoded as a resizable Boolean matrix.

Each block B ∈ P and each state v ∈ S contains an Σ-indexed array containing
a record B.a and v.a, respectively. The record B.a stores the information whether
a ∈ in(B) (we need the test on a ∈ in(B) to take a constant time). If a ∈ in(B),
then B.a also contains a reference to the set Removea(B), represented as a list
of states (with a constant time addition), and a reference to an array of counters
B.a.Count containing the counter Counta(v, B) for each v ∈ δ−1

a (S). Note that
for two different symbols a, b ∈ Σ and some v ∈ S, the counter Counta(v, B) has
different index in the array B.a.Count than the counter Count b(v, B) in B.b.Count
(as the sets δ−1

a (S) and δ−1
b (S) are different). Therefore, for each v ∈ S and a ∈ Σ,

v.a contains an index va under which for each B ∈ P , the counter Counta(v, B) can
be found in the array B.a.Count. Using the Σ-indexed arrays attached to symbols
and blocks, every counter can be found/updated in a constant time. For every
v ∈ S, a ∈ Σ, v.a also stores a pointer to the list containing δ−1

a (v) or null if δ−1
a (v)

is empty. This allows the constant time testing whether a ∈ in(v) and the constant
time searching for the δ−1

a (v) list.

Complexity analysis (Sketch). We first point out how our optimizations influ-
ence complexity of the most costly part of the code which is the main while loop.
The analysis of lines 14–16 of LRT is based on the observation that for any two
B′, D′ ∈ PSimI

and any a ∈ Σ, it can happen at most once that a and some B with
B′ ⊆ B are chosen on line 14 and at the same time D′ ⊆ Removea(B). In one single
iteration of the while-loop, blocks C are listed by traversing all δ−1(v), v ∈ B (the

1 We use a list rather than an array having an entry for each a ∈ Σ in order to avoid
a need to iterate over alphabet symbols for which there is no transition.

Optimizing an LTS-Simulation Algorithm 1343

Ds can be enumerated during the Split operation). Within the whole computation,
for any B′ ∈ PSimI

, transitions leading to B′ are traversed on line 14 at most PSimI

times, so the complexity of lines 14–16 of LRT is O(
∑

a∈Σ

∑

D∈PSim

∑

v∈S |δ
−1
a (v)|) =

O(|PSimI
||δ|). In the case of OLRT, the number and the content of remove sets is re-

stricted in such a way that for a nonempty set Removea(B), it holds that a ∈ in(B)
and Removea(B) ⊆ δ−1

a (S). Hence, for a fixed a, a-transition leading to a block
B′ ∈ PSimI

can be traversed only |{D′ ∈ PSimI
| a ∈ out(D′)}| times and the

complexity of lines 14–16 decreases to O(
∑

D∈PSimI

∑

a∈in(D) |δa|).

The analysis of lines 17–20 of LRT is based on the fact that once (C,D) appears
on line 17, no (C ′, D′) with C ′ ⊆ C,D′ ⊆ D can appear there again. For a fixed
(C,D), the time spent on lines 17–20 is in O(

∑

v∈B |δ
−1(v)|) and only those blocks

C,D can meet on line 17 such that C × D ⊆ I . Thus, the overall time spent by
LRT on lines 17–20 is in O(

∑

B∈PSimI

∑

v∈I (B) |δ
−1(v)|). In OLRT, blocks C,D can

meet on line 17 only if C×D ⊆ I ∩Out , and the complexity of lines 17–20 in OLRT
decreases to O(

∑

B∈PSimI

∑

v∈(I∩Out)(B) |δ
−1(v)|).

In addition, OLRT refines 〈PI ,Rel I 〉 to 〈PI∩Out ,Rel I∩Out〉 on line 1. This can
be done by successive splitting according to the sets δ−1

a (S), a ∈ Σ and after each
split, breaking the relation between blocks included in δ−1

a (S) and the ones outside.
This procedure takes time O(|Σ||PI∩Out |2).

Apart from some other smaller differences, the implementation and the com-
plexity analysis of OLRT are analogous to the implementation and the analysis of
LRT [1]. The overall time complexity of OLRT is O

(

|Σ||PI∩Out |2+|Σ||S|+|PSim I
|2+

∑

B∈PSimI

(
∑

a∈in(B)(|δ
−1
a (S)|+ |δa|) +

∑

v∈(I∩Out)(B) |δ
−1(v)|)

)

.

The space complexity of OLRT is determined by the number of counters, the
contents of the Remove sets, the size of the matrix encoding of Rel , and the space
needed for storing the B.a and v.a records (for every block B, state v and symbol a).
Overall, it gives O(|PSimI

|2 + |Σ||S|+
∑

B∈PSimI

∑

a∈in(B) |δ
−1
a (S)|).

Observe that the improvement of both time and space complexity of LRT is
most significant for systems with large alphabets and a high diversity of sets of input
and output symbols of states. Certain regular diversity of sets of input and output
symbols is an inherent property of LTSs that arise when we compute simulations over
tree automata. We address the impact of employing OLRT within the procedures
for computing tree automata simulation in the next section.

6 TREE AUTOMATA SIMULATIONS

In [1], authors propose methods for computing tree automata simulations via trans-
lating problems of computing simulations over tree-automata to problems of com-
puting simulations over certain LTSs. In this section, we show how replacing LRT
by OLRT within these translation-based procedures decreases the overall complexity
of computing tree-automata simulations.

A (finite, bottom-up) tree automaton (TA) is a quadruple A = (Q,Σ,∆, F)
where Q is a finite set of states, F ⊆ Q is a set of final states, Σ is a ranked

1344 L. Hoĺık, J. Šimáček

alphabet with a ranking function r : Σ → N, and ∆ ⊆ Q∗ × Σ × Q is a set of
transition rules such that if (q1 . . . qn, f, q) ∈ ∆, then r(f) = n. Finally, we denote
by rm the smallest n ∈ N such that n ≥ m for each m ∈ N such that there is some
(q1 . . . qm, f, q) ∈ ∆. We omit the definition of the semantics of TA as we will not
need it, and we only refer to [5, 1].

For the rest of this section, we fix a TA A = (Q,Σ,∆, F). A downward simula-
tion D is a binary relation on Q such that if (q, r) ∈ D, then for all (q1 . . . qn, f, q) ∈
∆, there exists (r1 . . . rn, f, r) ∈ ∆ such that (qi, ri) ∈ D for each i : 1 ≤ i ≤ n.
Given a downward simulation D which is a preorder called an inducing simula-
tion, an upward simulation U induced by D is a binary relation on Q such that
if (q, r) ∈ U , then (i) for all (q1 . . . qn, f, q

′) ∈ ∆ with qi = q, 1 ≤ i ≤ n, there
exists (r1 . . . rn, f, r

′) ∈ ∆ with ri = r, (q′, r′) ∈ U , and (qj, rj) ∈ D for each
j : 1 ≤ j 6= i ≤ n; (ii) q ∈ F =⇒ r ∈ F . From now on, let D denote the maximal
downward simulation on A and U the maximal upward simulation on A induced
by D .

To define the translations from downward and upward simulation problems, we
need the following notions. Given a transition t = (q1 . . . qn, f, q) ∈ ∆, q1 . . . qn is its
left-hand side and t(i) ∈ (Q ∪ {�})∗ × Σ× Q is an environment – the tuple which
arises from t by replacing state qi, 1 ≤ i ≤ n, at the ith position of the left-hand
side of t by the so called hole � 6∈ Q. We use Lhs of to denote the set of all left-hand
sides of A and Env to denote the set of all environments of A.

We translate the downward simulation problem on A to the simulation problem
on the LTS A• = (Q•,Σ•, {δ•a | a ∈ Σ•}) where Q• = {q• | q ∈ Q} ∪ {l• | l ∈ Lhs},
Σ• = Σ ∪ {1, . . . , rm}}, and for each (q1 . . . qn, f, q) ∈ ∆, (q•, q1 . . . q

•

n) ∈ δ•f and
(q1 . . . q

•

n, q
•

i) ∈ δ•i for each i : 1 ≤ i ≤ n. The initial relation is simply I • =
Q• × Q•. The upward simulation problem is then translated into a simulation
problem on LTS A⊙ = (Q⊙,Σ⊙, {δ⊙a | a ∈ Σ⊙}), where Q⊙ = {q⊙ | q ∈ Q} ∪
{e⊙ | e ∈ Env}, Σ⊙ = Σ•, and for each t = (q1 . . . qn, f, q) ∈ ∆, for each 1 ≤
i ≤ n, (q⊙i , t(i)

⊙) ∈ δ⊙i and (t(i)⊙, q⊙) ∈ δ⊙a . The initial relation I⊙ ⊆ Q⊙ × Q⊙

contains all the pairs (q⊙, r⊙) such that q, r ∈ Q and r ∈ F =⇒ q ∈ F , and
((q1 . . . qn, f, q)(i)

⊙, (r1 . . . rn, f, r)(i)
⊙) such that (qj, rj) ∈ D for all j : 1 ≤ i 6= j ≤

n. Let Sim• be the maximal simulation on A• included in I • and let Sim⊙ be the
maximal simulation on A⊙ included in I⊙. The following theorem shows correctness
of the translations.

Theorem 2 ([1]). For all q, r ∈ Q, we have (q•, r•) ∈ Sim• if and only if (q, r) ∈ D
and (q⊙, r⊙) ∈ Sim⊙ if and only if (q, r) ∈ U .

The states of the LTSs (A• as well as A⊙) can be classified into several classes
according to the sets of input/output symbols. Particularly, Q• can be classified
into the classes {q• | q ∈ Q} and for each n : 1 ≤ n ≤ rm, {q1 . . . q•n | q1 . . . qn ∈ Lhs},
and Q⊙ can be classified into {q⊙ | q ∈ Q} and for each a ∈ Σ and i : 1 ≤ i ≤ r(a),
{t(i)⊙ | t = (q1 . . . qn, a, q) ∈ ∆}. This turns to a significant advantage when
computing simulations on A• or on A⊙ using OLRT instead of LRT. Moreover,
we now propose another small optimization, which is a specialized procedure for

Optimizing an LTS-Simulation Algorithm 1345

computing 〈PI∩OutRel I∩Out〉 for the both of A⊙, A•. It is based on the simple
observation that we need only a constant time (not a time proportional to the size
of the alphabet) to determine whether two left-hand sides or two environments are
related by the particular Out (more specifically, (e⊙1 , e

⊙

2) ∈ Out if and only if the
inner symbols of e1 and e2 are the same, and (q1 . . . q

•

n, r1 . . . r
•

m) ∈ Out if and only
if n ≤ m).

Complexity of the optimized algorithm. We only point out the main dif-
ferences between application of LRT [1] and OLRT on the LTSs that arise from
the translations described above. For implementation details and full complexity
analysis of the OLRT versions, see the technical report [9].

To be able to express the complexity of running OLRT on A• and A⊙, we
extend D to the set Lhs such that ((q1 . . . qn), (r1 . . . rn)) ∈ D if and only if (qi, ri) ∈
D for each i : 1 ≤ i ≤ n, and we extend U to the set Env such that ((q1 . . . qn, f, q)(i),
(r1 . . . rn, f, r)(i)) ∈ U ⇐⇒ m = n ∧ i = j ∧ (q, r) ∈ U ∧ (∀k ∈ {1, ..., n}. k 6= i =⇒
(qk, rk) ∈ D). For a preorder ρ over a set X, we use X/ρ to denote the partition of
X according to the equivalence ρ ∩ ρ−1.

The procedures for computing Sim• and Sim⊙ consist of (i) translating A to the
particular LTS (A• or A⊙) and computing the partition-relation pair inducing the
initial preorder (I • or I⊙), and (ii) running a simulation algorithm (LRT or OLRT)
on it. Here, we analyze the impact of replacing LRT by OLRT on the complexity of
step (ii), which is the step with dominating complexity (as shown in [1] and also by
our experiments; step (ii) is much more computationally demanding than step (i)).

As shown in the technical report [9], OLRT takes on A• and I • space O(SpaceD)
where SpaceD=(rm + |Σ|)|Lhs∪Q|+ |Lhs∪Q/D |2 + |Σ||Lhs/D ||Q|+ rm|Q/D ||Lhs|
and time O(SpaceD+ |Σ||Q/D |2+ |Lhs/D ||∆|). On A⊙ and I⊙, OLRT runs in time
O(SpaceU) where SpaceU = (rm+ |Σ|)|Env|+ |Env/U |2+ |Env/U ||Q|+ |Q/U ||Env|
and time O(SpaceU + |Σ||Q/U |2 + |Env/U ||δ|).

We compare the above results with [1], where LRT is used. LRT on A• and I •

takes O(SpaceoldD) space where SpaceoldD = (|Σ| + rm)|Q ∪ Lhs||Q ∪ Lhs/D |, and
O(SpaceoldD + |∆||Q ∪ Lhs/D |) time. In the case of A⊙ and I⊙, we obtain space
complexity O(SpaceoldU) where SpaceoldU = |Σ||Env||Env/U | and time complexity
O(SpaceoldU + rm|∆||Env/U |).

The biggest difference is in the space complexity (decreasing the factors SpaceoldD

and SpaceoldU). However, the time complexity is better too, and our experiments show
a significant improvement in space as well as in time.

7 EXPERIMENTS

We implemented the original and the improved version of the algorithm in a uniform
way in OCaml and experimentally compared their performance.

The simulation algorithms were benchmarked using LTSs obtained from the
runs of the abstract regular model checking (ARMC) (see [3, 4]) on several classic

1346 L. Hoĺık, J. Šimáček

LTS LRT OLRT

source |S| |Σ| |δ| time space time space

random 256 16 416 0.12 9.6 0.02 1.9
random 4 096 16 3 280 13.82 714.2 2.02 78.2
random 16 384 16 26 208 o.o.m. 268.85 4 514.9

random 4 096 32 6 560 62.09 1 844.2 4.36 121.4
random 4 096 64 13 120 158.38 3 763.2 6.59 211.2

pc 1 251 43 49 076 7.52 418.1 2.63 119.0
rw 4 694 11 20 452 81.28 3 471.8 19.25 989.3
lr 6 160 35 90 808 390.91 12 640.8 45.69 1 533.6

Table 1. LTS simulation results

examples – producer-consumer (pc), readers-writers (rw), and list reversal (lr) –
and using a set of tree automata obtained from the run of the abstract regular tree
model checking (ARTMC) (see [2]) on several operations, such as list reversal, red-
black tree balancing, etc. We also used several randomly generated LTSs and tree
automata.

TA LTS LRT OLRT

source |Q| |Σ| rm |∆| |S| |Σ| |δ| time space time space

random 16 16 2 245 184 18 570 0.06 6.2 0.02 1.4
random 32 16 2 935 655 18 2 165 0.87 74.4 0.21 14.4
random 64 16 2 3 725 2 502 18 8 568 26.63 1 417.9 3.50 195.4

random 32 32 2 1 164 719 34 2 511 2.67 166.6 0.23 16.8
random 32 64 2 2 026 925 66 3 780 12.17 623.5 0.56 25.4

ARTMC2 47 132 2 837 241 134 1 223 0.84 70.6 0.05 6.2

ARTMC variable3 517.98 116.2 80.84 22.1

Table 2. Downward simulation results

We performed the experiments on AMD Opteron 8389 2.90GHz PC with
128GiB of memory (however we set the memory limit to approximately 20GiB
for each process). The system was running Linux and OCaml 3.10.2.

The performance of the algorithms is compared in Table 1 (general LTSs), Ta-
ble 2 (LTSs generated while computing the downward simulation), and Table 3 (LTSs
generated while computing the upward simulation), which contain the running times
([s]) and the amount of memory ([MiB]) required to finish the computation.

As seen from the results of our experiments, our optimized implementation per-
forms substantially better than the original. On average, it improves the running
time and space requirements by about one order of magnitude. As expected, we can
see the biggest improvements especially in the cases where we tested the impact of
the growing size of the alphabet.

2 One of the automata selected from the ARTMC set.
3 A set containing 10 305 tree automata of variable size (up to 50 states and up to 1 000

transitions per automaton). The results show the total amount of time required for the
computation and the peak size of allocated memory.

Optimizing an LTS-Simulation Algorithm 1347

TA LTS LRT OLRT

source |Q| |Σ| rm |∆| |S| |Σ| |δ| time space time space

random 16 16 2 245 472 17 952 1.03 96.5 0.09 4.8
random 32 16 2 935 1 791 17 3 700 18.73 1 253.8 1.37 54.7
random 64 16 2 3 725 7 126 17 14 824 405.89 14 173.9 22.83 752.6

random 32 32 2 1 164 2 204 33 4 548 64.10 3 786.7 2.36 193.4
random 32 64 2 2 026 3 787 65 7 874 o.o.m. 6.72 245.8

ARTMC2 47 132 2 837 1 095 133 3 344 66.46 4 183.2 0.69 68.2

ARTMC variable3 12 669.94 4 412.6 400.62 106.6

Table 3. Upward simulation results

8 CONCLUSION

We proposed an optimized algorithm for computing simulations over LTSs, which
improves the asymptotic complexity in both space and time of the best algorithm
(LRT) known to date (see [1]) and which also performs significantly better in prac-
tice. We also show how employing OLRT instead of LRT reduces the complexity
of the procedures for computing tree-automata simulations from [1]. As our future
work, we want to develop further optimizations, which would allow to handle even
bigger LTSs and tree automata. One of the possibilities is to replace existing data
structures by a symbolic representation, for example, by using BDDs.

Acknowledgement

This work was supported in part by the Czech Science Foundation (projects
P103/10/0306, 102/09/H042, 201/09/P531), the BUT FIT grant FIT-10-1, the
Czech COST project OC10009 associated with the ESF COST action IC0901, the
Czech Ministry of Education by the project MSM 0021630528, and the ESF project
Games for Design and Verification.

REFERENCES

[1] Abdulla, P.A.—Bouajjani, A.—Hoĺık, L.—Kaati, L.—Vojnar, T.: Com-
puting Simulations over Tree Automata: Efficient Techniques for Reducing Tree Au-
tomata. In Proc. of TACAS ’08, LNCS 4963, Springer 2008.

[2] Bouajjani, A.—Habermehl, P.—Hoĺık, L.—Touili, T.—Vojnar, T.:
Antichain-Based Universality and Inclusion Testing over Nondeterministic Finite Tree

Automata. In Proc. of CIAA ’08, LNCS 5148, Springer 2008.

[3] Bouajjani, A.—Habermehl, P.—Moro, P.—Vojnar, T.: Verifying Programs
with Dynamic 1-Selector-Linked Structures in Regular Model Checking. In Proc. of
TACAS ’05, LNCS 3440, Springer 2005.

[4] Bouajjani, A.—Habermehl, P.—Vojnar, T.: Abstract Regular Model Check-
ing. In Proc. of CAV ’04, LNCS 3114, Springer 2004.

1348 L. Hoĺık, J. Šimáček

[5] Comon, H.—Dauchet, M.—Gilleron, R.—Löding, C. L.—Jacque-

mard, F.—Lugiez, D.—Tison,S.—Tommasi, M.: Tree Automata Techniques
and Applications. http://www.grappa.univ-lille3.fr/tata, 2007, release
October 12, 2007.

[6] Dams, D.—Grumberg, O.—Gerth, R.: Generation of ReducedModels for Check-
ing Fragments of CTL. In Proc. of CAV ’93, 1993.

[7] Grumberg, O.—Long, D.E.: Model Checking and Modular Verifiation. ACM

Transactions on Programming Languages and Systems, Vol. 16, 1994.

[8] Henzinger, M.R.—Henzinger, T.A.—Kopke, P.W.: Computing Simulations
on Finite and Infinite Graphs. In Proc. of FOCS ’95, IEEE Computer Society 1995.

[9] Hoĺık , L.—Šimáček, J.: Optimizing an LTS-Simulation Algorithm. Technical
Report FIT-TR-2009-03, Brno University of Technology 2009, available on http:

//www.fit.vutbr.cz/~holik/pub/FIT-TR-2009-03.pdf.

[10] Piage, R.—Tarjan, R.: Three Partition Refinement Algorithms. SIAM Journal on
Computing, Vol. 16, 1987.

[11] Ranzato, F.—Tapparo, F.: A New Efficient Simulation Equivalence Algorithm.
In Proc. of LICS ’07, 2007.

[12] Sawa, Z.—Jančar, P.: Behavioural Equivalences on Finite-State Systems are PTI-
MEhard. Computing and Informatics, Vol. 24, 2005.

Lukáš Hol��k is a doctoral student and a member of VeriFit
research group at Faculty of Information Technology, Brno Uni-
versity of Technology. Home page: http://www.fit.vutbr.cz/

~holik.

Jǐŕı �Sim�a�ek is a doctoral student of Faculty of Information
Technology at Brno University of Technology and a doctoral stu-
dent of Université Joseph Fourier in Grenoble. He is a member
of VeriFit research group and a member of VERIMAG.

