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Abstract. Fault simulator for asynchronous sequential circuits (ASCs) needs to
deal with hazards, oscillations and races. The simplest algorithm for simulating
faults is the serial fault simulation technique which was successfully used for the
ASCs. Faster fault simulation techniques, for example deductive fault simulation,
was previously used for the combinational and synchronous sequential circuits only.
In this paper a deductive fault simulator for the stuck-at faults of speed-independent
(SI) ASCs is presented. An algorithm for the propagation of the fault lists is
proposed which can deal with the complex gates of the ASCs. The implemented
deductive fault simulator was tested using SI benchmark circuits. The experimental
results show significant reduction of the computation time and negligible increase of
the memory requirements in comparison with the serial fault simulation technique.
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1 INTRODUCTION

Most of the digital sequential circuits designed today are synchronous. All their com-
ponents share a common and discrete notion of time, as defined by a clock signal
distributed throughout the circuit. The counterparts of the synchronous sequen-
tial circuits are the asynchronous sequential circuits (ASCs). They use handshaking
between their components in order to perform the necessary synchronization and
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sequencing of operations [1]. Handshaking is a controlled, periodic exchange of syn-
chronizing pulses between a digital transmitter and a receiver [2]. The transmitters
and the receivers are the inner components of the ASCs.

This difference gives inherent properties to the ASCs that can be exploited to
achieve lower power consumption, higher operating speed, less electro-magnetic noise
emission, better modularity and better robustness in comparison with synchronous
sequential circuits [1].

C-elements are used in the ASCs as basic construction elements. A C-element
is a state-holding element and its symbol and truth table are shown in Figure 1. If
inputs A and B of the C-element are set to logic zeros (ones) then the output Y is
also set to logic zero (one). The output does not change with application of other
combinations of input values and it holds the previous output value Yprev [1].

C
A

B
Y

A B Y

0 0 0
0 1 Yprev

1 0 Yprev

1 1 1

Fig. 1. Symbol and truth table of C-element

At the gate level, ASCs can be classified as self-timed (ST), speed-independent
(SI), delay-insensitive (DI) or quasi-delay-insensitive (QDI) circuits. SI circuits op-
erate correctly assuming positive finite delays in gates and ideal zero-delay wires.
A circuit that operates correctly with positive finite delays in wires as well as in
gates is a DI circuit. DI circuits with isochronous wire forks are called QDI circuits.
A wire fork is isochronous if the signal transitions occur at the same time at all its
end-points [1].

In this work only the SI circuits are considered but a tool for the SI circuits can be
extended to handle other classes too. DI and QDI circuits can be represented under
the SI timing model. Therefore, the original circuit can be handled by simulating
the transformed circuit [3].

The SI circuits can be synthetized by the Petrify software tool [4] from signal
transition graph (STG) specification. STG specification is used for modeling beha-
vior of SI circuits. The Petrify tool can synthetize SI circuits with complex gates,
with generalized C-elements, or even can perform the technology mapping. The
complex gates are used in the ASCs for elimination of some hazards [1].

A hazard is an unwanted glitch on a signal and it is related to the dynamic
operation of a circuit which relates to the input signals dynamics as well as to delays
on the gates and wires of the circuit [1]. The hazards can be static or dynamic. The
signal value with static-zero (static-one) hazard means to remain stable at logic zero
(one) momentarily becomes logic one (zero) instead. If a signal value makes three
or more transitions instead of a single transition (0 → 1, 1 → 0), it is the dynamic
hazard [5].
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Several multi-valued logics have been proposed for hazard detection. The most
complete is the 13-valued logic which is constructed as the product A3 × A5 × A3,
whereA3 is 3-valued logic andA5 is 5-valued logic. The possible values of A3 are logic
zero 0, logic one 1 and do-not care X. The possible values of A5 include the values of
A3 and two signal transitions ↑ and ↓. The logics are described as 3-tuples according
to 13-valued algebra where the 1st item of the 3-tuple represents the initiatory value,
the 2nd item the temporary intermediate value and the 3rd item the final value. The
items of the 13-valued logic are stable logic zero (0, 0, 0), stable logic one (1, 1, 1),
do-not care (X,X,X), rising transtion (0, ↑, 1), falling transition (1, ↓, 0), static-
zero hazard (0, X, 0), static-one hazard (1, X, 1), dynamic 0 → 1 hazard (0, X, 1),
dynamic 1 → 0 hazard (1, X, 0), stabilizing one (X,X, 1), stabilizing zero (X,X, 0),
destabilizing one (1, X,X) and destabilizing zero (0, X,X) [6, 7].

Another problem in the ASCs are the races. A race can exist in a circuit if
two or more feedback signals are changing simultaneously. The race is critical if the
order of changes can affect the final circuit state. Therefore another problem at the
ASCs design is to avoid critical races [8].

A defect in an electronic system is the unintended difference between the im-
plemented hardware and its intended design. A representation of a defect at the
abstracted function level is called a fault. The term fault is used to refer to electri-
cal, Boolean, or functional malfunctions [9, 10]. The faults of ASCs can be process
faults, transient faults, or delay faults. Process faults originate from fabrication.
Transient faults are those that might occur at some time, but are not stable in the
sense they might not occur at other times. If a fault causes a circuit to exceed its
timing specifications, but does not affect its logical function, it is said to be a delay
fault [14]. The most known and used process fault model is the stuck-at fault model.
The stuck-at fault is modeled by assigning a fixed logic zero or one to a signal line
in the circuit [9, 10]. In this work only stuck-at faults are considered.

The fault simulator determines the fault coverage of a given set of input vectors
for a given fault model or a given fault list by classification of the given target faults
in the circuit as detected or undetected. The fault coverage is defined as the ratio of
the number of detected faults to that of faults in the initial fault list for simulation
expressed in percentage [9].

The serial fault simulation is the simplest algorithm for simulating faults. It is
based on the following steps [9]:

1. The fault-free response of the circuit to the set of test vectors is saved to a file.

2. The circuit is simulated for each individual injected fault for the same set of test
vectors used for fault-free simulation. The response of the circuit is compared
with the fault-free response.

3. If the response is different then the fault is detected.

4. Steps 2–3 are repeated for all of the faults.

5. The fault coverage is computed based on the number of undetected faults and
faults involved in fault simulation.
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Fault dropping technique considerably speeds up the serial fault simulation.
Fault dropping is the practice in which faults detected by a test vector are deleted
from the fault list prior to the simulation of any subsequent test vector [11].

The fault simulation time can be further reduced by the deductive or the con-
current fault simulation technique. The main advantage of these fault simulation
techniques is creation of detectable fault lists and their propagation to primary out-
puts (POs) for a current test vector in a single simulation overpass. The disadvantage
of this technique is in higher memory requirements. All signal values in each faulty
circuit are deduced from the fault-free circuit values and the circuit structure. Since
the circuit structure is the same for all faulty circuits, all deductions are carried
out simultaneously. The simulation proceeds by simulating a vector in the fault-free
mode. Before simulating the next vector, a deductive procedure is applied to all
lines in a level-order from primary inputs (PIs) to POs. In this process, fault lists
are generated for each signal. The fault list of a signal is derived from fault lists
at the inputs of the gate producing that signal and any faults associated with that
gate. This process is called fault propagation. The fault list of a signal at any time
during simulation contains the names of all faults in the circuit that can change the
state of that line [9, 12, 13].

The fault propagation rules through the simple logic gates OR and AND are in
Table 1 where I1 is the set of gate inputs with logic one, I0 is the set of gate inputs
with logic zero, j = {0, 1, . . . , n− 1} is the indexed input of the n-input gate and Lj

is the fault list for input j. The propagation rule for the logic gate is selected based
on the condition that the controlling set is empty. The controlling set is the set of
inputs with the controlling value. In the case of logic operation AND the controlling
value (non-controlling value) is the logic zero (one) and for the operation OR the
logic one (zero).

AND gate OR gate

condition propagation rule condition propagation rule

I0 = ∅

{

⋃

j∈I1

Lj

}

I1 = ∅

{

⋃

j∈I0

Lj

}

I0 6= ∅

{

⋂

j∈I0

Lj

}

−

{

⋃

j∈I1

Lj

}

I1 6= ∅

{

⋂

j∈I1

Lj

}

−

{

⋃

j∈I0

Lj

}

Table 1. Fault list propagation through simple gates

When it comes to commercial use of the ASCs the problem of test comes to at-
tention. The testing methods for synchronous sequential circuits can not be applied
directly to the ASCs. Design for testability (DfT) techniques and testing methods
are in advanced stage for the synchronous circuits but for the ASCs there are still
problems to be solved – lack of automatic test equipment (ATE), test generation al-
gorithms, built-in self-test (BIST) mechanisms and DfT standards. These problems
cause limited practical usability of the ASCs.
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The rest of the paper is organized as follows. Section 2 contains related work
to the ASCs testing. Section 3 presents the developed deductive fault simulation
technique for the SI ASCs. Section 4 analyzes the achieved results and Section 5
concludes the paper with analyzing the results and future work.

2 RELATED WORK

The logic and fault simulator for the SI circuits (SPIN-SIM) has been developed
and published [7, 15]. This simulator cooperates with the automatic test pattern
generator (ATPG) named SPIN-TEST [16, 17]. SPIN-TEST generates tests for the
SI circuits using the stuck-at fault model. SPIN-SIM adopts a 13-valued logic [6]
to improve the hazard detection accuracy and maintains the relative order of causal
signal transitions using time stamps. The time stamp is simple and only includes
a signal group ID and a time. The group ID is used to indicate causal transitions;
signal transitions with a causal relation are assigned the same group ID. The relative
order of the causal transitions is recorded in the time field, which is incremented
as the transition propagates. The 13-valued logic was successfully used also for the
test generation of the delay faults of sequential circuits [18]. SPIN-SIM transforms
a SI circuit to the combinational logic by replacing each C-element with a set of
simple gates and cutting the feedback paths into pseudo-primary inputs (PPIs) and
pseudo-primary outputs (PPOs). The reason of this transformation is to create
a pure combinational representation of the ASC for which an external ATPG for
combinational circuits can be used. The set of gates for representation of the function
of the C-element is assembled to be hazard-free. These gates are so called pseudo-
gates because they have zero-delays. SPIN-TEST uses ATPG ATALANTA [19] for
generating tests over the stuck-at fault model. The A* search algorithm is used in
SPIN-TEST which is a graph-search algorithm to find the least-cost path between
two nodes of the graph and for the cost estimation a heuristic function is used. In
SPIN-TEST the A* algorithm is applied to find the best sequence of test vectors
to reach each of the previously generated test vector (one node of the graph) from
the pre-specified initial state of the circuit (another node of the graph) [20]. SPIN-
TEST uses as heuristic function the estimation of the hardness of the fault activation
and propagation to the POs. This function is used by the A* algorithm to make
the decision which test vectors to use. The serial fault simulation technique is
implemented in the SPIN-SIM fault simulator.

Another serial fault simulator called Fsimac was also developed for the ASCs.
Fsimac is also realized over the 13-valued logic and can be used only for the ASCs
with bounded gate delays because it is based on the min-max timing analysis [23].
It can not be used for the SI circuits because they assume unbounded gate delays
and therefore the maximum delay of the interconnected gates can not be computed.

For the deductive and concurrent fault simulation technique the rules for fault
propagation through simple logic gates are well known [9] as well as through logic
gates with arbitrary number of inputs [11], or through combinational blocks de-
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scribed by the function definition language (FDL), implemented in the LAMP sys-
tem [21]. A deductive fault simulator was developed also for the synchronous sequen-
tial circuits where the fault lists for the sequential blocks are modeled by Moore-type
automata and are propagated using the automata states [22].

3 DEDUCTIVE FAULT SIMULATION

This section describes the proposed deductive fault simulation technique for SI
ASCs. The deductive fault simulation is based mainly on the fault list propaga-
tion algorithm. The main contribution of the paper is the new fault list propagation
algorithm which is universal and can be used for any gate represented by a Boolean
function expressed in disjunctive normal form (DNF). The developed deductive fault
simulator can propagate the fault lists in the SI circuit with complex gates. The gate
level fault list propagation algorithm is described in more detail in Subsection 3.1.

The deductive fault simulation technique was previously used mostly for combi-
national circuits and occasionally for synchronous sequential circuits. The proposed
fault simulator is based on the adopted transformation principle of the ASCs to the
combinational representation [7, 15]. The fault list from the PPO is propagated
to the PPI if the fault list on the PPI is different than that on the PPO and the
maximum number of iterations has not been reached. The developed deductive fault
simulator uses the 13-valued logic [6] and the time stamps [7] for hazard detection.
The time stamps are also dealing with the races. The oscillations are detected using
a simple counter. The hazard detection, the handling of races and oscillations with
the 13-valued logic and time stamps are adopted [7], therefore they are not described
in the paper. The proposed deductive fault simulator considers faults as detected
only on the hazard-free POs, just like the other fault simulators for ASCs. The
fault simulation consists of only one simulation overpass during which the fault-free
and faulty simulations are performed simultaneously. The fault-free simulation uses
the 13-valued logic and detects the hazards in the circuit. The simulation of faulty
circuits deals with the fault lists only and uses the (3-valued) logic value of the
fault-free simulation to create the propagation rules. The 3-valued logic is given as
the 3rd item of the ordered 3-tuple representation of 13-valued logic designating the
value to which it is intended to stabilize in time. Therefore, for lines with hazards
the final stabilized value is considered during the fault propagation. In such cases the
fault propagation is not interrupted because it is not possible to determine at that
point whether the hazard will be manifested on an output or not. The developed
deductive fault simulation for the ASCs is described in detail in Subsection 3.2.

3.1 Gate Level Fault List Propagation Algorithm

The input Boolean function for the proposed algorithm must be in the DNF which is
the disjunction of conjunctions. For example function Y = (A∧B)∨ (¬A∧¬B∧C)
is in the DNF, where A ∧ B and ¬A ∧ ¬B ∧ C are the conjunctions (logic AND
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operations) over the components and where the disjunction (logic OR operation) of
these conjunctions is the Boolean function in DNF. For example ¬A, ¬B and C are
the components for the conjunction ¬A ∧ ¬B ∧ C. In the developed algorithm the
symbol A − B is used to denote a set difference and the symbol A ∩ B to denote
an intersection between two sets A and B. The symbol & is used for the logic
operation AND.

The meaning of the variables used in the algorithm is as follows:

logicValueForAnd – the Boolean value of the examined conjunction;

andIntersectionList (orIntersectionList) – the list of faults for the examined
conjunction (the whole disjunction) which contains the faults of inputs (of con-
junctions) with a logic zero (logic one) which is the controlling value for the logic
operation AND (OR);

andUnionList (orUnionList) – the list of faults for the examined conjunction
(the whole disjunction) which contains the faults of inputs (of conjunctions) with
a logic one (logic zero) which is the non-controlling value for the logic operation
AND (OR);

andControllingSetIsEmpty (orControllingSetIsEmpty) – the Boolean va-
lue to indicate whether there is an input (a conjunction) with a logic zero (logic
one) or not;

tmpFaultList – temporary fault list used at the assignments.

The listed variables are supplemented step-by-step with the examination of the
complex gate represented by the Boolean function. The variables andControllingSe-
tIsEmpty and orControllingSetIsEmpty are used to make the decision the formula
from which row of Table 1 should be used for the fault propagation.

In the algorithm the following auxiliary functions are used:

portOf(k) – It returns the gate input of component k. For example if k = ¬A
then portOf(k) = A.

logicValueOf(p) – It returns the logic value of the gate input p.

faultListOf(p) – It returns the detectable fault list of the gate input p.

The proposed method for the gate level fault list propagation is described by the
algorithm showed in Figure 2. At the beginning of the algorithm some initialization
has to be made. The temporary lists are deleted and the variable called orControl-
lingSetIsEmpty is set to true because it is indicating that none of the conjunctions
of the whole Boolean function yet has logic one (which is the controlling value in
the case of the logic operation OR). After that follows the analysis of the Boolean
function which is described in more detail later. During this analysis the orUnion-
List and orIntersectionList are filled with the appropriate faults. This process is
followed by determination of the final fault list based on the value of orControl-
lingSetIsEmpty. The final fault list is determined by the formulas from the last
column of Table 1.
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�



�
	START

?
Y is the Boolean function in DNF of the output;�� ��

?
delete previous fault list of outputs;

clear orIntersectionList and orUnionList ;
orControllingSetIsEmpty = true;

?�



�
	A

?
processing the Y;

?�



�
	D

?

��������

PPPPPPPP

��������

PPPPPPPP

orControllingSetIsEmpty
is true?

yes no

?
tmpFaultList = orUnionList ;

-

?
orIntersectionList = orIntersectionList − orUnionList ;

tmpFaultList = orIntersectionList ;

?
tmpFaultList is the new fault list of the output;�� ��

?�



�
	END

Defined on Figure 3

Fig. 2. Gate level fault propagation algorithm

The process of analysis of the Boolean function which is used in Figure 2 is
presented in more detail in Figure 3. We note all of the variables in the developed
algorithm are global which means they are accessible from the sub-processes and af-
ter modification in the sub-process the results are accessible from the calling process.
The analysis of the Boolean function consists of a loop which is used to evaluate each
conjunction step-by-step. First some initialization has to be made for each conjunc-
tion. After that follows the analysis of the current conjunction which is described
in more detail later. During this analysis the andUnionList and andIntersectionList
are filled with the appropriate faults. This process is followed by determination of
the fault list for the conjunction based on the value of andControllingSetIsEmpty.
The fault list is determined by the formulas from the second column of Table 1.
The faults from this list are put into the orUnionList or orIntersectionList based
on the logic value of the examined conjunction. After that the analysis of the next
conjunction begins.

The process of analysis of the conjunction which is used in Figure 3 is presented
in more detail in Figure 4. This sub-process consists of a loop which is used to
evaluate each component of the current conjunction. Firstly the logic value of the
conjunction is determined in sequence. After that the faults of the components
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	D

?
take out a conjunction H from Y;

?
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?�
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	B

?
processing the H;

?�



�
	C

?

��������
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��������

PPPPPPPP

andControllingSetIsEmpty
is true?

yes no

?
tmpFaultList = andUnionList ;

-

?
andIntersectionList = andIntersectionList − andUnionList ;

tmpFaultList = andIntersectionList ;

?

��������

PPPPPPPP

��������

PPPPPPPP

logicValueForAnd
is true?

yes no

?
orIntersectionList = orIntersectionList ∩ tmpFaultList ;

orControllingSetIsEmpty = false;

?
?

copy tmpFaultList to orUnionList ;�

-

Defined on Figure 4

Fig. 3. Algorithm for analysis of the disjunction

gate input are put into andIntersectionList or andUnionList if the logic value of
the current component is the controlling value for the logic operation AND or the
non-controlling value, respectively.

3.1.1 Example

Consider the complex gate as a part of a circuit with the function Y = (A ∧ B) ∨
(¬A ∧ ¬B ∧ C), where A,B, C are the inputs and Y is the output of the gate.
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6

6

6

�

Fig. 4. Algorithm for analysis of a conjunction

Let us assume all of the inputs are set to logic one, i.e. A = B = C = 1, next
G,H, L are lines in the circuit which are situated before the examined complex
gate. The fault list on the input A is LA = {A sa0, G sa0, H sa1}, on the input B
is LB = {B sa0, G sa0, H sa1}, and on the input C is LC = {C sa0, H sa1, L sa1}.
The label of faults consists of two parts. The first part defines the fault place and
the second part identifies it as stuck-at zero (sa0) or stuck-at one (sa1) fault. The
example is shown in Figure 5 where the function of the complex gate is represented
with imaginary single gates and interconnections between them.

The proposed algorithm processes the function Y as follows:

• Analysis of the conjunction A ∧ B – represented by the logic gate and 1 in
Figure 5.

1. A = 1 which is the non-controlling value of the logic operation AND so the
faults from LA are put into the andUnionList.

2. B = 1, so similarly the faults from LB go into andUnionList. After this step
andUnionList = {A sa0, G sa0, H sa1, B sa0}.
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Fig. 5. Fault propagation through an example complex gate

3. andControllingSetIsEmpty = true because there are no inputs in this con-
juction with the controlling value of logic operation AND. The faults from
andUnionList go to orIntersectionList because A∧B = 1 which is the control-
ling value of the logic operation OR. The corresponding assignment in Fig-
ure 5 is made by propagation of the fault list {A sa0, G sa0, H sa1, B sa0}
to the internal interconnection INT 1.

• Analysis of the conjunction ¬A ∧ ¬B ∧C – represented by the logic gate and 2
in Figure 5.

1. ¬A = 0 which is the controlling value of the logic operation AND so the
faults from LA are put into the andIntersectionList.

2. ¬B = 0, so andIntersectionList∩LB will be the new andIntersectionList,
i.e. {A sa0, G sa0, H sa1} ∩ {B sa0, G sa0, H sa1} = {G sa0, H sa1}.

3. C = 1 which is the non-controlling value of the logic operation AND so the
faults from LC are put into the andUnionList.

4. andControllingSetIsEmpty = false so the fault list for this conjuction is
andIntersectionList − andUnionList = {G sa0, H sa1} − {C sa0, H sa1,
L sa1} = {G sa0} and it goes to orUnionList because ¬A ∧ ¬B ∧ C = 0
which is the non-controlling value of the logic operationOR. The correspond-
ing assignment in Figure 5 is made by propagation of the fault list {G sa0}
to the internal interconnection INT 2.

• Analysis of the disjunction – represented by the logic gate or 1 in Figure 5.

1. orControllingSetIsEmpty = false so the fault list for the disjunction is
orIntersectionList − orUnionList, i.e. {A sa0, G sa0, H sa1, B sa0} −
{G sa0} = {A sa0, H sa1, B sa0} which is the final fault list for the complex
gate. The corresponding assignment in Figure 5 is made by propagation of
the fault list {A sa0, H sa1, B sa0} through the gate or 1 to the output Y.
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3.2 Global Fault Propagation Algorithm

The global fault propagation algorithm is based mainly on fault simulation technique
of synchronous sequential circuits. The main difference is that not only one simu-
lation overpass is performed through the combinational part of the circuit. These
overpasses are repeated until the logic values and fault lists are not the same on
each PPI-PPO pairs (a pair is developed by cutting a feedback path) or a maxi-
mum number of overpasses is not reached. The second difference consists in use of
13-valued logic and time stamps during the fault simulation.

The global fault propagation algorithm is shown in Figure 6 where fbCounter
is used for counting the number of propagations through feedbacks, MaxPass is the
maximum number of allowed propagations through feedbacks. The fault lists for
the POs are deducted for all of the input vectors. At the beginning the input values
are assigned to the PIs and the current time stamps are set. The time stamps are
set only for those PIs where a signal transition is created by the current test vector.
The time is measured from the beginning of the fault simulation and for the new test
vector the incremented end simulation time from the previous test vector simulation
will be used. The reason is to avoid the time consuming fault list removal at the
beginning of the simulation. The new values will overwrite the existing ones in the
circuit without causing any problems. During this first step the fault lists of PIs are
erased only. If the PI has a fan-out the local stuck-at fault is assigned to this port
based on the current logic value of this port (for a line with logic one a stuck-at zero
and for a line with logic zero a stuck-at one fault is assigned – this principle is used
later too). The reason is to universally handle the faults. We name the fault for
a single line after the destination port and only in the presence of fan-out a fault
named after the source port is inserted to the fault list (because in this case this
fault is not equivalent with those at the destination ports). This principle is used
later too.

After that all of the gates connected to the PIs are added to the list of gates for
evaluation. The fault lists are moved from the PIs to the gate input ports together
with the logic values and time stamps during this procedure. The local stuck-at
faults based on the current logic values are also added to the input ports of the gates.
After that an infinite loop is beginning its execution. This loop will be broken only
if the list of the gates for evaluation becomes empty or the maximum number of
iterations is reached. In this loop the gates from the list are evaluated. During this
evaluation the logic values and the time stamps for the output ports are computed,
the fault list is generated based on the presented algorithm in Subsection 3.1 and
the time stamp is incremented. If the output port of the gate has a fan-out, then
the local stuck-at fault based on the current logic value is assigned to the fault list
at that output port, similarly to the assigment at the PIs. After the evaluation
the logic values, the time stamps and the fault lists are moved to the ports of the
connected gates, POs or PPOs. If the destination is a port of a non-pseudo-gate the
local stuck-at fault based on the current logic value is added to the destination ports
list (we ignore the pseudo-gates during the assigment of new faults because they only
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	END

?
take out a gate g from gateList ;

evaluate the logic value, fault list and time stamp of g ;
add to gateList each connected gate with the output port of g ;

?
propation from PPOs to PPIs if it is necessary;

for all updated PPIs add to gateList each connected gate;

fbCounter = fbCounter + 1;

-

Fig. 6. Global fault propagation algorithm

represent the memory element in the circuit and the new lines are not present in the
ASC just in the combinational representation). All of these interconnected gates are
added to list for evaluation. After the evaluation of each gate from the list the next
iteration cycle will begin. Before that the logic values, time stamps and the fault
lists are moved from the PPOs to the PPIs if the current logic values or the fault
lists are different. The connected gates of those PPIs are inserted to the gate list
whose logic values or fault list has been changed. After that the iteration counter
is incremented and the next loop of the infinite loop begins. After the infinite loop
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has been broken the logic values and the fault lists at the POs are reported for the
current test vector.

The list of the gates for evaluation is a queue. The gates are always placed to
the end of the queue and are removed from the front of the queue. Therefore the
gates are evaluated in the breadth-first way.

The faults are represented as single numbers in the deductive fault simula-
tor. The other alternative could be the representation as strings which is “human-
readable” but the work with faults in this form is computationally inefficient. Also
the fault list is implemented not as a vector but as a set of ordered numbers.

In the proposed algorithm the wires of the circuit are represented as intercon-
nections between the input and output ports of the gates. The stuck-at faults are
assigned to these ports. As a part of the parsing process of the description of the
circuit a unique even number is assigned to those ports where a potential stuck-at
fault could be present. This is done because during the simulation process the fault
lists are cleared frequently and new faults are added to them. The unique numbers
make this process more effective. The fault identificator is created as a logic addition
of the stuck-at fault type to the unique number. Therefore each stuck-at-zero fault
will have an even identificator and each stuck-at-one fault an odd identificator.

Operations (such as copying, intersection, union, difference and comparison)
are defined on the fault lists to make possible the execution of the algorithm from
Subsection 3.1. Effectiveness of these operations is essential for global performance
of the algorithm because they are executed relatively many times. Thanks to the
given representation of faults and fault lists these operations can be executed in
efficient way. For example the comparison could be performed as a comparison
number-by-number and with a single overpass over the set. As it was examined
and measured without these improvements the deductive fault simulator could not
be faster than the serial fault simulator. The fault lists are deleted often and after
that new faults are assigned to them. It was also found out that the performance
is better this way. The checking which faults should remain in the list and which
should be removed adds a significant overhead to the computation time.

4 RESULTS

For the simulation purposes a single random test pattern generator for the ASCs [17]
was implemented. The implementation has been made in C++ using only the stan-
dard template library (STL). Evaluation has been done over a set of SI benchmark
circuits synthetized by Petrify [4]. The STG specifications of these circuits are
available on the Myers Research Group website [24].

The experiments were performed on a desktop computer (with AMD Athlon 64
X2 Dual Core 4400+ processor and with 2GB of RAM) running Linux 2.6.24.

A simple utility was implemented for the experimentation purposes. The task
of this utility is to measure the CPU time and the memory requirements of the
implemented simulators. To measure the time it uses the GNU version of the time
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utility [25]. The time does not provide information about the memory requirements
under Linux and is not reliable under FreeBSD (as found out during the imple-
mentation). Our implemented utility measures the requirements using the process
information pseudo-file system (/proc) of the Linux kernel. The utility starts the
fault simulator with a second’s delay to make enough time for preparation of the
measurement. During the measurement the resident memory sizes of the process
are recorded and after the fault simulation the maximum value is reported.

The coverages of the stuck-at faults published in [17] and [7] are reported in
the third and fourth columns of Table 2. The results of our serial and deductive
fault simulator are in the fifth and sixth columns of the table. These fault coverages
were achieved with 200 randomly generated test vectors while the results in [7]
were achieved with 10 000 vectors. The number of test vectors was determined as
the lower boundary without the decrease of fault coverage. These circuits were
synthetized from the STG specifications [24] and manually checked and corrected
the initial state of some circuits. As can be observed in Table 2, the fault coverages
for our serial and deductive simulator are the same for each examined SI benchmark.
The achieved fault coverage in the worst case is 94.12%.

Circuit name
Number Average fault coverage
of faults [17] [7] serial deductive

alloc outbound 58 92% 100.0% 100.00% 100.00%
chu133 60 97% 96.9% 98.33% 98.33%
chu150 40 82% 97.1% 95.00% 95.00%
converta 56 46% 91.9% 96.43% 96.43%
dff 34 79% 85.7% 100.00% 100.00%
ebergen 46 N/A 95.7% 100.00% 100.00%
half 34 N/A 100.0% 94.12% 94.12%
hazard 40 86% 97.0% 100.00% 100.00%
master read 132 46% 97.7% 95.45% 95.45%
mp forward pkt 66 95% 100.0% 100.00% 100.00%
nak pa 76 91% 100.0% 100.00% 100.00%
nowick 50 98% 100.0% 100.00% 100.00%
ram read sbuf 84 89% 100.0% 100.00% 100.00%
rcv setup 36 93% 100.0% 100.00% 100.00%

rpdft 26 92% 100.0% 100.00% 100.00%
sbuf ram write 82 78% 100.0% 100.00% 100.00%
sbuf send ctl 66 49% 94.9% 98.48% 98.48%

Table 2. Fault coverage comparison

Table 3 shows the CPU time and the memory requirements of the implemented
serial and deductive fault simulators. The CPU times of the serial simulator are in
the second column and the CPU times of the deductive one in the third column of
Table 3. In most of the cases the deductive simulator is by 60% – 80% faster than
the serial one. In some cases (for circuits chu133, converta and half ) the deductive
simulator is slower than the serial one. The reason rests in the fault dropping
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technique of the serial simulator. If fault coverage is achieved relatively close to
100% with a small amount of test vectors right in the beginning of the test, then the
serial simulator will have to simulate only a small amount of faulty circuits to the
end of the test because of the implemented fault dropping technique. If this fault
coverage will not achieve 100% before the end of the test (so the fault simulation
will not be terminated sooner), then the deductive simulator will have to propagate
the fault lists (work with all faults) for the rest of the test. This will result in higher
computation time for the deductive simulator. This problem could be eliminated by
help of deterministic test pattern generator.

Circuit name
Time [s] Time Memory [kB] Mem.

ser. ded. decr. ser. ded. incr.

alloc outbound 0.19 0.07 63% 1 668 1 700 2%
chu133 0.23 0.29 −26% 1 680 1 780 6%
chu150 0.09 0.07 22% 1 660 1 552 −7%
converta 0.18 0.26 −44% 1 560 1 744 12%
dff 0.05 0.00 100% 1 548 1 672 8%

ebergen 0.07 0.01 86% 1 552 1 700 10%
half 0.08 0.13 −63% 1 548 1 680 9%
hazard 0.05 0.01 80% 1 552 1 692 9%
master read 0.70 0.39 44% 1 732 1 964 13%
mp forward pkt 0.24 0.04 83% 1 584 1 608 2%
nak pa 0.32 0.08 75% 1 684 1 612 −4%
nowick 0.14 0.05 64% 1 664 1 704 2%
ram read sbuf 0.25 0.06 76% 1 688 1 756 4%
rcv setup 0.07 0.02 71% 1 660 1 664 0%
rpdft 0.04 0.00 100% 1 536 1 640 14%
sbuf ram write 0.15 0.01 93% 1 688 1 748 2%
sbuf send ctl 0.19 0.10 47% 1 684 1 728 3%

Table 3. Time and memory comparison

The memory requirements of the serial simulator are in the fifth column and
the memory requirements of the deductive one in the sixth column of Table 3. The
results are not accurate in some cases (for circuit chu150 and nak pa) because of
low execution time of the fault simulation. In these cases lower requirements are
reported for the deductive fault simulator than for the serial one. Another reason
could be that for a small circuit the fault lists are also small which results in an even
tinier difference in memory requirements; but even for the longer simulations the
reported requirements are not more than 14%.

5 CONCLUSIONS

The deductive fault simulator was proposed for the SI ASCs and its implementation
was tested over a series of SI benchmark circuits. The experimental results show
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60%–80% reduction of the computation time and only max. 14% increase of the
memory requirements.

The developed fault simulator could not only work with the circuits synthetized
by Petrify but also with SI circuits of any synthetizer. In that case only the input
parser should be extended to be able to parse different circuit description format.

The simulator can be extended to handle other classes of the ASCs too because
they can be represented under the SI timing model [3].

Some improvements of the test generation procedure are planned to be made.
The random test pattern generator will be replaced with a deterministic generator to
reduce the number of the test patterns and the simulation time. This improvement
will also cause that the deductive simulator will be faster than the serial one for
any circuit. Finally the fault simulator will be extended to handle not only stuck-at
faults but also delay faults.
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