
Computing and Informatics, Vol. 30, 2011, 1011–1036

NEAREST NEIGHBOR CLUSTERING
OVER PARTITIONED DATA

Ahmed M. Khedr

Computer Sciences Department, Faculty of Science

Sharjah University, Sharjah, UAE

e-mail: akhedr@sharjah.ac.ae

Communicated by Iveta Zolotová

Abstract. Most clustering algorithms assume that all the relevant data are avail-
able on a single node of a computer network. In the emerging distributed and
networked knowledge environments, databases relevant for computations may re-
side on a number of nodes connected by a communication network. These data
resources cannot be moved to other network sites due to privacy, security, and size
considerations. The desired global computation must be decomposed into local com-
putations to match the distribution of data across the network. The capability to
decompose computations must be general enough to handle different distributions
of data and different participating nodes in each instance of the global computation.

In this paper, we present a methodology and algorithm for clustering distributed
data in d-dimensional space, using nearest neighbor clustering, wherein each dis-
tributed data source is represented by an agent. Each such agent has the capability
to decompose global computations into local parts, for itself and for agents at other
sites. The global computation is then performed by the agent either exchanging
some minimal summaries with other agents or traveling to all the sites and per-
forming local tasks that can be done at each local site. The objective is to perform
global tasks with a minimum of communication or travel by participating agents
across the network.

Keywords: Clustering algorithm, mobile and static agents, data privacy, vertically
and horizontally partitioned data

1012 Ahmed M. Khedr

1 INTRODUCTION

Clustering is the problem of discovering meaningful groups in given data. Given
a finite set of sample points, the objective is to find, among all partitions of the data
set, the best one according to some quality measure. Nearest neighbor clustering al-
gorithm can be seen as a general baseline algorithm to minimize arbitrary clustering
objective functions. It is a simple technique to group items into a number of clus-
ters. It assigns each unlabelled pattern to the cluster of its nearest labelled neighbor
pattern, provided the distance to that labelled neighbor is below a threshold. The
process continues until all patterns are labelled. The mutual neighborhood value
can also be used to grow clusters from near neighbors [1]. It is serial algorithm
where items are iteratively merged into existing clusters that are closest. In the
nearest neighbor clustering algorithm, a threshold determines whether items will be
added to an existing cluster or whether a new cluster is created. A simple distance
measure like Euclidean distance can be used to reflect similarity and dissimilarity
between two patterns.

Distributed Database: A distributed database is a logically interrelated collection
of Shared data and a description of this data, physically distributed over a computer
network [2]; or as a distributed database consists of a collection of nodes or sites, each
of which represents one computer and its associated secondary storage devices [3, 4].
Therefore, we have to find new ways to get the information we want, but by leaving
the data stored where it already is rather than bringing all of the different data to
one central location. In order to accomplish this, algorithms are needed that can
achieve the same end result.

Designing an algorithm that can handle the nearest neighbor clustering with
distributed databases presents a whole new set of difficulties. This is especially
true when we want to consider more than 2-dimensional points, which is often the
case. One easy way for this to occur is to send all of the data points to one central
location and then perform the exact same algorithm. This is certainly a correct and
viable method, but the problems with this are that communication is more expensive
than their computations and the network sites may reject to move their data due
to privacy, security, and size considerations; so what is needed is an algorithm
that can have more computations occur at the individual database sites, and then
transmit a minimal amount of information to a central location in order to reduce
communication costs. With this new method, there is less work done by the central
node and more work is done at the individual database sites. This will be referred
to as the decentralized method henceforth.

There has never been an algorithm designed that can cluster distributed databa-
ses in this decentralized setting. There are some algorithms for clustering partitioned
database but with some constraints on the partitioned data such as [5, 6] presenting
a method for k-means clustering when different sites contain different attributes
for a common set of entities, and the work in [7] discussing a privacy-preserving
k-means algorithm for distributed databases. However, the presented algorithm will
only work for a horizontally distributed database split into two parts. Our algorithm

Nearest Neighbor Clustering over Partitioned Data 1013

does not put any limitation on the number of partitions in case of vertically or
horizontally distributed databases.

In this paper, we present a methodology and algorithm for clustering distributed
data that are horizontally or vertically partitioned in d-dimensional space using near-
est neighbor clustering. We demonstrate how results from multiparty computations
can be used to generate privacy-preserving clustering algorithm.

The rest of the paper is organized as follows: Section 2 briefly surveys our
related work. In Section 3, we describe our methodology for handling the proposed
problem. In Section 4, we describe our proposed algorithm. Example scenario of
our algorithm is given in Section 5. The analysis and complexity computing of the
proposed algorithm is given in Section 6. In Section 7, we study the properties of
our algorithm via simulation.We conclude our paper in Section 8.

2 RELATED RESEARCH

Many attempts have been made to develop parallel pattern analysis algorithms to
take advantage of the high performance of multiprocessor computer systems [8,
9, 10, 11, 12]. It is desirable to implement clustering algorithms in parallel and
even build specialized hardware chips for clustering when large amounts of data
are available at a single processing site. In [10], Rasmussen and Willett discuss
parallel implementation of the single link clustering methods on an SIMD array
processor. Their parallel implementation of the SLINK algorithm does not decrease
the O(n ∗ n) time required by the serial implementation, but a significant constant
speedup factor is obtained. In [8], Salem et al. designed a developed parallel version
of nearest neighbor clustering algorithm in conjunction with a fast k nearest neigh-
bor (FKNN) strategy for further reduction in processing time. In [13], Jain et al.
proposed a method based on a nearest neighbor clustering paradigm, in which the
local clustering process is focused on a subset of plausible neighbors. A least-square
line fitting is performed on these plausible neighbors, and the skew angle associated
with the straight line is used to build up a histogram. The algorithm proposed by
Liolios et al. attempted to group all components that belong to the same text line
into one cluster [14]. Because the average height and width of the components are
applied in the process, the method can only cope with documents with a rather
uniform font size. The two main differences between our work and the above algo-
rithms are as follows: first the above algorithms minimize the number of processors,
however, in our work the number of processors is fixed and we seek to minimize the
number of exchanged messages among the sites; second the above algorithms only
read data at other sites, however, our algorithm performs computations at local sites
and returns local results.

There are some works in the area of privacy preserving clustering algorithms
of horizontally and vertically partitioned data [5, 6, 15], where these algorithms as-
sumed that the data for a single entity are split across multiple sites, and each site
has information for all the entities for a specific subset of the attributes. However,

1014 Ahmed M. Khedr

our formulation models are more general circumstances than the case of a single key
and non-overlapping attribute sets for single records distributed at various sites [5].
Our target is to enable those databases for participation that were designed inde-
pendently and may have arbitrary overlap of attribute sets with the other databases
they have to collaborate with.

In this paper, we propose a decomposable version of the nearest neighbor cluster-
ing algorithm that works in this desired manner with a set of networked databases.
We consider each tuple in the implicit join D as a point in the d-dimensional space
and the distance between two tuples corresponds to the distance between two points.
A Coordinator site first determines all the sites that should be involved in the task
and then communicates to them requests for results of some computations performed
locally at each site. Only the results of these local computations are transmitted to
the Coordinator site, possibly followed by new requests for more local computations,
until the global results are generated at the Coordinator site.

At first glance, this might appear simple, each site can simply run the nearest
neighbor clustering algorithm on its own data. This would preserve complete privacy.
Figure 1 shows why this will not work. Assume we want to perform clustering on
the data in the figure. From y’s point of view (looking solely at the vertical axis),
it appears that there are two clusters centered at about 2 and 5.5. However, in
two dimensions it is clear that the difference in the horizontal axis dominates. The
clusters are actually left and right, with both having a mean in the y dimension of
about 3. The problem is exacerbated by higher dimensionality [5].

3 INTEGRATION OF DISTRIBUTED DATA

In the situationmodelled here, we consider n databases located at n different network
sites and all of them together constitute the database D for the global computation.
As an abstraction, we model the databaseDi at each ith site by a relation containing
a number of tuples. The set of attributes contained in Di is represented by Ai. For
any pair of relations Di and Dj the corresponding sets Ai, and Aj may have a set of
Shared attributes given by Sij. Since an arbitrary number of independent, already
existing, databases may be consulted for a computation, we cannot assume any data
normalization to have been performed for their schemas.

As shown in Figure 2, each Di is represented by an agent that communicates
with similar agents at other sites to exchange simple computational summaries. The
algorithms discussed here can be seen to reside with these agents and any one of these
agents is capable of initiating and completing a computational task by exchanging
summaries with agents at other sites.

The implicit database D with which the computation is to be performed is
a subset of the set of tuples generated by a join operation performed on all the
participating relations D1, D2, . . . , Dn. However, the tuples of D cannot be made
explicit at any one network site by any one agent because the (Di’s) cannot be
moved entirely to other network sites. The tuples of D, therefore, must remain

Nearest Neighbor Clustering over Partitioned Data 1015

Fig. 1. Two dimensional problem that cannot be decomposed into two one-dimensional
problems (example from [5])

only implicitly specified to an agent. This inability of an agent to make explicit
the tuples of D is the main problem addressed in the generalized decomposition of
global algorithms and is addressed in later sections. To facilitate clustering with
implicitly specified sets of tuples of D, we define a set S that is the union of all the
attribute intersection sets Sij, that is,

S =
⋃

i,j,i 6=j

Sij. (1)

The set S thus contains the names of all those attributes that are visible to
more than one agent because they occur in more than one participating Di. We
define a Shared relation containing all possible enumerations for the attributes in
the set S that meet at least one tuple at each participating site. This formulation
of S facilitates similar treatment for horizontally or vertically partitioned databases
because horizontal partitioning can be seen as the case where all attributes are
Shared.

1016 Ahmed M. Khedr

Agent
1

AgentnAgent2

D1 D2 Dn...................

 x1 x2 x3 x4 x3 x4 x5 x6 x1 x5 x12 Attributes

Network

Databases

Interface Agents

Fig. 2. Distributed data/knowledge sources

3.1 Nature of Data Distribution

Let us say there are n different sites containing databases D1, D2, . . . , Dn, respec-
tively. Depending on the sets of attributes contained in each Di, there are two
primary ways in which the databases, together, may be seen as forming an implicit
global database D.

Horizontally Partitioned Datasets: In this scenario each component Di of D1,
D2, . . ., Dn contains the same attribute set Ai, but a different set of data tuples.
The set of Shared attributes S is the same as Ai, for each database.

Vertically Partitioned Datasets: In this scenario, each component Di consists
of tuples formed with a different set of attributes but each with those of some
other databases, Dj , j 6= i. Each Di may also contain some attributes that are
unique to the local site and are not Shared with a database at any other site.

Vertically partitioned databases are of more interest because they provide an op-
portunity to share knowledge across the participating sites. They require compu-
tations to be performed in the implicit Join, D, of all the Dis, but without ever
making explicit the tuples of D. The decomposed algorithm must appropriately
account for all the Shared attributes that would have played a role in enumerating
the tuples of the Joined D, if it were to be made explicit. This formulation models
more general circumstances than the case of a single key and non-overlapping at-
tribute sets for single records distributed at various sites [5]. Our target is to enable
those databases for participation that were designed independently and may have
arbitrary overlap of attribute sets with the other databases they have to collaborate
with. The database for which the nearest neighbor clustering is performed is the
implicit cross product of the relations stored at the distributed sites.

Nearest Neighbor Clustering over Partitioned Data 1017

3.2 Agent’s Decomposition Task

The objective of an agent is to perform the global computation by communicating
with other similar agents at other sites; and each agent performing some compu-
tation with its local database. Each agent should be able to decompose the global
computation into local computations in the context of and as constrained by the
sharing of attributes across the participating agents and perform its local part with
its own data. Each agent in Figure 2 represents a Di and communicates with similar
agents at other sites to exchange the results of its local computations. The decompo-
sition methodologies discussed here can be seen to reside with each individual agent;
and each agent is also capable of initiating and completing an instance of a global
computation by either exchanging local results with other agents, stationary at their
respective sites, or by launching a mobile agent that visits other network sites. In
the case of a mobile agents the decomposition tools and knowledge reside with the
mobile agent.

Let us say a result R is to be obtained by applying a function F to the implicit
database D. That is:

R = F(D), (2)

when the global computation is to find a distance in distributed data components,
the value of R is the distance across the global data; D is the database containing
the data; and F corresponds to the implementation of an algorithm for induc-
ing R from D. Distributed databases used by the agents cannot make explicit
the tuples of D, which remain implicit in terms of the explicitly known compo-
nents D1, D2, . . . , Dn. The set S of Shared attributes determines what explicit D
would be generated by the individual data components. An implementation of F
in Equation (2) above, for some S, can be engineered by a functionally equivalent
formulation given as:

R(S) = H[h1(D1, S), h2(D2, S), . . . , hn(Dn, S)]. (3)

A local computation hi(Di, S) is performed by Agenti using the database Di and the
knowledge about the attributes Shared among all the data sites (S). The results of
these local computations are aggregated by an agent using the operation H. How-
ever, it may not be possible to decompose a complex computation algorithm into
local computations and an aggregator. In this case, we can decompose smaller com-
putational primitive steps of such a complete algorithm and the agent keeps track
of the control aspects of sequencing various steps of such an algorithm. The number
and nature of hi operators and the nature of H would vary with the participating
Di’s and the set of attributes S among them. Hence, a different set of hi-operators
would need to be generated by the agent for each new instance of Di’s and S.

1018 Ahmed M. Khedr

3.3 Stationary and Mobile Agents

We consider two types of agents for computing the decomposed hi and H functions.
Stationary agents that stay at their respective data sites compute local hi’s and send
it to a coordinating agent who applies H operation to all the local results. Mobile
agents move from one site to another, perform local hi at each site that they visit,
and at the end apply the H operation to the gathered results. In the later discussion
we present complexity for both kinds of agents.

4 DECOMPOSABLE NEAREST NEIGHBOR CLUSTERING (DNNC)

In this section, we formally define the solution of the proposed problem. Let n be
the number of parties, each having different and Shared attributes for the same set
of entities of d attributes. The parties wish to cluster their joint data using the
nearest neighbor clustering algorithm into a number of clusters.

4.1 Computing Distance for Partitioned Data

The implicit tuples can be interpreted as points ofRd. The distance d(p1, p2) between
two tuples p1 = (x1, x2, . . . , xd), and p2= (y1, y2, . . . , yd) is defined in Euclidean
distance as follows:

d(p1, p2) =

√

√

√

√

d
∑

t=1

(xt − yt)2, (4)

where the implicit database D can be defined as D = {xt|xt ∈ Rd}. The distance
between the two tuples is regarded as a measure for their similarity. The smaller
the distance the more similar the tuples. Since each tuple includes two types of
attributes Shared and Unshared, Equation (4) can be rewritten as:

d(p1, p2) =
√

∑

(Shared)

(xt − yt)2 +
∑

(Unshared)

(xt − yt)2. (5)

Equation (5) contains two parts, the first part (the shared distance) can be com-
puted at the Coordinator site, where the Shared relation is known. The second
part (the unshared distance) can be implicitly computed by finding the unshared
distances between the tuples that belong to the same class and between the tuples
that belong to different classes and then aggregate the results of local computations
at the Coordinator site to get the global unshared distance (we refer to the implicit
tuples that meet Shared j in the implicit database D by class j).

4.2 Algorithm Outlines

In this section, we discuss how the algorithm performs clustering in geographically
distributed databases. The algorithm includes three main steps: Shared relation

Nearest Neighbor Clustering over Partitioned Data 1019

computing, local computations, and global computations. In the Shared relation
computing step, we create the PreShared relation as the cross product of the dif-
ferent values of the attributes in the set S, then we form the Shared relation by
removing from PreShared any tuple that does not meet at least one tuple at any
participating site. In the local computations step, every site will locally perform the
following computations: the number of tuples of every class, the unshared distances
set (distances between every pair of tuples in each class), and the unshared distances
set (distances between every combination of two tuples in different classes) and then
send the results back to the Coordinator site. In the global computations step, the
Coordinator site will perform a number of computations on the received results from
the local sites to find the final clustering results. The main steps of our algorithm
are as follows:

Step 1: Shared Relation Computing: At the Coordinator site, we create the Pre-

Shared relation as the cross product of the different values of the attributes in
the set S. Then, we generate the Shared relation by removing from PreShared

any tuple that does not meet at least one tuple at any participating site.

Step 2: Local Computations: For every class j and for every combination of two
classes j and k, every local site i executes the following steps and sends the
results back to the Coordinator site:

1. The number of tuples of class j (N i
j).

2. The unshared distances set between every two tuples in class j,

UnShardDist ij = {djv : v = 1, 2, . . . , r},

where r is the number of combinations of two tuples in class j.

3. The unshared distances set between every combination of two tuples one in
class j and the other in class k,

UnSharedDist ij,k = {djku : u = 1, 2, . . . , s},

where s is the number of combinations of two tuples.

Step 3: Global Computations: This computation will be executed at the Coor-

dinator site, where a number of matrices will be constructed to find the final
clustering results.

1. Construct for each site i, CounTupi = {N i
j : j = 1, 2, . . . , l}, where N i

j is
the number of tuples that belong to class j at site i and l is the number of
Shared tuples.

2. Construct the global matrixCountMatrix [l][n] by considering eachCounTupi,
where i = 1, 2, . . . , n as a column, where l is the number of Shared tuples,
and n is the number of participating sites.

1020 Ahmed M. Khedr

3. For every value CountMatrix [j][i] (number of tuples in class j at site i) in
CountMatrix [l][n], define the sequence Count ij = {1, 2, . . . ,CountMatrix [j]
[i]}.

4. For every class j, construct the matrix MapMatrixl[c][n] as the Cartesian
product of all sequences Count ijs, where c is the number of tuples in class j
in the implicit data, and n is the number of participating sites.

5. For every UnSharedDist ij set, construct the square matrix UnSharedDist-

Matrix i
j[p][p], where p is the number of tuples in class j at site i (p =

CountMatrix [j][i]). This matrix represents the unshared distances between
each pair of tuples that belongs to class j at site i (see Unshared Matrix Class

procedure).

6. For every UnSharedDist ij,k set, construct the unshared matrix UnSharedDist-

Matrix i
j,k[p][q], where p is the number of tuples in class j and q is the number

of tuples in class k at site i (q = CountMatrix [k][i]). This matrix represents
the unshared distances between any pair of tuples; one in class j and the
other in class k at site i (see Unshared Matrix Combination procedure).

7. Using the above constructed matrices, compute the global matrix Adjacency-
Matrix [w][w], where w is the number of tuples in the explicit database. The
elements of this matrix will be computed by taking the square root to the
sum of the Shared and Unshared distances as in Equation (5) (see Adja-

cency Matrix for Same Class Points and Adjacency Matrix for Between

Classes Points procedures).

8. Apply the nearest neighbor clustering algorithm using the computed Adja-

cencyMatrix (see Decomposition of Nearest Neighbor procedure).

End Algorithm

4.3 Procedures Outlines

In this section, we formally give the the outlines of the procedures of our algorithm.
The algorithm calls five procedures: Unshared Matrix Class, Unshared Matrix
Combination, Adjacency Matrix for Same Class Points, Adjacency Matrix for Be-
tween Classes Points, and Decomposition of Nearest Neighbor procedures. In the
Unshared Matrix Class procedure, we construct the matrix that represents the un-
shared distances between each pair of tuples that belong to any class. In the Un-
shared Matrix Combination procedure, we construct the matrix that represents the
unshared distances between any pair of tuples that belongs to different classes.
In Adjacency Matrix for Same Class Points procedure, we use Equation (5) to con-
struct the Adjacency Matrix that represents the distances between any pair of tuples
that belongs to same class. In the Adjacent Matrix for Between Classes Points pro-
cedure, we also use Equation (5) to construct the Adjacency Matrix that represents
the distances between any pair of tuples that belongs to different classes. In the De-
composition of Nearest Neighbor procedure, we use Adjacent Matrices to find the
final results of clustering.

Nearest Neighbor Clustering over Partitioned Data 1021

– Unshared Matrix Class Procedure() This procedure constructs the un-
shared distance matrix UnSharedDistMatrix i

j [p][p] for each UnSharedDist ij set,
where p is the number of tuples in class j at site i (p = CountMatrix [j][i]).
This matrix represents the unshared distances between each pair of tuples that
belongs to class j at site i.

Unshared Matrix Class Procedure()

1. Set r = CountMatrix [j][i]

2. ctr = 1

3. For row = 1 to r do

(a) For col = 1 to r do

• If (row==col) then UnSharedDistMatrix i
j [row][col] = 0

• Else UnSharedDistMatrix i
j[row][col] =

UnSharedDistMatrix i
j[col][row] = UnSharedDist ij[ctr];

ctr = ctr + 1

(b) End For

4. End For

– Unshared Matrix Combination Procedure() This procedure constructs for
every UnSharedDist ij,k set, the unshared matrix UnSharedDistMatrix i

j,k[x][y],
where x is the number of tuples in class j and y is the number of tuples in
class k at site i. This matrix represents the unshared distances between any
pair of tuples; one in class j and the other in class k at site i.

Unshared Matrix Combination Procedure()

1. Set x = CountMatrix [j][i], y = CountMatrix [k][i]

2. ctr = 1

3. For row = 1 to x do

(a) For col = 1 to y do
UnSharedDistMatrix i

j,k[row][col] = UnSharedDist ij,k[ctr]
ctr = ctr + 1

(b) End For

4. End For

– Adjacency Matrix for Same Class Points Procedure() This procedure
constructs the Adjacency Matrix for the points that belong to same class using
CountMatrix, MapMatrix, and UnSharedDistMatrix. The values of this ma-
trix will be computed by taking the square root to the sum of the Shared and
Unshared distances as in Equation (5).

Adjacency Matrix for Same Class Points Procedure()

1. start = 1, end = 0

1022 Ahmed M. Khedr

2. For every class k do

(a) Sum shared = 0, end = end +
∏n

i=1(CountMatrix [k][i])
(b) For i = start to end

i For j = start + 1 to end

A For r = 1 to n

• If (MapMatrix k[i][r] 6= MapMatrix k[j][r])
Sum Unshared =
UnSharedDistMatrix r

k[MapMatrix k[i][r]][MapMatrixk[j][r]]
• End If

B End For
C AdjacencyMatrix [i][j] = AdjacencyMatrix [j][i] =

(Sum Unshared)1/2.

ii End For

(c) End For
(d) start = end

3. End For

– Adjacency Matrix for Between Classes Points Procedure() This proce-
dure constructs the Adjacency Matrix for the tuples that belong to different
classes using CountMatrix, MapMatrix, and UnSharedDistMatrix. The values
of this matrix will be computed by taking the square root to the sum of the
Shared and Unshared distances as in Equation (5).

Adjacency Matrix for Between Classes Points Procedure()

1. starth = 0, endh = 0, startk = 1, endk = 0

2. For every combination of classes (h, k) do

(a) sum shared = the distance between the Shared attributes in class h and
class k

(b) endh = endh +
∏n

i=1(CountMatrix [h][i]),
(c) endk = endk +

∏n
i=1(CountMatrix [k][i])

(d) For i = starth to endh

i For j = endh + 1 to endk

A For r = 1 to n (n is the total number of participating sites)

• Sum unshared = UnSharedDistMatrix i
h,k[MapMatrix h[i][r]]

[MapMatrix k[j][r]]

B End For
C AdjacencyMatrix [i][j]AdjacencyMatrix [j][i] =

(Sum Shared + Sum Unshared)1/2

ii End For

(e) End For

Nearest Neighbor Clustering over Partitioned Data 1023

(f) starth = endh

3. End For

– Decomposition of Nearest Neighbor Procedure() Using Adjacency matri-
ces, this procedure will return the final result of clustering.

1. Choose the threshold (standard deviation of AdjacencyMatrix values [20]).

2. Perform the following steps until all tuples are labelled.

3. For each pair of tuples (Pi, Pj) do

(a) If AdjacencyMatrix [i][j] ≤ threshold and they do not belong to any clus-
ter then include the two tuples in a new cluster.

(b) If AdjacencyMatrix [i][j] ≤ threshold and if one of the two tuples belongs
to a cluster and the other one does not belong to any cluster then assign
the latter tuple to the cluster of the former one.

(c) If AdjacencyMatrix [i][j] ≤ threshold and if both tuples belong to different
clusters then merge the two clusters.

4. End For

5 EXAMPLE SCENARIO

We show here an example execution of this algorithm. We show three databases
existing at three different network sites across a wide area network. The three
databases together implicitly define a global database D consisting of points in
a 6-dimensional space. The algorithm’s objective here is to cluster this data. We
consider local databases consisting of points in a 3-dimensional space. The partici-
pating relations from the three sites are shown in the following tables:

D1

a b e

1 1 2

1 3 4

3 6 2

2 1 4

3 1 5

2 5 2

1 1 1

D2

b c f

1 1 1

3 2 4

9 2 9

7 2 8

8 1 6

1 1 2

1 9 8

D3

a c d

2 2 3

1 1 9

2 1 8

1 1 10

2 1 11

2 2 4

2 1 4

Table 1. Explicit component databases at local sites

From the relations in Table 1, the Shared attributes are a, b, and c, and the
different values of them will be: a = {1, 2, 3}, b = {1, 3, 5, 6, 7, 8, 9}, and c = {1, 2, 9}.
PreShared will be the cross product of the different values of the Shared attributes.
Then, we generate the Shared relation by removing from PreShared any tuple that

1024 Ahmed M. Khedr

class a b c

1 1 1 1

2 2 1 1

Table 2. The indexed Shared relation

does not meet at least one tuple at any participating site. then we index it as in
Table 2.

• Local Computations:

– For class 1

∗ At Site1: The number of tuples is 2, i.e. N 1
1 = 2, and UnsharedDist 11 =

{1}, where the only unshared attribute e has the values 2, 1.
∗ At Site2: The number of tuples is 2, i.e. N 2

1 = 2, and UnSharedDist 21 =
{1}.

∗ At Site3: The number of tuples is 2, i.e. N 3
1 = 2, and UnSharedDist 31 =

{1}.

– For class 2

∗ At Site1: The number of tuples is 1, i.e. N 1
2 = 1, and UnShaedDist 12 =

{0}.
∗ At Site2: The number of tuples is 2, i.e. N 2

2 = 2, and UnSharedDist 22 =
{1}.

∗ At Site3: The number of tuples is 3, i.e. N 3
2 = 3, and UnSharedDist 32 =

{9, 16, 49}.

– For the combinations of class 1 and class 2

∗ At Site1: UnSharedDist 11,2 = {4, 9}, where the unshared attribute e = 2,
1 in class 1 and e = 4 in class 2

∗ At Site2: UnSharedDist 21,2 = {0, 1, 1, 0}.

∗ At Site3: UnSharedDist 31,2 = {1, 4, 25, 4, 1, 36}.

• Global Computations:

– CounTup1 = {N 1
1 , N

1
2} = {2, 1}, CounTup2 = {2, 2}, and CounTup3 =

{2, 3}.

– Using CounTup1, CounTup2, and CounTup3, the global matrix CountMatrix

will be

CountMatrix [2][3] =

(

2 2 2
1 2 3

)

– The multiplication of the values in the first row is 8 that represents the
number of tuples in class 1, and in the second row it is 6 that represents the
number of tuples in class 2. Then, the total number of tuples in the database
will be 14.

Nearest Neighbor Clustering over Partitioned Data 1025

– According to our definition, the numeric sequences Countnms will be: Count
1
1

= Count21 = Count31 = {1, 2}. Count12 = {1}, Count22 = {1, 2}, and
Count32 = {1, 2, 3}.

– According to our constructions of the MapMatrix s, MapMatrix 1 will be the
cartesian product of Count11, Count

2
1, and Count31.

∗ MapMatrix 1 = {1, 2} × {1, 2} × {1, 2} =

1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 2 1
2 2 2

This matrix helps know at which site the unshared distances will not be
zero. For example, the values in the first and the second rows show that
they are the same except the third value. This means that the unshared
distance between tuple 1 and tuple 2 in class 1 equals to the unshared
distance at site 3.

∗ In the same way for class 2: MapMatrix2 =

1 1 1
1 1 2
1 1 3
1 2 1
1 2 2
1 2 3

– Unshared Matrix Class Computing

∗ For Site 1: we have UnSharedDist 11 = {1} and CountMatrix [1][1] = 2
then

UnSharedDistMatrix 1
1[2][2] =

(

0 1
1 0

)

UnSharedDistMatrix 1
2[1][1] =

(

0
)

.

∗ For Site 2:

UnSharedDistMatrix 2
1[2][2] =

(

0 1
1 0

)

,

UnSharedDistMatrix 2
2[2][2] =

(

0 1
1 0

)

.

∗ For Site 3:

UnSharedDistMatrix 3
1[2][2] =

(

0 1
1 0

)

,

1026 Ahmed M. Khedr

UnSharedDistMatrix 3
2[3][3] =

0 9 16
9 0 49
16 49 0

 .

– Unshared Matrix Combination Computing

∗ For Site 1: since UnSharedDist 11,2 = {4, 9} and CountMatrix [1][1] = 2
for class 1, and CountMatrix [1][2] = 1, for class 2. therefore,

UnSharedDistMatrix 1
1,2[2][1] =

(

4
9

)

.

∗ For Site 2:

UnSharedDistMatrix 2
1,2[2][2] =

(

0 1
1 0

)

.

∗ For Site 3:

UnSharedDistMatrix 3
1,2[2][3] =

(

1 4 25
4 1 36

)

.

– Adjacency Matrix for Same Class points

∗ For class 1

· The shared distance Sum shared = 0.
· From MapMatrix 1 the unshared distance between tuple 1 and tu-
ple 2 will be the distance between the two tuples at Site 3, i.e.,
Sum unshared = UnSharedDistMatrix 1

1[1][2] = 1.
· Using Equation (5) AdjacencyMatrix [1][2] = AdjacencyMatrix [2][1]
= 1.

– Adjacency Matrix for Between Classes Points

∗ For Combination (1, 2)

· Sum shared = 1
· Since the first row in MapMatrix 1 is (1, 1, 1), and the first row in
MapMatrix 2 is (1, 1, 1), the distance between tuple 1 (P1 in database)
in class 1 and tuple 1 in class 2 (P9 in database) will be: Sum unshared

=UnSharedDistMatrix 1
1,2[1][1]+UnSharedDistMatrix2

1,2[1][1]+UnSha-

redDistMatrix 3
1,2[1][1] = 5.

· Using Equation (5) AdjacencyMatrix [1][9] = AdjacencyMatrix [9][1] =
2.4.

After executing the last two steps for every pair of tuples inside every class, or
belongs to different classes the AdjacencyMatrix will be updated as in Table 3.

Nearest Neighbor Clustering over Partitioned Data 1027

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

P1 0 1 1 1.4 1 1.4 1.4 1.7 2.4 3 5.5 2.7 3 5.6

P2 1 0 1.4 1 1.4 1 1.7 1.4 3 2.5 6.4 3.2 2.7 6.5

P3 1 1.4 0 1 1.4 1.7 1 1.4 2.7 3.2 5.6 2.5 3 5.5

P4 1.4 1 1 0 1.7 1.4 1.4 1 3.2 2.7 6.5 3.9 2.5 6.4

P5 1 1.4 1.4 1.7 0 1 1 1.4 3.3 3.7 5.9 3.5 3.9 6

P6 1.4 1 1.7 1.4 1 0 1.4 1 3.7 3.3 6.8 3.9 3.5 6.9

P7 1.4 1.7 1 1.4 1 1.4 0 1 3.5 3.9 6 3.3 3.7 5.9

P8 1.7 1.4 1.4 1 1.4 1 1 0 3.9 3.5 6.9 3.7 3.3 6.8

P9 2.5 3 2.7 3.2 3.3 3.7 3.5 3.9 0 3 4 1 3.2 4.1

P10 3 2.5 3.2 2.7 3.7 3.3 3.9 3.5 3 0 7 3.2 1 7

P11 5.5 6.4 5.6 6.5 5.9 6.8 6 6.9 4 7 0 4.1 7 1

P12 2.7 3.2 2.5 3 3.5 3.9 3.3 3.7 1 3.2 4.1 0 3 4

P13 3 2.7 3 2.5 3.9 3.5 3.7 3.3 3.2 1 7 3 0 7

P14 5.6 6.5 5.5 6.4 6 6.9 5.9 6.8 4.1 7 1 4 7 0

Table 3. AdjacencyMatrix for all points in the databases

• Decomposition of Nearest Neighbor

– Let threshold = 2.03 (standard deviation of AdjacencyMatrix values)

– From the AdjacencyMatrix the distance between P1 and P2 is given by
AdjacencyMatrix [1][2] = 1 < 3.2 and since P1 and P2 do not belong to
any cluster then we include them in a new cluster (cluster number 1).

– The distance between P1 and P3 is given by AdjacencyMatrix [1][3] = 1 < 3.2
and P1 belongs to cluster 1 and P3 does not belong to any cluster then we
assign P3 to cluster 1.

We repeat these steps until all tuples are labelled. The clustering result of
the given data will be as follows:

Cluster 1 Cluster 2 Cluster 3 Cluster 4
P1 P9 P10 P11

P2 P12 P13 P14

P3

P4

P5

P6

P7

P8

6 COMPLEXITY COMPUTING

Traditionally, the complexity of algorithms is measured in terms of CPU time and
the required memory that typically measure the CPU-cycles consumed and memory

1028 Ahmed M. Khedr

accesses made by the algorithm. This cost model is well-suited for computations
on a single computer and the closely-coupled processors model. When a number of
loosely networked sites is involved in a cooperative computation, the communication
cost becomes the overwhelmingly dominant component of the total cost. Complexity
for distributed query processing in databases has been discussed in [12], and the
cost model used is total data transferred for answering a query. This cost model
suits those applications well, where a large amount of data is exchanged during
a computation. In our experience with the design and analysis of decomposable
network algorithms, we have found that each step of the algorithm must exchange
a number of messages for evaluating the various quantitative values. Each message
is generally of a very small length, but the number of messages may grow very fast.
We have used here, and in other similar works [16, 17, 18, 19], cost models involving
the number of exchanged messages and reflecting the efficiency of decomposition
carried out by the network algorithm.

We derive below an expression for the number of messages that need to be
exchanged for dealing with the implicit number of tuples. Let us say there are n re-
lations,D1, D2, , Dn, residing at n different network sites, t tuples in PreShared

relation, and l tuples in Shared relation.

6.1 Stationary Agents Implementation

1. One Summary Per Message (un-optimized): In this cost model, we count the
number of messages, Nm, that must be exchanged among all the participating
sites. The needed exchanged messages will be as follows:

• n ∗ t exchanged messages to compute the Shared relation.

• l ∗ n exchanged messages to compute the “CounTupi” sets.

• (l ∗ n) exchanged messages to compute the unshared distances inside classes
(UnSharedDist ij).

• (l2)∗n exchanged messages to compute the unshared distances between tuples
in different classes “UnSharedDist ij,k” where (l2) is the number of all possible
combinations of two tuples in class j and class k.

Therefore, in the worst case the total number of exchanged messages will be

n

(

2l +
l(l − 1)

2
+ t+ 1

)

. (6)

2. Exchanging all the Summaries in one Message (optimized:) It is possible to send
a request to an agent for all hi(Di, S) values, that is, values corresponding to all
Shared tuples of S in one request and receive all the summaries in one message.
This reduces the number of exchanged messages to be

Nearest Neighbor Clustering over Partitioned Data 1029

2l +
l(l − 1)

2
+ t+ 1. (7)

The trade-off between the two approaches is that the first one may be considered
more secure for transmission over a network because each message contains only
very little information about the participating databases. The second alternative
requires very few messages but each message contains more information about each
database.

6.2 Mobile Agents Implementation

Each mobile agent stores the Shared relation inside it. During a visit to a data
site, it can compute the local hi for that site. Once all the sites have been visited,
the H aggregator can be applied to the collected local results from all the sites. The
exchanged messages computing using mobile agents in implicit D will be as follows:

Exchanged Messages for computing Shared Relation: The local results for
computing the shared values sets at each site can be gathered during a single
visit to each site and then aggregating the local results by finding the cross
product. We need to visit each site one more time for computing the Shared

relation from the PreShared relation. Therefore, we need only two visits to each
site to compute the Shared relation, i.e., the number of exchanged messages to
execute this will be 2.

Exchanged Messages for computing CounTup i sets: For each Shared j, the
local results for computing N i

j at each site i (i = 1, 2, . . . , n) can be gathered
during a single visit to each site. Therefore, we need only l visits to each site to
compute the CounTupi, i.e., the number of exchanged messages to execute this
step will be l.

Exchanged Messages for computing UnsharedDist ij: For each Shared j

(class j), UnsharedDist ij can be gathered during a single visit to each site. Thus,

the mobile agent can compute the UnsharedDist ij sets by visiting each site only
once. Therefore, the number of exchanged messages to perform this step will
be l.

Exchanged Messages for computing UnsharedDist ijk: For every combination

of Shared j and k (classes j and k), UnsharedDist ijk can be gathered during
a single visit to each site i. Therefore, the number of exchanged messages to
perform this step will be (l2).

he total number of exchanged messages will be

Total Exchanged Messages = 2 + 2l +
l(l − 1)

2
. (8)

1030 Ahmed M. Khedr

7 ADVANTAGES AND SECURITY CONSIDERATION

The above analysis of complexity shows the following:

1. The number of messages that need to be exchanged among the sites is not
dependent on the size of the database at each site.

2. The communication cost is dependent primarily on the number and manner in
which the attributes are shared among the participating sites. This is signifi-
cant because it shows that as the sizes of the individual databases grow, the
communication complexity of the algorithm would remain unaffected. Also, the
number of partial results that need to be transmitted is far fewer than that of
the messages that may have to be transmitted if entire databases are collected
at some central site.

3. The computational cost of local computations would grow with the database
size at each individual site but our decomposable versions has an advantage in
this regard also over the transport, join, and then run the traditional nearest
neighbor clustering alternative. If each local database Di has p tuples, then in
the worst case the join of n local databases would produce a relation contain-
ing order of pn tuples. There is additional cost of order of n ∗ p comparisons
for creating the join. When nearest neighbor clustering algorithm is run with
this explicitly created D, we would need to compute (n∗p2) distances. In our
decomposable version, each of the n sites would be computing only l∗(c2) + (l2)c

2

distances, where l is the number of Shared tuples and c is the average number
of tuples inside each class. Thus, there is tremendous saving in the computa-
tional cost when the decomposable version is executed instead of moving the
data, creating a Join and then running the nearest neighbor clustering algo-
rithm.

Another important gain of decomposable version is that it preserves the privacy
of the data by not requiring any data tuples to be placed on a communication
network. It also preserves the integrity of individual databases because no site
needs to update or write into any of the participating databases. All the queries
are strictly reading queries or perform local computations and returns only the
results. The proposed decomposable nearest neighbor clustering algorithm returns
the same results for distributed databases (without having to move the databases
to a centralized site) with respect to the traditional nearest neighbor clustering
algorithm from centralized data. From the point of view of data security and privacy,
no data tuple is exchanged between the sites. If the information security and privacy
is defined by not having to release any data tuple out of a database for transmission
over the network and the reconstruction of any data tuple being impossible by the
released data summaries then the above algorithm preserves the privacy of the data
in each participating database. No data tuple is ever transmitted and the summaries
are not sufficient to reconstruct any individual data tuple.

Nearest Neighbor Clustering over Partitioned Data 1031

8 SIMULATION RESULTS

We have performed a number of tests to demonstrate that the proposed DNNC
algorithm can be run in a distributed knowledge environment without moving all
the databases to a single site. These tests have been carried out on a network of
workstations connected by a LAN and tested against different sizes of databases,
different number of Shared tuples, and different number of local sites. We have im-
plemented the algorithm using Java, RMI (Remote Method Invocation), and JDBC
(Java Database Connectivity) to interface with the databases.

In the first test, we demonstrate how the elapsed time and the number of ex-
changed messages varies with the number of local sites. The number of the local
sites varies between 2 and 6 with increment of 1. Figure 3 shows how the elapsed
time to run DNNC algorithm in an implicit database D changes with the number
of local sites. It can be easily seen that the elapsed time increases as the number of
local sites increases. Also, Figure 4 shows that the number of exchanged messages
increases as the number of local sites increases.

Fig. 3. Elapsed time to run DNNC algorithm on vertically partitioned data (different local
sites)

In the second test, we demonstrate how the elapsed time and the number of
exchanged messages varies with the average number of Shared tuples between local
databases. The number of shared values varies between 5 and 25 with increment of 5.
Figure 5 shows the elapsed time to run DNNC algorithm in an implicit database D.
The figure shows that the elapsed time increases as the number of shared values

1032 Ahmed M. Khedr

Fig. 4. Number of exchanged messages to run DNNC algorithm on vertically partitioned
data (different local sites)

increases. Also, Figure 6 shows that the number of exchanged messages increases
as the number of shared values increases.

In the last test, we demonstrate how the elapsed time and the number of ex-
changed messages vary with the number of tuples in the database. Figure 7 shows
the change between elapsed time to run DNNC algorithm in an implicit database D
and the number of tuples in the database. It shows that the time taken to run
DNNC algorithm in an implicit database D changes with the size of the indi-
vidual databases. As we can see, when we exchange one summary per message,
the time taken to run the DNNC algorithm varies as the size of the database in-
creases. However, when we use the optimized method the time taken to run the
DNNC algorithm reduces considerably and depends on the number of participating
nodes.

Figure 8 shows the change between the number of exchanged messages and the
number of tuples in the database. It shows how the number of exchanged messages
between the Learner site and the remote sites varies with the number of tuples in the
database. It can be easily seen that the number of exchanged messages increases as
the size of the database increases when we send one summary per message. However,
in the optimized version when we receive all the summaries in a single message, the
number of exchanged messages was a constant depending upon the total number
of participating nodes. The result validates the expression for the total number of
exchanged messages as given above.

Nearest Neighbor Clustering over Partitioned Data 1033

Fig. 5. Elapsed time to run DNNC algorithm on vertically partitioned data (different
number of Shared tuples)

Fig. 6. Number of exchanged messages to DNNC algorithm on vertically partitioned data
(different number of Shared tuples)

1034 Ahmed M. Khedr

Fig. 7. Time Taken to run DNNC algorithm on vertically partitioned data (different num-
ber of tuples in database)

Fig. 8. Number of exchanged messages to run DNNC algorithm on vertically partitioned
data (different number of tuples in database)

Nearest Neighbor Clustering over Partitioned Data 1035

9 CONCLUSION

In this paper we have described a decomposable version of the popular nearest
neighbor clustering algorithm that works for vertically and horizontally partitioned
databases that are geographically distributed. We have also presented the analytical
basis for the design of our algorithm. The algorithm succeeds in obtaining identical
results to those that would be achieved by moving all the databases to one site,
joining them, and then executing the traditional nearest neighbor clustering algo-
rithm. Also, the proposed algorithm achieves identical results at a great saving in
the total communication cost and preserves the privacy and integrity of the indivi-
dual databases. The decomposed version of our clustering algorithm is particularly
appealing in the sense that one can achieve clustering of data no matter how far the
authorized sites are located.

REFERENCES

[1] Gowda, K.C.—Krishna, G.: Agglomerative Clustering Using the Concept of Mu-
tual Nearest Neighbourhood. Pattern Recognition, Vol. 10, 1977, pp. 110–112.

[2] Connolly, T.M.—Begg, C.E.: Database Systems: A Practical Approach to De-

sign: Addison Wesley Longman 26, New York 1995.

[3] Rahimi, S.K.—Haug, F. S.: Distributed Database Management Systems: A Prac-
tical Approach. John Wiley 2009.

[4] Taniar, D.—Clement, H.C. L.—Wenny, R.—Goel, S.: High Performance
Parallel Database Processing and Grid Databases. Wiley Series on Parallel and Dis-
tributed Computing, John Wiley 2008.

[5] Vaidya, J.—Clifton, C.: Privacy-Preserving k-Means Clustering over Vertically
Partitioned Data. In Proc. of ACM SIGMOD 2003.

[6] Shrikant, J.: Privacy Preserving Data Mining Over Vertically Partitioned Data.
PhD Dissertation, Purde University 2004.

[7] Jagannathan, G.—Pillaipakkamnatt, K.—Wright R.N.: A New Privacy-
Preserving Distributed k-Means Clustering Algorithm. In Proceedings of the 2006
SIAM International Conference on Data Mining SDM 2006.

[8] Salem, S.A.—Nandi, A.K.: Parallel Nearest Neighbor Clustering Algorithm (PN-
NCA) for Segmenting Retinal Blood Vessels. In Proceedings of the 25th IASTED
international Multi-Conference, Parallel and Distributed Computing and Networks
ACTA Press, Anaheim, CA 2007, pp. 263–268.

[9] Olson, C.F.: Parallel Algorithms for Hierarchical Clustering. Parallel Computing,

Vol. 21, 1995, No. 8, pp. 1313–1325.

[10] Rasmussen, E.M.—Willett, P.: Efficiency of Hierarchical Agglomerative Clus-
tering Using the ICL Distributed Array Processors. Journal of Documentation,
Vol. 45, 1989, No. 1, pp. 1–24.

[11] Li, X.—Fang, Z.: Parallel Clustering Algorithms. Parallel Computing 11, 1989,
pp. 275–290.

1036 Ahmed M. Khedr

[12] Wang, C.—Chen, M.: On the Complexity of Distributed Query Optimization:

IEEE Transactions on Knowledge and Data Engineering, Vol. 8, 1996, No. 4,
pp. 650–662.

[13] Jain, A.K.: Cluster Analysis. New York 1986.

[14] Fakotkis, L.N.—Kokkinakis, G.: Improved Document Skew Deletion Based on
Text Line Connected Component Clustering. Proc. of Intl. Conf. on Image Process-
ing 1, 2001, pp. 1098–1101.

[15] Inan, A.—Kaya, S.V.—Saygin, Y.—Savas, E.—Hintoglu, A.A.—Levi, A.:
Privacy Preserving Clustering on Horizontally Partitioned Data. Data&Knowledge
Engineering (DKE), Vol. 63, 2007, No. 3, pp. 646–666.

[16] Khedr, A.M.—Bhatnagar, K.R.: A Decomposable Algorithm for Minimum
Spanning Tree. Distributed Computing – Lecture Notes in Computer Science,
Vol. 2918, Springer-Verlag Heidelberg 2004, pp. 33–44.

[17] Khedr, A.M.—Salim, A.: Decomposable Algorithms for Finding the Nearest Pair.
J. Parallel Distrib. Comput., Vol. 68, 2008, pp. 902–912.

[18] Khedr, A.M.: Learning k-Classifier from Distributed Databases. Computing and
Informatics, Vol. 27, 2008, pp. 355–376.

[19] Khedr, A.M.—Bhatnagar, R.K.: Agents for Integrating Distributed Data
for Complex Computations. Computing and Informatics, Vol. 26, 2007, No. 2,
pp. 149–170.

[20] Soltanian-Zadeh, H.—Pourabdollah-Nezhad, S.—Rafiee-Rad, F.: Shape-
Based and Texture-Based Feature Extraction for Classification of Microcalcifications
Mammograms. Proceedings of SPIE Medical Imaging Image Processing Conference
22, San Diego, CA 2001, pp. 17–22.

Ahmed M. Khedr received his B. Sc. degree in Mathematics in
June 1989 and the M. Sc. degree in optimal control in July 1995,

both from Zagazig University, Egypt. In July 1999 he received
his M. Sc. and in March 2003 his Ph.D. degrees, both in Com-
puter Science and Engineering from University of Cincinnati,
Ohio, USA. From March 2003 to January 2004, he was a Re-
search Assistant Professor at ECECS Department University of
Cincinnati, USA. From January 2004 to May 2009, he worked
as Assistant Professor at Zagazig University, Egypt, from June
2009 to Sept. 2009 he worked as Associate Professor at the De-

partment of Computer Sciences, Taif University, KSA., and from September 2010 till now
he is working as Associate Professor at the Department of Computer Sciences, Sharjah
University. In June 2009, he was awarded the State Prize of Distinction in Advanced
Technology. He has coauthored 40 works in journals and conferences relating to optimal
control, wireless sensor networks, decomposable algorithms, and bioinformatics.

