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Abstract. This paper proposes a shape-based neurobiological approach for action
recognition. Our work is motivated by the successful quantitative model for the
organization of the shape pathways in primate visual cortex. In our approach the
motion-salience region (MSR) is firstly extracted from the sequential silhouettes of
an action. Then, the MSR is represented by simulating the static object representa-
tion in the ventral stream of primate visual cortex. Finally, a linear multi-class clas-
sifier is used to classify the action. Experiments on publicly available action datasets
demonstrate the proposed approach is robust to partial occlusion and deformation
of actors and has lower computational cost than the neurobiological models that
simulate the motion representation in primate dorsal stream.
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1 INTRODUCTION

Action recognition has become one of the most active research areas in computer
vision due to its potential applications such as video surveillance, content based video
retrieval, sports events analysis and virtual reality. Most of the action recognition
researches have focused on studying the classical features of target objects such as
the contour, interest points, local or global spatio-temporal volume, etc. In these
works the shooting angle, scaling, occlusion and imperfect extraction of actors can
impact the performance of the systems. Primates outperform the best computer
vision systems for action recognition, so building a system that simulates action
recognition in the primate visual cortex has always been an attractive idea.

The mechanism of action recognition in primate visual cortex has progressed
over the past decades. The visual cortex is organized in two different streams:
a dorsal stream dominating motion information [1] and a ventral stream dealing
with shape information. Many electrophysiological experiments show that, in mon-
key and human brains, these two streams originate in the primary visual cortex (V1)
and separate along two populations of cells [2]: cells responding to speed and di-
rection of motions project to the area MT (V5) and MST in the dorsal stream [3]
and cells responding to static object recognition and spatial representation project
to extrastriate visual areas V2, V4 and inferotemporal (IT) cortex in the ventral
stream [4]. Eventually, the two streams twist and interact at higher levels [5]. In
fact, the organization of these two pathways is very similar [6]. Both of them follow
the template-based feedforward hierarchy [7]. The contribution of the two streams
for action recognition in the cortex is still a matter of debate [8].With the extraction
of features inspired by the primate visual cortex, the action recognition model can
be designed under two types of frameworks: the framework relies on a model of the
dorsal stream and the framework relies on a model of the ventral stream. It would
have been interesting to compare the performance of the two frameworks.

In the first framework, the motion information of actions has been used for action
classification. However, the mechanism for action recognition in dorsal stream is still
unclear. Giese et al. [9] speculate that neurons in MT and MST respond to optical
flow patterns of target objects. They model the processing mechanism of these two
streams separately for simplification. However, the model has only been applied
to simple artificial stimuli. Jhuang et al. [10] extend the model in [9] and presume
that neurons in intermediate visual areas of the dorsal stream such as MT, MST
respond to spatio-temporal features of target objects. This model shows a better
performance than typical action recognition algorithms using classical features.

In the second framework, the successful quantitative model for static object
representation in primate cortex has been studied by [11], which inspires us to use the
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shape-based feature to represent actions for the action classification. Using shape for
action recognition has been done in many works. Traditional approaches, such as [12,
13, 14], model actions as space-time representations which explicitly or implicitly
encode the dynamics of an action through temporal dependencies. The recent study
from Weinland et al. [15] proposes motion sequences are represented with respect to
a set of discriminative static key-pose exemplars and without modelling any temporal
ordering.

Motivated by the recent work [16] which has shown the benefit of using shape
features in addition to motion features for the recognition of actions, we propose
a shape-based neurobiological approach (SBNA) for action recognition. The SBNA
is performed in three procedures. First, the motion-salience region (MSR) of an ac-
tor is extracted from his/her silhouette sequence. The MSR is the spatio-temporal
image of the exterior body parts that take remarkable local movement. Then the
MSR is represented by a visual-neuron feature (VNF), which is implemented by
simulating the hierarchical template matching architecture for static object repre-
sentation in primate visual cortex [11, 17]. In this part, we improve the static object
representation procedure in [11] by replacing the 2D Gabor function set by the 2D
log-Gabor function set that is the standard method for representing the spatial-
frequency response of primate visual neurons. Finally, a linear multi-class SVM
classifier is used to classify the VNF of test actions. The main contribution of the
proposed action recognition approach is twofold:

1. the VNF of the MSR image is robust to the deformation of actors, the imperfect
extraction of silhouette (foreground mask), and partial occlusion;

2. it is more efficient in computation than the neurobiological models that try to
simulate the motion perception mechanism in primate dorsal stream.

Experiments on publicly available action datasets show that our approach outper-
forms the action recognition model using classical features and the model [10] com-
puting the mechanism of action representation in primate dorsal stream.

The rest of the paper is organized as follows. In section two we address how the
MSR is extracted to represent an action. In section three, we briefly introduce the
quantitative model of static object representation in primate visual cortex. Section
four introduces in detail the representation of the MSR using VNF, and the action
classification method. Experimental results will be discussed in section five. Finally,
conclusive remarks are addressed at the end of this paper.

2 THE MOTION-SALIENCE REGION OF ACTION

The use of local image features has become a trend in action recognition [13, 18]. The
sparse and informative local features provide compact and abstract representations
of actions in video sequences. These features make the problem more manageable
and provide increased robustness to noise and pose variation.
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The body parts taking local movement varies more significantly than the parts
taking global movement when actors perform different actions. Specifically, the
exterior body parts (e.g., the head, limbs, and joints) take more frequent and re-
markable local movement than the torso, thus these parts can be used as the local
feature to effectively distinguish different types of actions. In this paper we define
the spatio-temporal image of the exterior body parts as the motion-salience region
(MSR) of actions. The MSR is calculated using the combination of the Poisson
equation in spatial domain and the average motion energy in temporal domain.

2.1 Discrete Approximation of the Poisson Equation

In this paper, the binary silhouette (foreground mask) images of sequential postures
are used for the action classification. A reliable approach to characterize the prop-
erties of the silhouette is to assign every internal point to a value that is directly
proportional to the distance between that point and the contour of the silhouette.
One popular approach is the distance transform [19]. Another one is to let a set of
particles at an internal point move in a random walk until they hit the contour. The
statistics of this random walk can be measured using the mean distance required for
a particle to hit the boundaries.

We use U(x, y) to denote the mean distance of the random walk and S to
represent the mask of a posture in a silhouette image. Gorelick et al. [20] prove
such random walk can be formulated as the solution to the Poisson equation. They
proposed the discrete approximation of this solution, see Equations (1) and (2),

U(x, y) = c+ 1

4
[U(x+ h, y) + U(x− h, y)

+ U(x, y + h) + U(x, y − h)].
(1)

U(x, y) = 0, (x, y) ∈ ∂S. (2)

The U(x, y) is computed recursively: Under the Dirichlet boundary condition
U(x, y) = 0 at the bounding contour ∂S, for any point (x, y) inside the S, the U(x, y)
is equal to the average value of its immediate four neighbors plus a constant c.
Therefore, high values of U(x, y) are obtained in the central part of the shape,
whereas the external protrusions have relatively low values. The constant c and h
are equal to one, which represents the distance between immediate pixels.

The value obtained using the distance transform is determined by a single nearest
contour point, while the solution to the Poisson equation takes into account many
neighboring points. So the Poisson equation reflects more global properties of the
silhouette.

2.2 Extraction of the Exterior Parts of Bodies

One interesting property of the U(x, y) is that the its gradient keeps constant inside
the mask S of a posture and increases when it falls near the boundary. The value
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becomes the largest at the concave regions, which normally denote the joints of
a body. Figure 1 shows the ‖∇U(x, y)‖ images for the silhouette images of some
postures.

Fig. 1. The ‖∇U(x, y)‖ image for the silhouette images of example postures. a) The
example postures; b) The ‖∇U(x, y)‖ image for the postures. The level set (from
dark blue to red) is used to indicate the intensity of pixels in the images.

The exterior body parts usually consist of the regions moving with wide range
and high frequency. These regions involve the head, limbs and joints, etc. In order
to identify the exterior parts of a posture, we define the Equation (3) using the
combination of the normalized U(x, y) and ‖∇U(x, y)‖:

V (x, y) = log(
1

U(x, y)
+ ‖∇U(x, y)‖). (3)

Here, we obtain a smooth version of the exterior body parts for the mask of a posture
in a silhouette image. Figure 2 shows the sequential silhouettes with the exterior
parts highlighted for the running actor.

Fig. 2. The extraction of exterior body parts. a) The sequential silhouettes for the example
action “run”; b) The head, limbs and joints of the body are highlighted in high
intensity.

2.3 Extraction of the Motion-Salience Region

Actions are essentially spatio-temporal variations which encode spatial information
of postures and dynamic information of actions. To characterize an action, we
represent the sequential silhouettes (foreground masks) as an informative average
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motion energy image that implicitly captures the global motion properties of an
action and has been successfully used in gait-based human identification [21]. The
advantages of this action representation are its low computational complexity and
simple implementation.

The extraction of the motion-salience region (MSR) is to obtain the spatio-
temporal shape of the body parts taking remarkable local movement. These parts
mainly refer to the exterior body parts. We extend the V (x, y) in Equation (3)
to V (x, y, t), which denotes the time-sequential images with exterior body parts
highlighted. Then, the average motion energy image is calculated by:

A =
1

τ

τ
∑

t=1

V (x, y, t) (4)

where τ is the duration of a complete action, Figure 3 a) shows the average motion
energy image for the action “run”.

In the average motion energy image, the regions of high intensity denote the
body parts undergoing frequent local movement. Because the motion mode of these
parts varies significantly when objects perform different types of actions, these re-
gions can characterize the spatio-temporal shape of actions. On the other hand, the
regions of low intensity denote the body parts taking global movement which do
not contribute much to distinguish different types of actions. Using an appropriate
threshold, we can identify the MSR that is larger than the threshold. Figure 3 b)
shows the MSR images extracted from the average motion energy image using dif-
ferent thresholds. The impact of the threshold on the performance of the proposed
approach is illustrated in Figure 6.

The MSR image appears to be similar to the motion energy images proposed
by [12]. Both methods extract the region where the action occurs. The difference
is our method only extracts the body parts taking local movement (e.g. the arms
in the “waving hand” action) and eliminates the central parts that only take global
movement (e.g. the torso in the “walking” and “running” actions).

Fig. 3. The motion-salience region for the action “run”. a) The average motion energy
image of the posture sequence illustrated in Figure 2 b); b) The motion-salience region
extracted from a) using different thresholds (from left to right: 30%, 50%, and 70%
of the highest pixel intensity).
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3 THE VISUAL-NEURON FEATURE FOR STATIC OBJECTS

The extraction of visual-neuron feature (VNF) for static object representation is
proposed by Serre et al. [11]. It comprises a 4-layer feedforward template matching
architecture (S1-C1-S2-C2), which models the representation of objects along the
ventral stream in primate visual cortex.

The model starts at S1 units that respond to simple bar-like stimuli. They are
obtained by applying an input image to a battery of Gabor filters with 8 bands
(each contains 2 filter scales) and 4 orientations, see Equations (5) and (6):

G(x, y) = exp(−
X2 + γ2Y 2

2σ2
) cos(

2π

λ
X), s.t. (5)

X = x cos θ + y sin θ, Y = −x sin θ + y cos θ. (6)

All filter parameters are adjusted so that the S1 units match the response property
of visual neurons in V 1 area. For an input image, there are 8 bands× 2 scales× 4
orientations = 64 images generated by S1 units. These images then serve as input
of C1 units.

In the C1 units, a sliding window is applied to the S1 images in all the bands
(each band contains two S1 images of different scales) and orientations. In each
band, C1 units select the maximal value from the two window areas located at the
same position of the two S1 images, and use this value to represent the window area.
In this way, the feature at the C1 layer is more tolerant to translation and scaling
of objects than the feature at the S1 layer [22]. The process repeats in all the 4
orientations, therefore there are 8 bands× 4 orientations = 32 C1 images generated
in this stage.

S2 units are where template matching occurs. Before the matching stage,
a group of template objects for all action categories is predefined in the C1 layer,
and then M small patches of various sizes in all the 4 orientations are extracted from
random positions of C1 images of the template objects. In this paper, the collection
of the M patches is defined as the visual-neuron template (VNT). The S2 behaves
as a Gaussian-like radial basis function, where each of the patches functions as the
center of the function. That is, for a small window within a C1 image of a particular
scale and orientation, the response R of the corresponding S2 unit is given by:

R = exp(−‖C1win − P‖2), (7)

where C1win denotes a small window locating at every position of the C1 image
in all the 4 orientation and P represents a patch extracted from template images
at C1 layer. For each C1win, there are M patches which need to be compared,
thus M responses obtained. At runtime, S2 images are computed for each of the
eight bands. Therefore, the total number of the S2 images equals to M × 8.

Finally, at the C2 layer, the translation- and scale-invariant C2 feature is ob-
tained by taking a global maximum across all scales over the entire S2 images.
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Therefore, units at this layer have the largest receptive fields and respond to com-
plex stimuli such as cars, faces, etc [23]. In this paper, the C2 feature is defined as
the visual-neuron feature (VNF) of an object. The dimension of the VNF is equal
to the number of patches (M) and is independent of the size of the input image
containing the object.

The significant successes of this model are:

1. the complexity of the feature and the size of receptive field in each layer increase
simultaneously. S1 units have the smallest receptive field, thus they are low in-
variant to the translation and scaling. C2 units correspond to the most complex
feature, thus show a greater degree of invariance;

2. more complex feature at higher layer of the model are built from simpler feature
at lower layer; therefore, the complex features are tolerant to local deformations
as a result of the invariance properties of the simpler features.

4 ACTION RECOGNITION USING VISUAL-NEURON FEATURE

In this part, we propose a shape-based neurobiological approach (SBNA) for ac-
tion recognition, which consists of two procedures: action representation in primate
visual cortex and action classification.

4.1 Representation of Actions Using Visual-Neuron Feature

The key to the success of the proposed SBNA is that the motion-salience region
(MSR) of an action is analyzed, the motion sensitive component is then represented
by the visual-neuron feature (VNF) that has been used to represent static objects
in primate visual cortex [11]. In the proposed approach, we make two points of
improvement on the [11]:

1. replace the 2D Gabor function by the 2D log-Gabor function in the S1 layer;

2. use the corner point information for the VNT extraction in C1 layer.

Figure 4 shows the flow chart for the representation of actions using the VNF in the
proposed SBNA. The basic workflow is similar to that in the [11], the improvements
mainly reside in the first step, where the global visual-neuron template (VNT) is
extracted.

4.1.1 2D Log-Gabor Function in S1 Layer

The first step is for the extraction of visual-neuron template (VNT), which is im-
plemented along the S1 and C1 layer. The S1 layer agrees quantitatively with the
tuning properties of simple cells in the primary visual cortex. As it is proposed
in [11], the Gabor function is usually used to simulate object perception in primate
simple visual neurons. However, Hawken et al. [24] suggest that the Gabor function
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Fig. 4. The flow chart for the representation of MSR images using the VNF in the proposed
SBNA. The rectangular cases indicate different layers. The gray buckets represent

the databases for “Template action groups (TAG)”, and “Global VNT for a certain
action dataset”, respectively. The first step along the hollow arrows labeled with 1
indicates the process of obtaining the global VNT. The second step along the solid
arrows labeled with 2 indicates the extraction of VNF for the MSR image of an ac-
tion.

fails to capture the precise form of the spatial-frequency tuning curves in monkey
cortical cells. The Gabor function can not be constructed in terms of arbitrari-
ly wide bandwidth. It also over-represents low frequency components, which, in
essence, produces a correlated and redundant response to the low frequencies.

The study of Field [25] shows that compared with the Gabor function, the
frequency response of log-Gabor function can provide much broader bandwidth,
thus it gives wider coverage of the spectrum; meanwhile the log-Gabor function
has extended tails at high frequency, which ensures it to locate more precise local
variation of natural image in the spatial domain. Another point in support of the
log-Gabor function is that its frequency response has the Gaussian form when viewed
on the logarithmic frequency scale, which is consistent with the measurements on
primate visual systems. In these measurements, the responses of primate visual cells
are symmetric on the log frequency scale.

Due to the singularity in the log function at the origin, the analytic expression
for the shape of the log-Gabor function can not be constructed in the spatial domain.
Equation (8) shows the 2D log-Gabor function set in the frequency domain.

Hj
i (f, θ) = exp

{

− [ln(f/fi)]
2

2 [ln(σf/fi)]
2

}

× exp

{

−(θ− θj)
2

2σ2

θ

}

, (i = 1 . . . I, j = 1 . . . J) (8)

where fi represents the central frequency of the filter with the scaling index i; σf de-
termines the bandwidth of the log-Gabor filter in the radial direction; σθ determines
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the bandwidth in the orientation direction; θj represents the orientation angle of the
filter with the angle index j. The central frequency is obtained by Equation (9):

fi =
(

λ1 × si−1
)

−1

(9)

where λ1 denotes the wavelength of the smallest filter scale, s is the scaling factor
between center frequencies of successive filters. The orientation angle is fixed by the
number of filter orientations which is predefined empirically.

In the S1 layer, the dot product between the log-Gabor function set and the
Fourier transform of an input MSR image is firstly calculated, and then a numerical
inverse Fourier transform is performed to get the S1 images of different scales and
orientations in the spatial domain. The parameter configuration and the advantage
of the proposed 2D log-Gabor function over the 2D Gabor function are discussed in
subsection 5.3.2.

4.1.2 Corner Information for VNT Extraction

In the C1 layer, suppose there are N action categories in a given action dataset, then
we define N template action groups. In each group, we randomly choose n instances,
where the action has been represented by the MSR image. Each template group is
used to randomly extract d prototype patches. This leads to d patches extracted
per action category and a total number of M = d×N stored patches for the global
VNT. In this step, we modify the extraction of VNT proposed in [11] by replacing the
extraction of patches from random positions of template images with the selective
extraction of patches from corner points of template images.

Corner points exploit the useful correlation of their neighboring structures, there-
fore corner points can effectively eliminate the redundant information induced by
homogeneous region. Theoretically, the patches extraction strategy in [11] can result
in much overlapping information, while the corner-point-based method can avoid
this phenomenon. In this paper, the Harris Corner Detector proposed in [26] is used
to detect the corner points. The number of corner points is chosen by users. For
instance, to represent a 95 × 120 image, about 50 corner points can be sufficient.
Figure 5 shows the corner point images of the C1 images for the action “run”. The
advantage of the corner-points based VNT extraction in the proposed approach over
the VNT extraction in [11] is illustrated in Figure 7.

In the second step, the global VNT obtained in the first step is used to determine
the VNF for input actions. This step thoroughly passes the S1, C1, S2 and C2
layers, which is the same as the extraction of VNF for static objects introduced in
Section 3. The dimension of the VNF equals to the total number (M) of prototype
patches contained in the global VNT database. The VNF of low dimension may not
be sufficient to characterize an action. On the other hand, redundant dimensions
will increase the computational intensity. The impact of various dimensional VNF
will be discussed in Subsection 5.3.3.
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Fig. 5. Corner point images (denoted by the rectangles) for the C1 images of the action
“run”. From left to right: the MSR image for the action “run”, the corner point
images of the corresponding C1 images at band 1 in the orientation 0◦, 45◦, 90◦ and
135◦.

4.2 Action Classification

The classification stage is performed using a linear multi-class SVM classifier. We
apply the tool kit “LIBSVM” provided by Chih-Chung Chang and Chih-Jen Lin
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) to the stage. We use the one-
against-one strategy for the multi-class classification problem, where all pairs of
classes are compared to each other. In this way, a multi-class problem is decom-
posed into multiple binary classification problems [27]. To classify a test action, we
combine all the pairwise decisions. That is, given an action dataset having N action
categories, N × (N − 1)/2 tests need to be performed for one test action. Then,
the test action is assigned to the class that wins the most pairwise comparisons
(“max-wins” rule).

5 EXPERIMENTS

5.1 Action Datasets

As for the evaluation on different action recognition approaches, so far there are not
benchmark datasets. For the shape-based neurobiological approach (SBNA), two
popular action datasets are tested: Weizmann and KTH. Details about the dataset
are given below.

1. Weizmann: The Weizmann provides 90 video sequences shown by nine subjects,
each performing 10 types of natural actions. The actions are “bend”, “jack”,
“jump-forward (jump1)”, “jump-up-down (jump2)”, “run”, “gallop-sideways”,
“skip”, “walk”, “wave-one-hand” and “wave-two-hands”. The subjects present
in different scales in the scene. In the video sequences, the actions are repeated
several times. In order to increase the size of data, we averagely segment every
video sequence into 3 pieces. In the experiments, the cross-validation rule is
adopted to compute an unbiased estimate of the true recognition rate. We split
the dataset as follows. 6 subjects are used as templates (training set) and the
remaining 3 subjects are used for testing. Thus, the size of each template action
group (TAG) is n = 18 (6 subjects × 3 pieces). The system performance is
evaluated by the average of five random splits.
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2. KTH: The KTH human action dataset contains six types of human actions:
“walk”, “jog”, “run”, boxing, hand waving and hand clapping. These actions
are performed several times by twenty-five subjects in four different conditions:
outdoors (s1), outdoors with scale variation (s2), outdoors with different clothes
(s3) and indoors with lighting variation (s4). The database contains 2 391 se-
quences which are taken over homogeneous backgrounds with a static camera.
The dataset is split as: actions of 16 randomly drawn subjects for training and
actions of the remaining 9 subjects for testing. The system performance is based
on the average of five random splits.

The binary silhouette (foreground mask) sequences have been given by both
Weizmann and KTH dataset. Similar to [10], we use a primitive attention mecha-
nism: the input is a sequence of fixed-size image windows, centred at the person of
interest. For the KTH, a bounding box of full height and half width of the frame is
extracted for each foreground mask; for the Weizmann, bounding boxes have been
extracted from the foreground masks by the dataset.

5.2 Benchmark Approaches

For benchmarking, we use the approaches proposed by Jhuang et al. [10] and
Mokhber et al. [28].

The paper [10] extends the neuroscience model for static object recognition
in [11] by experimenting with three types of S1 units that are sensitive to motion
direction: space-time gradient-based units, optical flow based units and space-time
oriented units. They essentially simulate the representation of motion in primate
dorsal stream. [10] then experiments with the addition of two new layers (S3 and C3)
that encodes actions with a higher degree of temporal invariance. The experimental
results in [10] show that there is small improvement using the C3 features over the
C2 features. Moreover, the sparse feature space appears to perform better than the
dense one on average. Therefore, the sparse C3 features based on these three types
of S1 units are used as benchmarks. They are denoted as GrC3, OfC3 and StC3,
respectively. The code for [10] was graciously provided by Hueihan Jhuang.

The paper [28] is a typical action recognition model using the classical feature. It
is designed to be invariant to the translation and deformation of actors. In the action
representation stage, the silhouette sequence of an action is represented by a spatio-
temporal volume that is characterized by a vector of its 3D geometric moments. We
duplicate the code in the light of the procedure introduced by [28].

For the action classification stage of the benchmarks, we use the “LIBSVM”
classifier to perform the same multi-label classification as our approach.

5.3 Experimental Results

In this part, we first find an uniform threshold to extract the motion-salience
region (MSR) images for all actions. The design of the 2D log-Gabor function
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in the S1 layer is then discussed. The impact of the dimension of the corner-
points based visual-neuron feature (VNF) on the proposed action recognition ap-
proach is analyzed. We also demonstrate the robustness of our approach to the
challenging situation in real-world scenarios, where the unstable contour of sub-
jects occurs. Finally, our approach is evaluated by comparing with the bench-
marks.

5.3.1 Choice of the Threshold for MSR Images

In this experiment, the Weizmann dataset is used to determine the threshold. The
thresholds are chosen from 10% to 90% of the highest pixel intensity in the average
motion energy image. The MSR images are empirically represented by the 10 000−D
corner-points based VNF. The first parameter group in Table 1 is selected for the
2D log-Gabor function. Figure 6 shows the average recognition rates obtained using
different thresholds.

Figure 6 illustrates the threshold that is equal to 50% of the highest intensity
can effectively grasp the spatio-temporal property of actions. Higher thresholds
ignore much useful motion information and thus can hardly distinguish different
action types while lower ones can not eliminate the body region which contribute
little to the representation of actions, and thus increase the computational inten-
sity.
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Fig. 6. Average recognition rate on the Weizmann dataset based on different thresholds
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5.3.2 Design of 2D Log-Gabor Function

The log-Gabor filter bank does not form an orthogonal basis set and hence there is
no unique or ideal arrangement of the filters. Theoretically, the frequency response
of the log-Gabor filters should have minimal overlap to achieve fairly even spectral
coverage. In Equation (8) we empirically set J = 4 filter orientations which equally
spread in the spectrum space, and I = 8 filter scales (with the Weizmann dataset
providing the bounding box with the size about 120×80, a larger scale number will
not generate distinguishable output for different actions); in Equation (9) the λ1 is
assigned 3 pixels. In this work σθ = π/(J × 1.5), which results in approximately
the minimum overlap needed to get even spectral coverage in the angular direction.
Table 1 gives a series of parameter groups experimentally, that result fairly even
spectral coverage in the radial direction.

Para. group σf/fi Scaling factor s Bandwidth (octave)

1 0.85 1.3 BW < 1

2 0.75 1.6 BW ≈ 1

3 0.65 2.1 1 < BW < 2

4 0.55 3 BW ≈ 2

Table 1. Parameter groups for 2D log-Gabor function set

In this experiment, the 10 000 − D corner-points based VNF is used to detect
the best design of the log-Gabor function. Table 2 compares the action recogni-
tion results on the Weizmann datasets using the 4 parameter groups and the Gabor
function set proposed by [11]. To make an fair comparison, we only use 8 filter
scales and 4 orientations for the Gabor function. Table 2 shows the recognition
rates increase with the bandwidth, and the 4th group for the 2D log-Gabor function
generates the highest average recognition rate. The 1st and 2nd parameter groups
have similar recognition result as the Gabor function, which is related to the con-
clusion made by Field [25] that when the parameter groups generate the bandwidth
≤ 1 octave, the 2D log-Gabor function has the same performance as the 2D Ga-
bor function. The experiment result indirectly proves that the log-Gabor function
permits a more compact image representation than the Gabor function when the
bandwidth > 1 octave. In the following experiment, the 4th parameter group is
chosen to evaluate the performance of the proposed method.

Para. group 1 Para. group 2 Para. group 3 Para. group 4 Gabor fun.

86.3 87.7 97.7 98.1 86.9

Table 2. Average recognition rate (%) on Weizmann using various filter parameter sets
and the Gabor function
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5.3.3 Feature Selection

The SBNA with visual-neuron template (VNT) extracted from random position of
C1 images is denoted as SBNArand, and the one with VNT extracted from corner

points is denoted as SBNAcp. The low-dimensional visual-neuron feature (VNF)
may not be sufficient to characterize the spatio-temporal shape of target objects,
while redundant dimensions can increase the computational intensity of the proposed
approach. The following experiment studies and compares the performance of the
SBNArand and SBNAcp for the action recognition based on various dimensions of
VNF.

In this part, we calculate the average recognition rate on the Weizmann dataset.
The dataset contains 10 types of action categories, therefore M patches of C1 units
are extracted from 10 template action groups to compute the C2 features. Figure 7
shows the impact of various dimensions of VNF on the SBNArand and SBNAcp. In
the case of the SBNAcp it is possible to reduce the dimension of C2 features quiet
remarkably from D = 10 000 down to D = 300 with minimal loss in accuracy; while
in the case of the SBNArand, because the VNT extracted from random position of
C1 images may include much overlapping information, the average recognition rate
decreases rapidly when a few number of patches are extracted. Consequently, in
the subsequent experiments, we apply the 300−D VNF determined by the corner-
point-based VNT to represent the MSR images of actions.
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Fig. 7. The average recognition rate obtained by the SBNArand and SBNAcp on the
Weizmann using variant-dimensional VNF
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5.3.4 Robustness

In this experiment, we demonstrate the robustness of our method to the unstable
segmentation of foreground subjects. The Weizmann dataset also provides 10 walk-
ing actions present in various irregularities, which involve “normal walk”, “moon-
walk”, “limp”, “walk with bag”, “walk with case”, “walk with dog”, “walk in skirt”,
“knees-up”, “feet occluded by boxes”, and “body occluded by pole”. Figure 8 shows
the MSR images for these “walk” actions. We still use the training set in previous
experiments. To increase the size of the testing data, each “walk” video is divided
into three segments. Table 3 shows the classification result obtained using the pro-
posed SBNAcp based on the 300-D VNF. We list three classification results which
denote the first, second and third mostly chosen action categories. The test videos
are sorted to their first mostly chosen action category.

Fig. 8. MSR images for the “walk” actions in various irregularities. From left to right, the
actions are: “normal walk”, “moonwalk”, “limp”, “walk with bag”, “walk with case”,
“walk with dog”, “walk in skirt”, “knees-up”, “feet occluded by boxes” and “body
occluded by pole”

Table 3 shows that most test actions in various irregularities are classified cor-
rectly as the “walk” action except for the “knees-up” action. In our opinion, it
is even hard for human being to recognize the MSR image of the “knees-up” as
the “walk” action. The experiments demonstrate strong robustness of the proposed
method to partial occlusions and deformation of actors.

5.3.5 Comparison

Finally, we compare the performance of our approach with the benchmarks on the
KTH dataset. We run experiment on these approaches using the same setup of
training and testing data. To make comparison on an equal footing, we apply the
300−D visual-neuron feature (VNF) to the proposed SBNAcp and [10].

Table 4 shows there is small improvement using the proposed SBNAcp over
the StC3 (the StC3 in general can best represent moving objects among the three
motion sensitive features proposed by [10], see 5.2). Both of them adopt the concept
of spatio-temporal representation for actions at the S1 layer. The StC3 requires two
template matching stages, while the SBNAcp only requires one. Thus our approach
is more compact than the StC3. The experiment on the KTH shows the SBNAcp

has similar performance with the StC3 under the s1 and s4 condition, while the
SBNAcp is more robust to changes in scaling and appearance of actors than the
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TestActions 1stresult 2ndresult 3rdresult

Normal walk Walk 3 Non Non

Moonwalk Walk 3 Non Non

Limp Walk 3 Non Non

Walk with bag Walk 3 Non Non

Walk with case Walk 3 Non Non

Walk with dog Walk 3 Non Non

Walk in skirt Walk 3 Non Non

Knees-up Skip 2 Walk 1 Non

Feet occluded by boxes Walk 3 Non Non

Body occluded by pole Walk 3 Non Non

Table 3. Experiment results for the evaluation of robustness. The leftmost column shows
the testing videos. For each testing video, the action category it is classified to and
the corresponding times are recorded in the second, third and forth columns. The
video is sorted to its first mostly chosen action category.

StC3 (under the s2 and s3 condition). Therefore, the action recognition approach
which combines the motion-salience region of actors and the shape representation
in ventral stream outperforms the approach simulating the mechanism of motion
representation in dorsal stream.

The proposed approach also outperforms the benchmark [28] on the KTH, which
shows that the neurobiology based feature can represent actions more successfully
than the classical feature. Therefore the proposed SBNA can be used as a suggestive
substitute for the action recognition models using the classical features of target
objects such as the contour, interest points, local or global spatio-temporal volume,
etc.

We run the programs in Matlab 7.0 under Dual Xeon X5570 2.93GHz (L3 Cache
8MB). For the KTH human database, suppose the action videos consist of 30 frames,
then [10] takes about 60 seconds per video, most of the running time is taken up
by the S2 + C2 computations; our approach, on the other hand, takes about 40
seconds per video, more than half of the running time is taken up by extracting the
MSR region. The reason why our approach is much faster that of [10] is that [10]
analyzes action videos frame by frame while our approach treats the video as one
spatio-temporal shape and thus remarkably reduces the amount of data.

6 CONCLUSIONS AND FUTURE WORK

Humans and primates outperform the best computer vision systems for the recogni-
tion of action. Therefore building a system that can efficiently simulate the recogni-
tion of action in primate visual cortex is the research emphasis of this paper. With
the extraction of features inspired by the primate visual cortex, the action recog-
nition model can be designed under two types of frameworks: the framework relies
on a model of the dorsal stream and the framework relies on a model of the ventral
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KTH GrC3 OfC3 StC3 [28] SBNAcp

s1 91.7 92.5 96 92.1 95.5
s.e.m. ±3.3 ±3.1 ±2.2 ±2.3 ±2.7

s2 87.5 81.4 86.5 77.8 88.7
s.e.m. ±3.7 ±4.2 ±4.7 ±2.9 ±3.1

s3 89.7 91.7 89.7 86.9 92.1
s.e.m. ±3.2 ±3.6 ±3.3 ±1.7 ±3.4

s4 93.4 92.3 95 90.4 94.7
s.e.m. ±2.1 ±2.3 ±2.1 ±1.7 ±2.4

Avg. 90.6 89.5 91.8 86.8 92.8
s.e.m. ±3.1 ±3.3 ±3.1 ±2.2 ±2.9

Table 4. Comparison between the proposed SBNAcp and the benchmark algorithms (de-
noted as GrC3, OfC3, StC3, and [28]). The numbers recorded are the average
recognition rates (%) and the standard error of the mean (%).

stream. The ventral stream processes spatial information and the dorsal stream
deals with temporal information.

Motivated by the recent work [16] which has shown the benefit of using shape
features in addition to motion features for the recognition of actions, we propose
a shape-based neurobiological approach for action recognition. In this paper, the
motion-salience regions of actions are firstly extracted, and then they are represented
by simulating the mechanism of primate visual system. During the implementation
of the mechanism, we improve the computational model for static object represen-
tation in primate ventral stream proposed by [11]. The improvements are:

1. replace the 2D Gabor function by the 2D log-Gabor function in the S1 layer;

2. involve the corner point information for the VNT extraction in C1 layer.

Experiments show that the shape representation method in our approach is
more representative and compact than in [11]. Although our approach does not
remarkably improve the recognition rate of the approach simulating the mechanism
of motion representation in dorsal stream [10], our approach results in substantial
reduction in computational intensity. Moreover, our approach is more robust to the
deformation of actors, imperfect extraction of silhouettes, and partial occlusion than
the action recognition models using the classical features of target objects such as
the contour, interest points, local or global spatio-temporal volume, etc. Therefore
our approach can be used as a suggestive substitute for these models.

Actions can be well represented in terms of limited number of key postures in ma-
chine vision [29]. Schindler et al. [30] suggest that very short snippets (1–7 frames)
are sufficient for basic action recognition; with rapidly diminishing returns, more
frames are added. The snippet is essentially in line with the definition of key
frames. In our action representation method, as long as there are key frames (pos-
tures) included in the action sequence, the action can be effectively represented.
Specifically, to include key frames, in the case of rapid actions, e.g. the “run”,
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10–20 frames is enough to include key frames; in the case of slow actions, e.g. the
“bend”, 30–40 frames can be adequate. Therefore, although the proposed action
recognition approach does not require complete sequences, it sill lags behind [30]
when very slow actions are present. This would be inpracticable for practical sce-
narios, where decisions have to be taken online. The future work will try to extract
more compact motion information from single frame so that a snippet of action
sequence is sufficient to be recognized.
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