
Computing and Informatics, Vol. 30, 2011, 829–855

ONTOLOGIES SUPPORTING INTELLIGENT
AGENT-BASED ASSISTANCE

Emerson Cabrera Paraiso, Andreia Malucelli

Post-Graduate Program on Informatics
Pontifcia Universidade Catlica do Paraná
Av. Imaculada Conceio, 1155
Curitiba, Brazil
e-mail: {paraiso, malu}@ppgia.pucpr.br

Communicated by Huajun Chen

Abstract. Intelligent agent-based assistants are systems that try to simplify peoples
work based on computers. Recent research on intelligent assistance has presented
significant results in several and different situations. Building such a system is a dif-
ficult task that requires expertise in numerous artificial intelligence and engineering
disciplines. A key point in this kind of system is knowledge handling. The use of
ontologies for representing domain knowledge and for supporting reasoning is be-

coming wide-spread in many areas, including intelligent assistance. In this paper
we present how ontologies can be used to support intelligent assistance in a multi-
agent system context. We show how ontologies may be spread over the multi-agent
system architecture, highlighting their role controlling user interaction and service
description. We present in detail an ontology-based conversational interface for
personal assistants, showing how to design an ontology for semantic interpretation
and how the interpretation process uses it for semantic analysis. We also present
how ontologies are used to describe decentralized services based on a multi-agent
architecture.

Keywords: Ontology, personal assistant agents, intelligent assistance, semantic
analysis, conversational interfaces, multi-agent systems

Mathematics Subject Classification 2000: 68T30, 68T50, 68U35

830 E. Paraiso, A. Malucelli

1 INTRODUCTION

As real world problems become more and more complex, intelligent artificial assis-
tants have the potential to simplify people’s professional activities. Recent research
has focused on individual agents or multi-agent system (MAS) that assist humans in
several and different situations, such as: in the office, at home, in medical care and
in many other daily activities [1, 2, 3, 4, 5, 6] and [7]. Such agents must often moni-
tor the evolution of a process or state over time and make periodic decisions based
on such monitoring [1]. A particular case of such agents is the personal assistant
(PA).

Personal Assistants help users reduce the ever-growing load of information,
events and various commitments they need to handle, for instance by learning how
to organize and keep track of relevant items [8]. A PA is a specialized intelligent
artificial agent that helps human users to do their daily work. The interaction with
an PA extends from a simple command line to a natural conversation with a human
like digital actor. According to Maes [9], a PA may assist users in different ways:

• by hiding the complexity of difficult tasks;

• by performing tasks on behalf of the user;

• by training the user;

• by helping different users to collaborate;

• by monitoring events and procedures.

In many projects, PAs are also used to interface a user to a MAS. Building such
a system is a difficult task that requires expertise in numerous artificial intelligence
and engineering disciplines [10]. Those systems are built around powerful processing
cores (reasoning, learning, scheduling and planning) connected with separate com-
ponents in charge of user interaction (language processing, dialogue management,
user interface controlling).

A key point in this situation is knowledge handling. How to represent knowledge
is one of the most important questions for many research domains. The way an agent
represents its world and the domain of its application influences how it learns, how
knowledge is transferred across tasks, and how knowledge is communicatedeither
between agents or to a human [11]. From the several ways to represent knowledge,
ontologies are one of the most used.

The use of ontologies for representing domain knowledge and for supporting
reasoning is becoming wide-spread. In the area of supporting users with specialized
agents they play a key role, ranging from allowing descriptions of components of
a computational workflow for earthquake simulation [12] to representing user profiles
in a recommender system [13]. A PA is one of these specialized agents that can take
advantage of such powerful tools [14]. In this type of situation, ontologies have
been used to help interpret the context of messages sent by other agents, and to
keep a computational representation of knowledge useful at inference time. The
ontologies, however, may also be used for facilitating the interaction between user

Ontologies Supporting Intelligent Agent-Based Assistance 831

and the PA. The information they contain is a source of knowledge for conversational
interfaces, enhancing the quality of the assistance the PA and the MAS as a whole
can offer.

In this paper we present how ontologies can be used to support intelligent as-
sistance in a MAS context. We show how ontologies may be spread over the MAS
architecture, highlighting their role controlling user interaction and service descrip-
tion. The paper begins by describing the MAS paradigm for intelligent assistance.
Then, we present an ontology-based conversational interface for PAs. In this sec-
tion we show how to design an ontology for semantic interpretation and how the
interpretation process uses it for semantic analysis. After that, we present how on-
tologies are used to describe decentralized services based on an MAS architecture.
Finally, we mention some related work, we offer a conclusion and indicate some
perspectives.

2 AGENT-BASED INTELLIGENT ASSISTANCE

There has been a growing interest over the last few years in systems in which mul-
tiple agents (a community of agents or a MAS) attempt to cooperatively perform
a common task. Current MASs mostly work in complex, dynamic and open environ-
ments. MAS consist of a group of possibly heterogeneous and autonomous agents
that share a common goal and work cooperatively to achieve it [15]. A MAS is
defined as a loosely coupled network of problem solvers working together to solve
problems that are beyond the individual capabilities or knowledge of each problem
solver [16].

During the past few years, different projects have been developed involving
MAS for intelligent assistance ([17, 18, 19]). In the field of improving computer-
supported cooperative work (CSCW), for instance, MAS has proven success in many
projects [20, 21] or [22]. The application of such an approach may potentially im-
prove the exchange of information among the participants, provide support, im-
prove workflows and procedure controls, and provide convenient user interfaces in
CSCW [23].

We have been using PAs coupled with MAS in intelligent assistance projects ([24,
23]). In our systems, all agents are cloned from a generic agent, first proposed by
Ramos and Barths [25]. The generic agent contains all the basic structure that allows
an agent to exist. The agent runs on a platform specially designed to implement
MAS called OMAS (Open Multi-Agent System) [26], forming a community of agents
called a coterie. Each agent has a kernel with basic functionalities. In OMAS, agents
have a private Agent Communication Language (ACL) similar to KQML [27].

An OMAS MAS contains two types of agents: Service Agent (SA) providing
a particular type of service corresponding to specific skills, and, PAs in charge
of interfacing humans to the system. The particular skills of PAs are devoted to
understanding their master (i.e. the user which is its owner) and to presenting the
information intelligently and in a timely manner. Only PAs have the user interface

832 E. Paraiso, A. Malucelli

since in our approach only PAs interface with users. The user interface components
will be described in Section 3.

In OMAS, MAS designers are free to implement their favourite agent coordina-
tion mechanism. In intelligent assistance projects, we have been using a coordination
mechanism called Center of Services. The Center of Services architecture is chara-
cterized by the distribution of services description on each SA. This means that the
PA does not know, a priori, the services (and finally the tasks) available on the
MAS. To each user demand, the PA sends a consultation query (in broadcast) to
the community of SAs. From the user’s point of view, the system is a service center
and the PA is its service provider. In this decentralized architecture, a service de-
scription is placed in each SA. It means that each SA has a task ontology describing
its skills. A task model was defined allowing each SA to describe its services (further
details in Section 4). This task model is known by every agent in the MAS. It is
important to highlight that the PA and the SAs are continuously aware of and ready
to perform those services.

In our work, ontologies are used in different ways depending on their place in the
MAS. Basically, we are using a set of task and domain ontologies, separating domain
and task models for reasoning. Ontologies are mainly used by PAs to interpret
messages from other agents (human and artificial) and by SAs to describe their
skills (tasks or services). Usually, task and domain ontologies are handcrafted using
Protǵé [28]. The PA’s domain ontology is obtained by manually integrating all
service agents’ domain ontologies and some extra information useful to control the
interaction, as will be shown in details in Section 3.

In the next sections, we present the different ways we use ontologies. In Section 3,
we show how ontologies are used by the PA, and in Section 4 how ontologies are
used to describe agent skills.

3 AN ONTOLOGY-BASED CONVERSATIONAL INTERFACE

FOR PAS

In an agent-based system, as in any other software application, an appropriate user
interface is crucial. Traditionally, developers propose graphics-oriented interfaces
involving the use of menus, sub-menus, dialogue-boxes, and so on. Often this ap-
proach is inappropriate or at least not very appealing, leading to an assistance of
poor quality [14]. To produce a PA more attractive, from the user interface point of
view, we developed a conversational interface called SpeechPA [14]. Conversational
interfaces as defined by Klzer [29], let users state what they want in their own terms,
just as they would do, speaking to another person. Of course, the interaction is more
complex, but the complexity is handled by the agent. SpeechPA allows the PA to
handle real dialogues with users, as the one shown in Table 1. This real dialogue
was captured during a conversation session between a user and his PA, in a CSCW
project we developed [23]. In [23] the reader can find the evaluation of SpeechPA in
an experimentation.

Ontologies Supporting Intelligent Agent-Based Assistance 833

In the context of this mixed-initiative dialogue, there is a group of engineers that
cooperatively develop a new software component. Each of them has a PA. To better
understand the SpeechPA capabilities, we will define a short set of competences
for the PA: list all project participants, give information about a member, send
messages or open the email account. This conversation is taken during John’s (one
of the participants) work (where PA means personal assistant and USR means the
user).

PA (9h05): Welcome to the Voice Personal Assistant.

USR (9h05): Open the report on agents.

PA (9h27): You have a meeting scheduled for today: participant: Mike,
time: 11:00, place: office, description: agent platform.

USR (9h27): Send an email to Mike.

PA (9h27): What is the subject?

USR (9h27): Our meeting today.

PA (9h27): What is the content?

USR (9h28): We have a meeting today. Please bring your report on agent
platforms.

PA (9h35): You have a new email: sender: Mary.

USR (9h35): OK, could you open my email account?

PA (9h35): Yes.

USR (9h41): List all meetings in my office tomorrow morning.

PA (9h41): You have no meetings scheduled for tomorrow morning.

USR (9h41): What is the email address of Mary?

PA (9h41): The email is: mary@company.com.

USR (9h41): Send an email to her and to Mike.

PA (9h42): What is the subject?

USR (9h42): Setting a meeting for tomorrow.

PA (9h43): What is the content?

USR (9h44): Dear Mike, Mrs. Mary Smith is working on personal assis-

tant agents and would like to talk with us on her projects.
Are you available for a meeting in my office tomorrow at
09:00 AM?

PA (10h19): You have a new email: sender: Paul.

Table 1. An excerpt of dialogue

The design and implementation of such interface is a difficult task that involves
many different modules: dialogue controllers, natural language parsers, speech re-
cognizers and synthesizers, knowledge manipulators, to list a few. Adding this type
of interfaces to a PA is also a task that may require a significant effort as reported
by Milward and Beveride [30].

The challenge in handling this kind of open conversation is to understand users’
statements and to keep the history of objects referenced in late statements (refer-
ence resolution). To do so, we are using domain ontologies. The design of such

834 E. Paraiso, A. Malucelli

ontologies must cover the world surrounding the user, in terms of entities and of
their relations. In addition, the ontologies must also facilitate the process of syn-
tactic interpretation, supplying the parser with linguistic elements, such as noun
synonyms, hyponyms/hyperonyms and so on.

The next section presents some principles to follow when writing ontologies
for semantic interpretation. These principles arise from our experience in writing
ontologies for intelligent assistance.

3.1 Domain Ontologies for Semantic Interpretation

The design of an ontology depends on its intended function (the reader is referred
to [31] and [28] for a quick review of the domain.). Eriksson in [32] addresses the
issues of designing ontologies for dialogue interaction and information extraction. In
her work, she explores the requirements of an ontology specially designed for dialogue
systems. In [32], Eriksson states that ontologies provide a common vocabulary that
can be used to state facts and to formulate questions about the domain. Dzikovska
et al. [33] present a method for customizing a broad-coverage parser to different
domains by maintaining two ontologies (one that is generalized for language repre-
sentation, and another that is customized to the domain), and for defining mappings
between them.

Many researchers have applied semantic-driven approaches (e.g. [33]), searching
keywords or phrases in the utterance (user statement). Our approach to semantic
interpretation, however, is based on the notion that the meaning of utterances can
be inferred by looking for concepts and their attributes (more details in Section 3.2).

To interpret users’ statements and to manage the dialogue between user and the
PA, some simple principles should be respected when writing the ontology. The do-
main ontology1 shown in Figure 1 was elaborated following the principles described
in the next paragraphs.

In its first version, this ontology was written in the context of a research and
development MAS application. It is composed by 108 concepts.

3.1.1 Definition of Concepts and Their Relations

Concepts and their relations (binaries) are the basic elements that constitute an on-
tology. The use of hyponymy and hyperonymy to link concepts (is-a relation) and
meronymy to describe dependency (has-a) may help interpret incomplete or unex-
pected statements. For instance, the user demands to the PA: List all articles on
agents. According to the ontology (Figure 1), finding conference articles or journal
articles in the statement could be easier to interpret. However, thanks to the hy-
peronymy relation between articles and conference/journal, a formal representation
would be obtained as well. Acting in the same way, the reference resolution may be
guaranteed as shown in the following short dialogue fragment:

1 We intentionally reduced the ontology to a bare minimum, extracting some concepts,
properties, relations and labels.

O
n
to
logies

S
u
p
po
rtin

g
In
telligen

t
A
gen

t-B
a
sed

A
ssista

n
ce

835

root

reports spreadsheets

staff

document list

author

name

path

office-docs locate

name email telephone

address book list members list

tech management

exam course

date

place
appointment list

duration

description

meeting

participant

articles

receiver subject content

e-message

send

open

write

actions

properties

is-a

instance of

part of

Legend

label of

time

email

conference journal

F
ig
.
1
.
A
n
ex
cerp

t
o
f
th
e
d
o
m
a
in

o
n
to
lo
g
y

836 E. Paraiso, A. Malucelli

PA: Which documents do you want to list?
USR: Articles.
PA: Do you mean conference articles or journal articles?
The semantic analyser identified articles as a hyponymy of documents (is-a

relation).
It is also helpful to define a list of synonyms to each concept.

3.1.2 Definition of Properties

To describe each property of a concept, one should define its type, a list of synonyms,
its cardinality and a domain restriction. Domain restriction should be one of the
following:

• Time: for temporal attributes (e.g. appointment: time, duration or hour);

• Space: for geographic localization;

• People: for describing people;

• General: for others attributes.

A restriction is especially useful when interpreting questions (see examples in Sec-
tion 3.2).

3.1.3 Definition of Actions

An action is a token used to describe operational tasks applied to a concept. An ac-
tion token is used by service agents to identify whether it is related to its domain
or skills or not. Each action token has a skill associated. A skill can be expressed
as a procedure or a rule. Actions are inherited as shown in Figure 2: list, linked to
document is an action inherited by articles and reports.

reports spreadsheets

document list

author

name

path

office-docs locate

articles

subject

Fig. 2. An excerpt of the ontology: concept document

3.1.4 Definition of Multiple Instances

Since ontologies should be able to incorporate several views of a domain, e.g. user
and system, or several different information sources, as advocated by Eriksson [32],

Ontologies Supporting Intelligent Agent-Based Assistance 837

multiple instantiation is important. Multiple instantiation is useful for defining the
list of tasks in the task ontology, as well.

The resultant ontology contains domain information but also lexical information
and information on synonyms. To avoid any misunderstanding, it is important to
highlight that the main ontology structure (concepts and their relations) construc-
tion is guided by the domain application and not by its utilization in the semantic
interpretation system.

3.2 Semantic Interpretation Process

The process of interpreting a user statement is carried out in two steps:

• parsing and syntactic analysis; and

• semantic interpretation (domain ontology application).

The results of this process are sent to the dialogue manager continuously or back
to the user when they do not make sense.

The parsing algorithm works top-down, replacing each utterance stem with its
syntactic category (verb, noun, adverb, etc) with the help of lexicon files and a set
of grammar rules.

In order to reduce the interaction and consequently avoid wasting time, we li-
mited the space of dialogue utterances to directive speech act classes [34] – inform,
request, or answer – since such classes define the type of expected utterances in
a master-slave relationship. A speech act is an act that a speaker performs when
making an utterance. The idea is to do something by looking for the related acts
in the utterance. The strategy of treating directive speech acts reduces the number
of turn takings since some speech acts, like acknowledgement acts (“Thank you”
or “Have a nice trip”) will not be used by the PA. In our applications, a typical
utterance could be: “Look for a document on agents in the database.” According to
our taxonomy this is an order utterance and can be processed by the grammar rules.
If a sentence is not well formed, or if it is out of the domain, then it is classified as
a nonsensical utterance. In such a case, the user is invited to reformulate his/her
sentence.

The approach to semantic interpretation presented here is based on the notion
that the meaning of user statements can be inferred by looking for concepts and
their attributes. More precisely, the module responsible for applying the ontology
to the statement searches for domain concepts and the list of verbs that indicates
the task to be executed. The corresponding keywords are concepts of the ontology
directly related to a list of actions. We believe that this approach is ideal for
applications where the domain is well known and restricted. In contrast, statistical
models as proposed by [35] bring the analysis to the parser level, leaving useful
domain information out of the process.

After interpreting a user entry, we have a formal representation of it. Thus,
this formal representation is the semantic analysis result. The formal representation

838 E. Paraiso, A. Malucelli

is a well-formed computational formula. This formula is a list built respecting the
BNF (BackusNaur Form) specification shown in Table 2.

<formula> ::= ‘(’ <action> 1*<ontology-components> 1*‘)’
<action> ::= <token>
<ontology-components> ::= ‘(’ 0*<attribute-name> 0*‘(’ <concept> ‘)’
<attribute-name> ::= <token>
<concept> ::= <concept-name> 0*<attribute-list>
<concept-name> ::= <token>

<attribute-list> ::= ‘(’ ‘:’ <attribute-name> <attribute-value> ‘)’
<attribute-value> ::= <token> — ‘nil’
<token> ::= string

Table 2. BNF specification of the formal representation

To exemplify the semantic interpretation process, let us introduce the following
entry:
USR: Do I have a meeting with Mike in my office?
Firstly, the statement is parsed and a syntactic tree is obtained (Figure 4) according
to the algorithm shown in Figure 3.

To interpret the given utterance, first the parser checks the context of the input,
verifying that it is a question related to the domain. To do so, it uses the domain
ontology and the lexicon. The lexicon contains thousands of words extracted from
WordNet [36] and enriched with the list of all concepts and attributes of the ontology.
Additional information is collected, by identifying relations between pairs of words,
based on a link grammar adapted from Link Parser [37].

The statement is classified as a question so as to be able to follow the conversa-
tion, the PA must answer the given question. In order to answer the question, the
PA builds the formal representation of it, before sending it to the concerned service
agent:

(list (Meeting (:participant "Mike") (:place "office")))

This list was obtained from an algorithm that searches for domain concepts. The
VO (verb-object) link between Have and Meeting points the phrase object. The
algorithm searches an equivalent concept in the domain ontology (Figure 1). It
finds Meeting, a hyperonymy of Appointment. Comparisons between words and
concepts (and their synonyms) are made with help of a word similarity mechanism.

After selecting the candidate concept, the algorithm starts a process to try to
fill up all concept properties. The Meeting concept has six properties: duration,
date, place, time, participants and description. Note that the parser identified two
constituents indicated between bracts (‘[’ and ‘]’). Each constituent has a potential
concept property on it. Each instance of a concept is kept in memory for future use
(stack of instances). For this type of question, the action list is systematically used.

A second example is shown in Figure 5.

Ontologies Supporting Intelligent Agent-Based Assistance 839

Data: utterance utti

Data: syntactic tree treei

Ontology: R&D ontology ont

Lexicon: lexicon lx

Result: list luti

treei = parseUtterance(utti, ont, lx);

if treei <> Ø then

 Verify which speech act is applicable to utti;

 switch speechAct do

 case "order":

 Search the verb to be assigned as the action acti;

 acti = searchVerb(treei);

 case "question":

 Assume acti = "list“;

 case "answer":

 Send information to the Dialogue Manager for treatment ;

 return;

 end-switch;

 Search the set of concepts Cpti in treei;

 for each Cptk do

 Create an instance in memory and fill up all found attributes;

 push(Cptk); //Stack of instances

 end-do;

 luti = buildList(acti, Cpti);

else

 luti = "out of the domain“;

end-if

Fig. 3. The algorithm to produce the formal representation

To interpret this statement, the extract of ontology shown in Figure 5 is used.
Three main elements are easily selected: an object (email, label of e-message) linked
to the ontology concept e-message, one parameter (receiver), and one action (send).
Following the process just explained, and using the syntactic tree shown in Figure 6,
the formal representation can be obtained:

(send (e-message (:receiver "Mike")))

Note that the specific action will be executed by a service agent. The way it
is done is shown in Section 4. The treatment of user questions is similar. After
the syntactic analysis, the questions are classified according to two different types:
direct or conditional question. Direct questions are those known as wh-questions
(what, where, when, who, etc.) leading directly to an action execution. Conditional
questions (can/could, may/might, do/does, etc.) lead the dialogue manager to
interpret the result before being able to respond them to the user. The process
of interpreting a direct question is particular, since the dialogue manager does not
search for an action to be executed. Instead, it searches for an object desired by the
user. For instance, assume the following question:
USR: Who is the author of the article entitled agents?

840 E. Paraiso, A. Malucelli

S

VP Aux

“Do” NP

Art

“a”

Noun (eventp)

“meeting”

PP

Prep

“in”

NP

Pron

“my”

Noun (locationp)

“office”

Prep

“with” Propern

“Mike”

NP

NP

Pron

“I”

Verb

“have”

PP

have a meeting in my office

VO

DN

DN

[] with Mike [] Do I

Fig. 4. The syntactic tree and some additional information for ‘Do I have a meeting with
Mike in my office’

 USR : Send an email to Mike

action object parameter
receiver subject content

e-message

send

open

write

email

Fig. 5. Another example of semantic interpretation

This question is composed by one complement, containing the concept “article” and
one attribute (name). One important link (verb-object) is also found (be-author):

In this case, the action list is systematically used, generating the formal repre-
sentation below:

(list (author (Article (:title "agents"))))

Send an email [to Mike

VO

DN

]

“Send”

“an” “email” “to” “Mike”

Verb

Noun (propern) Noun Prep Art

S

VP

PP NP

Fig. 6. The syntactic tree and some additional information for ‘Send an email to Mike’

Ontologies Supporting Intelligent Agent-Based Assistance 841

Who is the author [of the article entitled agents]

VO

Fig. 7

The direct question presented below is more complicated to be treated:
USR: Where is the meeting with Paul?

The information which the user looks for is indirectly referenced. When the user
uses where, s/he actually wants to known where the meeting will take place. In this
case, the semantic analyser will use the restrictions of each found concept attribute.
The attribute place has the restriction space, indicating the geographic location of
the meeting. Thus, the formal representation may be obtained:

(list (place (Meeting (:participant "Paul"))))

The last example of direct question is shown here:
USR: When is the meeting at my office with Paul?

This question presents a statement without direct identification of a desired ob-
ject. Also, when searching for attributes compatibles with when (restriction time),
one can find three different attributes: date, duration and time. Formal representa-
tion of the result contains the three attributes as unknown information:

(list (date duration time (Meeting

(:place "office"

:participant "Paul"))))

The interpretation process for conditional questions has a different workflow:
first the PA tries to find an answer for the question and, when successful, it answers
the question before presenting the received result. For instance, let us introduce the
question below:
USR: Do I have a meeting today?
The following formal representation is obtained:

(list (Meeting (:date "28-03-2007")

:participant "John")))

Before presenting the answer, the dialogue manager will present a “yes” if it has
a meeting or only a “no” if it does not have a meeting.

Once the formal representation has been obtained, in all cases, one or several
service agents will receive it and a response may be received by the PA if at least
one of them can solve it.

The ontologies are also used to solve another important problem on dialogue
management: the reference.

842 E. Paraiso, A. Malucelli

3.3 Reference Resolution

Reference resolution is a complex problem being object of active research on linguis-
tics (see [38] and [39] for details). The reference in dialogue systems is the study
of how objects from the real world are presented inside the utterances, how they
should be stored and how they can be used for keeping the conversation context.
The simplest form of reference appears when a new object or a past introduced
object is found in a statement. To better understand, let us consider the excerpt of
dialogue between a user and his/her PA shown in Table 3.

USR (1) Give me the list of articles written by Mike Palmer.

PA (2) (PA performs the task: list of articles from Mike Palmer)

USR (3) Is he a participant of the project?

PA (4) Yes

USR (5) Do you known his telephone number?

PA (6) Yes. The telephone number is: 041 3271 1515

USR (7) and his address?

Table 3. An excerpt of dialogue between a user and his/her PA

In the first statement (1), the user cites the name of Mike Palmer for the first
time. When the system wants to keep the context of the conversation, it should
store that information. Then, in the next statement (3), the user cites Mike again,
through the pronoun he. This phenomenon is known as anaphora, e.g., the fact of
to reference an entity already introduced in the dialogue.

Another well known phenomenon in a dialogue is the occurrence of an ellipsis.
The detection of an ellipsis is done by analysing a statement that is incomplete at
a first glance, but where the “missing parts” were presented in previous statements.
In the dialogue, at the statement (5) the user demands the telephone number of Mike
and in the statement (7) s/he adds a demand of his address. Here, the statement (7)
can be interpreted as a complement of the statement (5).

In the actual version of our system, we only treat the presence of an anaphora.
To do so, after interpreting each user statement, the dialogue manager creates or
updates the instances used to interpret the given statement. For example, see the
short dialogue below:

USR (1): What is the email address of Mary?
PA (2): The email is: mary@company.com.
USR (3): Send an email to her.

By interpreting the statement (1), the semantic analyser builds the formal rep-
resentation:

(list (address (AddressBook (:name "Mary"))))

At the same time, the dialogue manager stores in a stack of instances of concepts,
the instance below:

Ontologies Supporting Intelligent Agent-Based Assistance 843

(e-message (:receiver "Mary")

(:subject nil)

(:content nil))

The dialogue manager may now to solve the reference to Mary in (3) thanks to
the instances stored in the stack, since probably the object just referred appeared
in the latest statements. The same occurs in the next short dialogue:

USR (1): What is the starting time of the meeting with Mike?
PA (2): Starting time is: 14h00
USR (3): Where is it planned to be?

The presence of the pronoun it in (3) leads the dialogue manager to search for
an instance of a compatible concept. In the top of the stack of instances it will find
the instance:

(Meeting (:date "17-05-2006")

(:time "14h00")

(:place "office")

(:duration "1h00")

(:participant "Mike")

(:description nil))

The response is then posted to the user since all needed information is already
known.

3.4 Impossible Demands

One last interesting advantage of using ontologies to support intelligent dialogue is
to handle impossible demands like the one shown here:

PA (1): You have a new email: sender Mike Palmer.
USR (2): I would like to read it.
PA (3): (PA opens the email client)
USR (4): Erase this email.
PA (5): I can’t do what you want. However, I can: send an electronic

message or open the email account. These tasks are related to email.

According to the extract of ontology shown in Figure 5, “erase” is not a valid
action. The only possibility the PA has is to refuse this demand. It can, however,
make some suggestions based on tasks related to the actions send and open. In
order to inform the user the correct information, the PA sends out, in broadcast,
a message called REQUEST-HELP-INFO. Receiving this message, each SA formats
an INFO HELP-REQUESTED message containing its services description (in free
text) related to a specific concept.

We have shown in this section how ontologies may support knowledge in a con-
versational interface in the context of intelligent assistance. The next section pre-
sents the use of ontologies to describe services performed by service agents.

844 E. Paraiso, A. Malucelli

4 DECENTRALIZED ONTOLOGY-BASED

DESCRIPTION SERVICES

As we mentioned in Section 2, our systems are developed using OMAS [26]. In
OMAS, MAS designers have the freedom to implement their favourite agent co-
ordination mechanism. In intelligent assistance projects, we have been using the
Center of Services architecture. Figure 8 shows schematically how this architecture
works.

« Center of Services »

Staff/Service Agent

Personal Assistant Memories

Ontologies

Fig. 8. Coordination architecture: Decentralized

The Center of Services architecture is characterized by the distribution of ser-
vices description on each SA. This means that the PA does not know, a priori, the
services (and finally the tasks) available on the MAS. To each user demand, the PA
sends a consultation query (in broadcast) to the community of SAs. From the user’s
point of view, the system is a Service Center and the PA is its Service Provider.

In this decentralized architecture, a service description is placed in each SA. It
means that each SA has a task ontology describing its skills. Using the description
of a service, the service agent may start the execution of a task, negotiating fur-
ther information with other agents, if needed. In order to be able to do that, the
task ontology is crucial, its role being evidenced by the example shown in Figure 11.
Ontologies were chosen to represent tasks because their expressiveness allows a struc-
tured representation of each service. A task model was defined allowing each SA
describe its services, as shown in Figure 9.

The process of selecting and executing a task is presented in the sequence dia-
gram shown in Figure 10: a negotiation process must be started in order to select
a SA (and a task), to fill out all task parameters and to execute a selected task.
SAs are able to interpret a query and to format a description message containing
the task description. In order to facilitate agent communication, a content language
was defined. This language has a set of 10 messages allowing task controlling and
distribution (main messages in Table 4).

Ontologies Supporting Intelligent Agent-Based Assistance 845

Fig. 9. The task model and its attribute parameters in details

(TASK-SEACRH script msg-id) Message sent by a PA to look for a SA
able to accomplish a specific task

(TASK-FORMAT task-description msg-id) Message sent by a SA to a PA contain-

ing a task description (missing infor-
mation description to be collected from
the user)

(TASK-REQUEST script msg-id) Message sent by an agent to another

agent demanding a task execution

(TASK-RESULT msg-id response context) Message containing the result of a task
execution

Table 4. Some content messages

Once the PA receives a task description, it can demand the missing information
from the user. The information is sent to the SA allowing the task execution.

The main advantage of this architecture is that new agents (and their services)
may easily enter and quit the MAS without interrupting the PA work. This archi-
tecture is more suitable to the kind of projects we have developed. Its flexibility
allows the offer of new services “on the fly”.

The next paragraphs present a simple example to illustrate the whole process.
After interpreting the user statement:
USR: Send an email to Mike
The PA is able to construct the formal representation of it:

(send (e-message (:receiver "Mike")))

The PA formats a TASK-SEARCH message and sends it (in broadcast) to the
community of agents:

(TASK-SEARCH (send (e-message (:receiver "Mike"))) 25)

By sending the TASK-SEARCH message, the PA intends to either receive the
task result (only if a SA is capable to send it using only the information already

846 E. Paraiso, A. Malucelli

:u
ser

T
A

S
K

-R
E

Q
U

E
S

T
 (sen

d
 :sen

d
er: …

)

p
ro

p
o

se

accep
t-p

ro
p

o
sal

T
A

S
K

-F
O

R
M

A
T

 (d
escrip

tio
n

 d
e la tâch

e)

T
A

S
K

-C
O

N
F

IR
M

A
T

IO
N

 (co
n

f…
 m

sg
-id

)

1
: S

en
d
 an

 em
ail to

 M
ik

e

“W
h
at is su

b
ject?”

:P
A

:S
A

1

:S
A

n

call-fo
r-b

id

(T
A

S
K

-S
E

A
R

C
H

 scrip
t m

sg
-id

)

2
:N

ew
 p

ro
ject…

“W
h
at is co

n
ten

t?”

3
: D

ear all,…

call-fo
r-b

id
 (m

em
b

er :n
am

e “M
ik

e”)

in
fo

rm
 (:em

ail “m
ik

e@
…

”)

call-fo
r-b

id

(T
A

S
K

-S
E

A
R

C
H

 scrip
t m

sg
-id

)

Fig. 10. Sequence Diagram for the task filling process

known) or a TASK-FORMAT message specifying the information that should be
collected from the user. The process of sending and collecting messages is controlled
by OMAS. Figure 11 shows the XML representation of the task Send an Electronic
Message.

After receiving a TASK-SEARCH message, a SA analyses its content (field
script), using its local ontology. The concerned SA formats a TASK-FORMAT
message and sends it to the PA:

Ontologies Supporting Intelligent Agent-Based Assistance 847

Fig. 11. A task example: “Send an Electronic Message”

(TASK-FORMAT

(<Task>

<prm prm_id="2">

<name>SUBJECT</name>

<synset>subject about</synset>

<question>What is the subject</question>

<type>text</type>

<required>true</required>

<input_source>vocal</input_source>

<default_value>none</default_value>

</prm>

<prm prm_id="3">

<name>CONTENT</name>

<synset>content text</synset>

<question>What is the content</question>

848 E. Paraiso, A. Malucelli

<type>text</type>

<required>true</required>

<input_source>keyboard</input_source>

<default_value>none</default_value>

</prm>

<script>@SENDEMAIL</script>

<authorization>true</authorization>

</Task>)

25)

Once the PA receives the message, it sends it to the dialogue manager that
starts the process of filling the task parameters. Note that to obtain the subject or
the content parameter, the PA will present the question field content: What is the
subject or What is the content. Also note that an instance of the concept e-message
is progressively updated. After filling the parameters, the PA writes the script field
and sends it to the SAs using a TASK-REQUEST message:

(TASK-REQUEST (@SENDEMAIL (: receiver "Mike")

(: subject "New project meeting")

(: content "Dear Paul ")) 25)

One SA may interrogate another SA in order to execute a task. As shown in the
sequence diagram (Figure 10), the SA agent responsible for sending an electronic
message may send a TASK-REQUEST to the community of SAs to obtain the
electronic address of Mike:

(TASK-REQUEST (list (address (AddressBook (:name "Mike")))) 25)

After receiving the response, the SA may effectively execute the task (to send
the electronic message) and to confirm its execution by sending a TASK CONFIR-
MATION message to the PA:

(TASK-CONFIRMATION 25 "The email was sent with success")

A SA may decide with a TASK-REQUEST or a TASK-SEARCH matter for it
by inspecting its domain ontology and matching with the field script. Each SA has
the ability to interpret each message that arrives to its mailbox.

In this section, we presented the way ontologies are used to describe agent’s skills
(tasks). By describing an example, we intended to show in practice how intelligent
assistance is enhanced thanks to ontologies.

5 RELATED WORK

In the past years there had been increasing activity in the area of MAS and intelligent
assistance. In this discussion we focus on how researches and their projects deal with
knowledge when providing service description and when designing the user interface.

Ontologies Supporting Intelligent Agent-Based Assistance 849

The Smart Personal Assistant (SPA) is a research project focused on natural
language interaction with personal assistant systems for use on mobile devices such
as PDAs (Personal Digital Assistants) and mobile phones [40]. The current SPA
is a personal information management assistant that provides users with integrated
access to e-mail and calendar information. Their conception of personal assistants
is different from own ones. In our architecture PAs interface users with the system
and services are executed by SAs. In their architecture, a user may have many
personal assistants and “wrapper” agents for task providing. In SPA, there is also
a coordinator agent. The coordinator is built using a BDI (Belief, Desire, Intention)
agent architecture (see [41] for more details on this architecture) in which both
dialogue management and coordination of the task assistants are encoded in the
agent’s plans. Domain knowledge is placed in the Coordinator agent, centralizing
all interpretation. The centralization is very dangerous since an interruption in the
Coordinator agent may halt the whole system.

Guzzoni et al. [42] propose an approach called Active Ontologies and a tool
called Active, to model all aspects of an intelligent assistant: ontology-based know-
ledge structures, service-based primitive actions, composite processes and proce-
dures, and natural language and dialogue structures. They define Active Ontologies
as a processing formalism where distinct processing elements are arranged accord-
ing to ontology notions. The Active tool provides several components to developers,
among them a component to write natural language enabled interfaces. For service
description, they choose a dynamic service broker approach, where a service regis-
try accepts a set of facts from each service provider, containing its capabilities and
attributes.

CommomKADS is a methodology proposed by Laclavik [43] used for knowledge
modelling in a MAS context for KM. The work’s aim is to make a connection between
KM and MAS, mainly by bringing work done in the semantic web area to MAS.
In this work, an agent knowledge model is presented, which can model agents envi-
ronment, agent context and agent resources obtained as result of agent behaviour.
Agents are based on a behavioural architecture, with a memory formed by sets and
description logic, subsequently implemented using RDF/OWL (Resource Descrip-
tion Framework/Web Ontology Language). This model is based on the JADE (Java
Agent DEvelopment Framework) [44] ontology model. As the authors explain, the
JADE Ontology model has some limitations. A model based on Java classes can
not support multiple inheritance, inverse concepts and other features of semantic
ontology representations.

ASWAD (Agent-Supported Workflow in Public Administration) [45] is a Euro-
pean funded project that aims at providing public administrations with a unified
and flexible Internet application for organizing cooperative work practices. The
ASWAD tool is based on a groupware system with built-in workflow management
and PAs. The system includes components for calendaring, contacts management,
email handling and document management. The PA enables users to filter and
process information, and to automatically delegate tasks to others. The PA’s in-
terface comprises an animated avatar (a companion), accepting very simple control

850 E. Paraiso, A. Malucelli

commands such as open, cancel, erase, etc. The use of such animated agents may,
however, disturb the whole system performance and they are often ignored by users,
as argued by Kramer et al. in [46].

Purver et al. [47] present a personal office assistant capable of understanding
multi-party discourse. The assistant is not capable of direct interaction with the
user, but they intend to develop a system capable of understanding, describing and
automatically participating in the discussion during meetings. Their approach is
also based on ontologies, used to describe communicative actions (concepts related
to meetings).

Bai [48] studied how to coordinate and manage agents’ behaviours and make
them work cooperatively in a MAS. In this work, authors firstly classify the different
kinds of knowledge in MASs into different categories; then, they define an ontology
format to represent knowledge; finally, they introduce a framework for agent coor-
dination through ontology management. Ontologies are used in this coordination
framework to face dynamic and changeable environments.

A growing number of researchers, like Quesada et al. [49] or Yates et al. [50], are
working with interfaces to household appliances. They are proposing speech inter-
faces in their projects, but they do not consider a very important issue: intelligent
support. None of them uses an intelligent and specialized mechanism to support the
user, as we did using the assistant agent approach. A PA is a piece of software de-
voted to understanding its master and presenting the information intelligently and
in a timely manner. Thus, the union of a speech interface and an assistant agent is
a good solution for user assistance.

6 CONCLUSIONS

In this paper we presented how ontologies may be used to support intelligent as-
sistance in a MAS context. We described how ontologies are spread over the MAS
architecture, highlighting their role controlling user interaction and service descrip-
tion. Using ontologies as the support to implement conversational interfaces, one
can develop intelligent user interfaces through which even inexperienced users can
have their requests treated in a fast and useful manner, guarantying predictability.
Rather, the PA provides correct responses and act according to the user’s command.
Impossible requests, such as those out of context, are easily handled since the system
uses a list of applicable tasks described in the ontology.

We have performed some experiments to evaluate the conversational interface
and its dialogue system, in order to measure, among others, how fast and useful
users’ requests are treated (further details in [23] and [51]). The average time elapsed
to start a task was 17.4 seconds (to select a query from the user’s utterance, to fill
its respective parameters and to query a service agent to perform the recognized
task). To accomplish five different tasks, users needed about 32 turns.

Our goal with this paper is to show those ontologies provide a semantic frame-
work for knowledge management, a key point in a MAS. The use of ontologies

Ontologies Supporting Intelligent Agent-Based Assistance 851

for intelligent assistance is an interesting and not exhausting explored field of re-
search.

We are currently working in an intelligent agent architecture for on-line assis-
tance [24]. The intent of this architecture is to provide a framework to develop
web-based intelligent agents that give useful information on a specific domain. In
this context, ontologies are used to interpret users’ demands and also to generate
natural language responses.

We are also working on improving the reference resolution treatment. The ac-
tual version only deals with anaphora. For the next version, we intend to add the
treatment of ellipsis as well.

Future work also includes improving the agent behaviour by adding a learning
module to it in order to keep a more sophisticated user profile. This will allow
clustering users and better adapting the PA behavior.

REFERENCES

[1] Varakantham, P.—Maheswaran, R.—Tambe, M.: Exploiting Belief Bounds:
Practical Pomdps for Personal Assistant Agents. In Proceedings of the Fourth
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS ’05), New York, NY, USA 2005, ACM, 2005, pp. 978–985.

[2] Tacla, C.—Barthès, J. P.: A Multi-Agent Architecture for Knowledge Acquisi-
tion. Agent Mediated Knowledge Management at AAAI Spring Symposium, 2003.

[3] Schreckenghost, D.—Martin, C.—Bonasso, P.—Kortenkamp, D.—

Milam, T.—Thronesbery, C.: Supporting Group Interaction Among Humans
and Autonomous Agents. In Proceedings of the AAAI02 Workshop on Autonomy,
Delegation, and Control, AAAI Press 2002, pp. 361–369.

[4] Pollack, M.E.—Brown, L.—Colbry, L.—McCarthy, C. E.—Orosz, C.—

Peintner, C.—Ramakrishnan, S.—Tsamardinos, I.: Autominder: An Intelli-
gent Cognitive Orthotic System for People With Memory Impairment. 2003.

[5] Magni, P.—Bellazzi, R.—Locatelli, F.: Using Uncertainty Management Tech-
niques in Medical Therapy Planning: a Decision-Theoretic Approach. In Applications
of Uncertainty Formalisms, Springer, 1998, pp. 38–57.

[6] Wong, A.K.Y.—Yip, F.—Ray, P.K.—Paramesh, N.: Towards Semantic Inter-
operability for It Governance: an Ontological Approach. Computing and Informatics,
Vol. 27, 2008, No. 1, pp. 131–155.

[7] Wang, P.—Xu, B.: Debugging Ontology Mappings: A Static Approach. Computing
and Informatics, Vol. 27, 2008, No. 1, pp. 21–36.

[8] Richard, N.—Yamada, S.: An Adaptive, Emotional, and Expressive Reminding
System. 2007.

[9] Maes, P.: Agents That Reduce Work and Information Overload. Commun. ACM,
Vol. 37, 1994, pp. 30–40.

[10] Winikoff, M.—Padgham, L.—Harland, J.: Simplifying the Development of In-
telligent Agents. In Proceedings of the 14th Australian Joint Conference on Artificial

852 E. Paraiso, A. Malucelli

Intelligence: Advances in Artificial Intelligence, AI ’01, London, UK, Springer-Verlag

2001, pp. 557–568.

[11] Beeson, P.—Macmahon, M.—Modayil, J.—Morarka, A.—Kuipers, B.—

Stankiewicz, B.: Integrating Multiple Representations of Spatial Knowledge for
Mapping, Navigation, and Communication. Interaction Challenges for Intelligent As-
sistants at AAAI Spring Symposium, 2007.

[12] Kim, J.—Spraragen, M.—Gil, Y.: An Intelligent Assistant for Interactive Work-
flow Composition. In Proceedings of the 9th International Conference on Intelligent
User Interfaces (IUI ’04), New York, NY, USA, ACM 2004, pp. 125–131.

[13] Middleton, S. E.—De Roure, D.C.—Shadbolt, N.R.: Capturing Knowledge
of User Preferences: Ontologies in Recommender Systems. In Proceedings of the 1st

International Conference on Knowledge Capture (K-CAP ’01), New York, NY, USA,
ACM, 2001, pp. 100–107.

[14] Paraiso, E.C.—Barthès, J. P.A.: Speechpa: an Ontology-Based Speech Inter-
face for Personal Assistance. Intelligent Agent Technology, IEEE/WIC/ACM Inter-
national Conference, 2005, pp. 657–663.

[15] Sycara, K.: Multi-Agent Systems. AI Magazine, Vol. 19, No. 2.

[16] Durfee, E.H.—Lesser, V.R.: Distributed Artificial Intelligence. Vol. 2, Ch. Nego-
tiating task decomposition and allocation using partial global planning, pp. 229–243,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA 1990.

[17] Enembreck, F.—Barthès, J.-P.: Personalization in Multi-Agent Systems.
Intelligent Agent Technology, IEEE/WIC/ACM International Conference 2005,
pp. 230–233.

[18] Tavares, T.A.—Oliveira, S.A.—Canuto, A.—Gonalves, L.M.—Filho,

G. S.: A Multi-Agent System for 3D Media Spaces Assistance. 2005 Web Congress,
Latin American, pp. 166–175.

[19] Molina, M.—Blasco, G.: A Multi-Agent System for Emergency Decision Support.
In Lecture notes in computer science, Springer, 2003, pp. 43–51.

[20] Shen, W.—Wang, L.: Web-Based and Agent-Based Approaches for Collaborative
Product Design: An Overview. International Journal of Computer Applications in
Technology, Vol. 16, 2003, pp. 103–112.

[21] Spinosa, L.M.—Quandt, C.O.—Ramos, M.P.: Toward a Knowledge-Based
Framework to Foster Innovation in Networked Organisations. Proceedings of CSCWD
2002.

[22] Wu, S.—Ghenniwa, H.—Zhang, Y.—Shen, W.: Personal Assistant Agents for
Collaborative Design Environments. Computers in Industry, Vol. 57, 2006, No. 8–9,
pp. 732–739, Collaborative Environments for Concurrent Engineering Special Issue.

[23] Paraiso, E.C.—Barthès, J. P. A.: An Intelligent Speech Interface for Personal
Assistants in Rd Projects. Expert Systems with Applications, Vol. 31, 2006, No. 4,
pp. 673–683, 2006, Computer Supported Cooperative Work in Design and Manufac-
turing.

[24] Paraiso, E. C.—Campbell, Y.—Tacla, C.A.: Webanima: A Web-Based Em-
bodied Conversational Assistant to Interface Users With Multi-Agent-Based Cscw

Ontologies Supporting Intelligent Agent-Based Assistance 853

Applications. 12th IEEE International Conference on CSCW in Design, 2008, Vol. 1,

pp. 337–342.

[25] Ramos, M.P.: Structuration et Evolution Conceptuelles d’Un Agent Assistant Per-
sonnel Dans Les Domaines Techniques. 2000.

[26] Barthès, J. P.A.: Omas v 1.0 Technical Reference. Tech. rep., HEUDIASYC UMR
6599, Université de Technologie de Compiègne 2000.

[27] Finin, T.—Fritzson, R.—McKay, D.—McEntire, R.: KQML as an Agent
Communication Language. In Proceedings of the Third International Conference on
Information and Knowledge Management (CIKM ’94), New York, NY, USA 1994,

ACM, 1994, pp. 456–463.

[28] Gennari, J. H.—Musen, M.A.—Fergerson, R.W.—Grosso, W.E.—

Crubzy, M.—Eriksson, H.—Noy, N. F.—Tu, S.W.: The Evolution of Protégé:
an Environment for Knowledge-Based Systems Development. International Journal
of Human-Computer Studies, Vol. 58, 2002, pp. 89–123.

[29] Kölzer, A.: Universal Dialogue Specification for Conversational Systems.

[30] Milward, D.—Beveride, M.: Ontology-Based Dialogue Systems. In International
Joint Conference on Artificial Intelligence, Acapulco, Mexico 2003.

[31] Pinto, H. S.—Martins, J. P.: Ontologies: How Can They Be Built? Knowledge
and Information Systems. Vol. 6, 2004, pp. 441–464, 10.1007/s10115-003-0138-1.

[32] Flycht-Eriksson, A.: Design of Ontologies for Dialogue Interaction and Informa-
tion Extraction. 2003.

[33] Dzikovska, M.O.—Allen, J. F.—Swift, M.D.: Integrating Linguistic and Do-
main Knowledge for Spoken Dialogue Systems in Multiple Domains. 2003.

[34] Searle, J.: A Taxonomy of Illocutionary Acts. Minneapolis, University of Minnesota
Press, 1975, pp. 334–369.

[35] He, Y.—Young, S.: Semantic Processing Using the Hidden Vector State Model.
Computer Speech and Language, Vol. 2005, pp. 8–106.

[36] Fellbaum, C.: Wordnet: an Electronic Lexical Database. 1998.

[37] Grinberg, D.—Lafferty, J.—Sleator, D.: A Robust Parsing Algorithm for
Link Grammars. In In Proceedings of the Fourth International Workshop on Parsing
Technologies, 1995.

[38] Issco, A.P. B.—Popescu-Belis, A.: Reference Resolution over a Restricted Do-
main: References to Documents. In ACL 2004 Workshop on Reference Resolution
and its Applications, 2004, pp. 71–78.

[39] Harabagiu, S.M.—Maiorano, S.: Three Ways to Customize Reference Resolu-
tion. Proceedings of International Symposium on Reference Resolution for Natural
Language Processing 2002.

[40] Nguyen, A.—Wobcke, W.: An Agent-Based Approach to Dialogue Management
in Personal Assistants. In Proceedings of the 10th International Conference on Intel-
ligent User Interfaces (IUI ’05), New York, NY, USA, ACM 2005, pp. 137–144.

[41] Rao, A. S.—Georgeff, M.P.: BDI Agents: from Theory to Practice. In Pro-
ceedAings of The First International Conference on Multi-Agent Systems (ICMAS-
95), pp. 312–319.

854 E. Paraiso, A. Malucelli

[42] Guzzoni, D.—Baur, C.: Modeling Human-Agent Interaction With Active Ontolo-

gies.

[43] Laclavıık, M.—Gatial, E.—Balogh, Z.—Habala, O.—Nguyen, G.—

Hluchý, L.: Experience Management Based on Text Notes (EMBET). In: Proc.

of eChallenges 2005 Conference, 19–21 October 2005, Ljubljana, Slovenia, Innovation
and the Knowledge Economy, Volume 2, Part 1: Issues, Applications, Case Studies;
Edited by Paul Cunnigham and Miriam Cunnigham; IOS Press, pp. 261–268. ISSN
1574-1230, ISBN 1-58603-563-0.

[44] Bellifemine, F.—Rimassa, G.: Developing Multi-Agent Systems With a Pacom-
pliant Agent Framework. Softw. Pract. Exper., Vol. 31, 2001, pp. 103–128.

[45] Agent-supported workflow in public administration project. Available on: http://

www.aswad-project.org/index.html, 2002.

[46] Krmer, N.C.—Tietz, B.—Bente, G.: Effects of Embodied Interface Agents and
Their Gestural Activity. Proceedings of 4th International Working Conference on

Intelligent Virtual Agents 2003.

[47] Purver, M.—Niekrasz, J.—Peters, S.: Ontology-Based Multi-Party Meeting
Understanding. 2005.

[48] Bai, Q.—Zhang, M.: Agent Coordination Through Ontology Management. Artifi-
cial Intelligence and Applications 2004.

[49] Quesada, J. F.—Garcia, F.—Sena, E.—Bernal, J.A.—Arnores, G.—

Julietta, G.D. I.: Dialogue Management in a Home Machine Environment: Lin-
guistic Components over an Agent Architecture. 2001.

[50] Yates, A.: A Reliable Natural Language Interface to Household Appliances. In
Proceedings of the 8th international Conference on Intelligent User Interfaces, ACM
Press 2003, pp. 189–196.

[51] Paraiso, E.C.—Tacla, C.: Using Embodied Conversational Assistants to In-
terface Users With Multi-Agent Based Cscw Applications: The Webanima Agent.
Vol. 15, 2009, No. 9, pp. 1991–2010.

Emerson Cabrera Paraiso is an Associate Professor in the

Postgraduate Program on Informatics at Pontifical Catholic Uni-
versity of Paraná in Brazil. His research interests include natu-
ral language processing, text mining, information retrieval and
ontologies. He received a Ph.D. in Computer Science from Uni-
versit de Technologie de Compiègne (France).

Ontologies Supporting Intelligent Agent-Based Assistance 855

Andreia Maluelli received her Ph.D. in Electrical and Com-

puter Engineering from the Faculty of Engineering, University
of Porto (FEUP), Portugal, and her Master in Electrical En-
gineering from the Federal Technological University of Paraná
(UTFPR). She is currently a Professor at the Pontifical Catholic
University of Paraná (PUCPR). Her research interests comprise:
software engineering, organizational learning, ontologies, multi-
agent systems and information systems in healthcare.

