
Computing and Informatics, Vol. 30, 2011, 749–760

VIRTUAL GRID – NEW PARADIGM OF SYSTEM
RESOURCES DYNAMIC ORGANIZATION

Joanna Kosińska, Jacek Kosiński, Krzysztof Zieliński

Department of Computer Science
AGH University of Science and Technology
al. Mickiewicza 30
30-059, Kraków, Poland
e-mail: {kosinska, jgk, kz}@agh.edu.pl

Communicated by Jacek Kitowski

Abstract. This paper describes the model and software tools for virtualization
of the Grid execution environment. The basic assumption of this study is that
Virtual Grid (VG) is constructed dynamically according to application requirements
with virtualized computational and communication resources. A VG instance is
dynamically created for each application and its initial configuration can be further
modified during runtime to satisfy the requested level of resource usage and to
maintain the quality of service indexes at agreed-upon values. A VG model that
takes into account this approach has been proposed and analyzed in the context of
Grid-related technology.

Keywords: Virtualization, resource management, Virtual Grid

1 INTRODUCTION

The concept of distributed computing based on the Grid model has been widely
adopted by research environments and commercial organizations. A crucial task is
the creation of systems for Grid resource management. These systems can increase
the effectiveness of usage and operation of Grid infrastructures for wide groups of
applications.

The classic approach to resource management, realized by middleware, carries
some limitations both with regard to its operation and environment capabilities [4].
The application is not able to search, choose and obtain resources which would ensure

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics, SAS,...

https://core.ac.uk/display/267941147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


750 J. Kosińska, J. Kosiński, K. Zieliński

optimal operation. The list of possible configurations would be too long for effective
selection. In addition, the Grid resources are distributed, shared among different
organizations, and possess heterogeneous features and configurations. Moreover,
their availability is not guaranteed at any given time. All these factors result in
difficulties, or even in the inability to obtain a valid set of resource configurations
that would guarantee optimal performance of a distributed application.

By analyzing the architecture of management systems currently used in Grid en-
vironments [16, 3, 22] and proposed as solutions for further implementation of such
environments [17, 18, 5], it is possible to define the main aims of a resource manage-
ment system. Primarily, these include efficient management of generic computing
resources as CPU power, memory allocation or disk access. In distributed systems,
a crucial role is also attributed to communication between distributed components
and network resource allocation.

This paper describes the model and software tools for virtualization of the Grid
execution environment. The basic assumption of this study is that Virtual Grid (VG)
is constructed dynamically according to application requirements with virtualized
computational and communication resources. This highly demanding VG environ-
ment requires selection of a suitable virtualization technology for CPU nodes and
communication networks. An integrated approach to virtualization of CPU power
and network usage is the main innovation of this study. By complementing this solu-
tion with virtual organizations [14] there rise opportunity for more flexible resource
allocation. The primary form of usage of proposed environment is the optimization
of the way of using shared resources by computing applications (HPC).

Section 3 describes the requirements that Resource Management System (RMS)
should meet in distributed systems. In the subsequent section, a system that meets
the stated requirements is described. This section also presents the concepts of
using virtualization. Section 5 presents a multilayer implementation model of Vir-
tual Grid Resources Management System (VGRMS) which is designed to support
VG lifecycle management. By using VGRMS, the allocation of computational and
communication resources can be autonomicaly influenced without the need for ap-
plication reconfiguration and behavioral modification. The paper wraps up with
conclusions and ideas for further improvement.

2 RELATED WORK

A great deal of effort has gone into developing virtualization techniques for comput-
ing environments. Most of them focus on manipulating virtual resources in existing
computing infrastructures. Paper [2] describes the opportunities offered by virtual
computing in the area of Grid computations. It shows benchmark results and in-
cludes an overview of how virtual systems could be integrated with Grid computing.
Another work ([3]) describes the requirements and solution for modelling dynamic
virtual environments as entities in a distributed environment (DVE), with Grid
service interfaces defined to negotiate creation, monitor properties, and manage the



Virtual Grid Resources Management System 751

lifetime of DVE. The article also visualizes some use cases where the usage of virtua-
lization can provide an advantage and explains why there is a drive towards achieving
virtualization in computing environments. Moreover, it also provides a short intro-
duction to Xen and presents benchmark results which compare the Xen system with
an SMP computer.

In [5], the authors present the concept of a virtual workspace that allows a Grid
client to define an environment according to its requirements (such as resource re-
quirements or software configurations), manage it, and then deploy the environment
in the Grid. This paper describes how virtual workspaces fit into the Grid architec-
ture, present a prototype of such an architecture based on the Globus Toolkit and
experiment with virtualization based on VMWare. The rest of the paper presents
the experience integrating VMs with the Grid infrastructure. Paper [7] presents
virtualization middleware addressing complete networks instead of single virtual
machines. Having proposed a solution, the author presents benchmark results for
selected Grid applications running in this virtual network.

[13] presents a Grid service – VMPlant – that provides the possibility to create
VMs that, once configured to meet application requirements, can subsequently be
cloned and instantiated in order to provide homogeneous execution environments
across distributed Grid resources.

As can be noticed, most of these efforts address the specific issue of virtualizing
computing resources and concentrate on problems resulting from the integration
with existing Grid environments at the middleware level. There is an observable
lack of complex solutions addressing both network and resource virtualization. In
the works presented above, the problem of autonomic regulation of resource access
and the manner of ensuring service quality is largely neglected.

3 THE PURPOSE OF VIRTUAL GRID RESOURCE MANAGEMENT

The main requirements of Grid systems can be formalized through the definition
of a primary set of services which the system should provide. Following is a list of
services composing the resource management system for a modern Grid architecture:

• resource discovery,

• access to information about resources,

• monitoring the task status and the environment state,

• resource allocation,

• SLA reservations/limits/contracts handling,

• task execution management,

• accounting and reporting.

The usage of virtualization techniques (with VG concept in mind) plays a crucial
role. The pool of physical nodes can be replaced with a collection of VMS that fulfil



752 J. Kosińska, J. Kosiński, K. Zieliński

the role of application execution containers. It is possible to execute many compo-
nents of a distributed application in an isolated manner even within a single physical
node. The virtualization technique also enables sharing the available resource pool
among different, simultaneously running applications. Moreover, computer network
can be dynamically constructed, based on application requirements.

A VG model that takes this approach into account has been proposed and analy-
zed in the context of Grid-related technology. The novelty of the proposed approach
can be expressed in several important aspects:

• The VG execution environment integrates virtualized computational and net-
working resources,

• VG can be deployed on demand, according to application requirements, on the
available physical resources in a shared infrastructure,

• Once deployed, VG can be modified during runtime so the running application
can obtain or release access to physical resources during execution,

• VG runtime management can be performed manually or by a policy engine,
executing policy rules defined by the system administrator,

• VG deployment and runtime management should be neutral from the perspective
of Grid middleware usage.

In summary, the main task of the VGRMS components is to control a number
of VGs operating upon a shared physical infrastructure [11]. Control is executed
by a rule engine, processing rules that govern the usage and sharing of resources
specified by the user of the infrastructure, based on application requirements. The
other goal is to achieve a tradeoff between a guaranteed level of QoS for applications
executing within VGs and maximizing the utilization of shared resources.

4 RESOURCE MANAGEMENT IN THE VGRMS SYSTEM

Hierarchic approaches are most often [12] taken into consideration when building
resource management systems in Grid environments. This results mainly from the
necessity to support management in spite of strong dispersion and heterogeneity of
resources. The hierarchic concept assumes the division of RMS operation areas into
domains [8]. This division can result from the geographic arrangement of managed
resources, their type, membership in administrative domains, specificity of network
communications, etc. A local manager is created to serve each specific domain.
However, these managers are not autonomic, as their operation is controlled by
a global resource manager (handling the global resource domain).

The hierarchic management approach (Figure 1) avoids many problems related
to scalability and decreases the global complexity of management systems. In the
proposed system the specific levels of the management hierarchy correspond to the
process of mapping an application onto virtualized resources, which is performed
in two stages. The first binding is realized between physical and virtual resources,



Virtual Grid Resources Management System 753

while the second is the allocation of virtual resources to an application. The virtue
of this two-stage mapping is the simplification of resource allocation, since operating
on virtual resources rather than on physical ones allows us to express the applica-
tion requirement specification on a higher level of abstraction. This solution can
therefore separate the primary (business) application functionality from resource
management, hence simplifying the expression, maintenance and modification of re-
source management mechanisms according to a given application’s state and the
phase of its execution.

Fig. 1. Hierarchical resource management in VGRMS

Individual levels of the management hierarchy are defined through the specifi-
cation and deployment of policies regulating the access of applications to resources.
This leads to the concept of a rule engine [9] in the implemented system, which was
implied by the necessity to provide a flexible mechanism implementing management
of selected resources. The use of a rule engine enables us to attain the following
nonfunctional requirements:

• separation of application logic from its implementation,

• ability to change the management algorithm and its parameters without the
need to recompile the application source code,

• the existing rules, implementing a given optimization strategy, do not need to
be modified when enlarging the set of available optimizations.

The system policies, specified by an administrator, differentiate between ma-
nagement layers. The implementation of a system policy requires the controlled
system state representation as facts. Facts are information about the system’s actual
state, parameters of available resources and their usage. They are aggregated in the



754 J. Kosińska, J. Kosiński, K. Zieliński

working memory [6] of the rule engine [15]. The need to expose system state as facts
requires a suitable sublayer implementation, which is done by the VGRMS system.

The autonomic system’s decisions regarding the adustment of environment con-
figuration to application requirements (realized by the rule engine) should be mo-
difiable by the user. Such capabilities make it possible to correct errors in resource
configuration and enable the application to achieve better performance. This is why
the proposed structure of VGRMS offers support for manual control of resource
allocation.

In such cases, the administrator is able to perform both direct resource allocation
modifications and to modify the rules associated with their autonomic regulation
(Figure 2). Hence, the management loops depicted in this figure can be executed
automatically (loop feedback closure via VGRMS management layer elements) as
well as by the operator (manual loop feedback closure) observing the resource state
and reacting to certain situations via changes in resource configuration.

Fig. 2. Possible management flows in the VGRMS resource management environment

5 VGRMS ARCHITECTURE

The architecture of the VGRMS system, presented in this section, is constructed
according to current trends in building distributed systems. One of the most impor-
tant assumptions is the decomposition of the environment into smaller components,
each of which exposes the functionality of a single service.

The designed Virtual Grid resource management system architecture consists of
five1 layers (Figure 3). These layers result from the established concept2 of using
virtualization as a management technique. The layers are as follows:

1 Three upper layers comprised of VGRMS components and two lower layers related to
components that represent resources and realize virtualization.

2 Resource management, as presented in Section 4.



Virtual Grid Resources Management System 755

Fig. 3. Layered architecture of VGRMS components

Physical resource layer – the heterogenenous resources constituting the infra-
structure that typical computing centers are equipped with.

Virtualization layer – this layer creates an abstraction of physical resources
through proper mechanisms. Components in the virtualization layer are re-
sponsible for:

• Virtual Machine (VM) creation,

• enabling dynamic modification of virtual machine configuration (changing
the mapping and the level of physical resource usage). This is accomplished
by modifying the dynamic VM parameters,

• virtual network creation,

• enabling dynamic modification of virtual network parameters.

The presented virtualization layer is also responsible for provision of an infra-
structure enabling distribution of the operating system for VM instances.

Exposition layer – components added to adjust and unify virtualization layer
mechanisms to simplify the interfaces realizing basic VGRMS system functions
related to resource management:

• representing monitoring data and system configuration using facts,

• provision of services implementing search for and localization of resources
(specifically, VGRMS system components realizing resource management);
registration and retrieval of other components,

• resource management policy realization through exposed effectors.

Management layer – the main task of this layer is to process information about
environment state and running procedures related to resource allocation for
distributed applications. During runtime, information about the state of system



756 J. Kosińska, J. Kosiński, K. Zieliński

components is collected as facts. This information is then processed by a rule
engine in order to take proper actions.

Presentation layer – this layer consists of components enabling the end user to
affect the state of other system elements. It is realized through a graphical inter-
face in the form of the VGRMS system console. Each console can be connected
with one or more component instances representing and managing virtual Grids.
The presentation layer components gain access to other VGRMS components
through lookup services located in the exposition layer.

The VGRMS components can be located at various points in the physical infra-
structure as they communicate via the network. The presented layers do not impose
any restrictions on component allocation.

6 IMPLEMENTATION DETAILS

The need for resource management based on complex heterogeneous mechanisms
has led us to choose the Java Management Extensions (JMX) [20, 21] technology
for developing the prototype of VGRMS. By using this technology we can create and
unify diverse methods of distributed object management in the form of an uniform
and clear programming interface.

All VGRMS node components are represented as JMX MBeans. While ini-
tializing the VGRMS node, a MBeanServer is instatiated on it with a NodeMaster

registered. The other node components that are also MBeans – VM-M representing
a virtual machine and VG-M representing a virtual Grid – are created and regis-
tered by the NodeMaster in the MBeanServer. At a lower level of abstraction, the
VM-M functionality is accomplished through the Xen [2] mechanisms. The MBeans
wrap the Xen Management API, an interface enabling remote configuration and
management of virtual environments.

The node also contains other MBean components that collect information about
the system state. These components are NetMonitor, which uses Jpcap library [10]
for analyzing network communication packets, and OSMonitor for collecting infor-
mation about operating system state and exposing it through a JMX interface.
OSMonitor is built on top of monitoring systems based on Common Information
Model (CIM)3. This standard was used as one of the possible sources of information
about the host operating system. CIM capabilities related to control and manage-
ment were not used.

Regarding the technology for building virtual networks over physical nodes lo-
cated in different LANs, a virtual Ethernet switch was used. This concept is taken
from the Virtual Distributed Ethernet (VDE) [23] project. It relies on creating vir-
tual switches on nodes connected with a tunnel. The type of tunneling method can

3 The open-source OpenPegasus (http://www.openpegasus.org/) implementation
standard was used in the execution environment.



Virtual Grid Resources Management System 757

vary as the VDE switch communicates with tunneling software through standard
input/output streams.

The rule engine which implements system logic was developed using a com-
mercial (the software is available for academic use at no cost) implementation of
Java Specification Request (JSR)-94 (,,JavaTMRule Engine Application Program-
ming Interface (API)” – a rule engine for the Java platform) specification. Jess is
a rule engine and a scripting environment, equipped with an extensive language for
building and representing rules (based on Lisp). The environment is a compact,
lightweight and highly efficient [1, 24] implementation of a rule engine for Java.
The built-in scripting language enables direct access to Java API, facilitating easy
integration both with the application and with the Java packages implementing sys-
tem functionality (e.g. statistical packages, scheduling services, handling of complex
structures, Graphical User Interface (GUI) interface, etc.).

The graphical VGRMS console, implemented in the Spring-RCP technology, sim-
plifies system management. This console enables, among others, modification of the
policy of system operation, tracing application execution and monitoring the level
of resource usage.

Apart from the above mentioned basic technologies, such as JMX, Xen, VDE
and Jess, used to implement VGRMS system functionality, frameworks supporting
the process of software creation should be mentioned. The complexity of VGRMS
software would make it very difficult to manage without the Spring[19] framework.
The ability to invoke VGRMS with the use of configuration files supporting inver-
sion of control (Inversion of Control (IoC)[7]) techniques and dependency injection
Dependancy Injection (DI)[7] simplifies code maintenance and increases its flexibi-
lity.

7 CONCLUSIONS

The design and evaluation of the VGRMS system demonstrate the capabilities of
the presented resource management model and selected virtualization technologies.
Prototype installation has confirmed that complementing the available technologies
with additional components (mentioned in Section 4) and providing the functionality
enumerated in Section 3 results in a system which satisfies most of the stated VG
requirements.

The implemented system provides a foundation for VGRMS further development
and extension of current capabilities. A significant improvement could be achieved
by introducing more complex analysis and processing of information concerning
system state. This would allow us to construct better heuristics4 for VG system
management. Another field of improvement concerns the techniques of exposing
state and making decisions based on actual system information represented as facts
for the rule system. In some situations it might be desirable to extend the fact set

4 By heuristics we mean diverse algorithms for resource allocations. These algorithms
are based on performance data collected by system.



758 J. Kosińska, J. Kosiński, K. Zieliński

representing the system state with information derived from event streams. This
would make the system more reactive and able to identify complex symptoms by
processing many parallel event streams, using them as policy rule parameters.

Acknowledgement

The research presented in this paper has been partially supported by the European
Union within the European Regional Development Fund program No. POIG.01.03.
01-00-008/08.

REFERENCES

[1] Adamczyk, J.—Chojnacki, R.—Jarza̧b, M.—Zieliński, K.: Rule Engine
Based Lightweight Framework for Adaptive and Autonomic Computing. In ICCS ’08:
Proceedings of the 8th International Conference on Computational Science, Part I,
Springer-Verlag 2008, pp. 355–364.

[2] Barham, P.—Dragovic, B.—Fraser, K.—Hand, S.—Harris, T.—Ho, A.—

Neugebauer, R.—Pratt, I.—Warfield, A.: Xen and the Art of Virtualization.
In SOSP ’03: Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, New York, NY, USA 2003, pp. 164–177.

[3] Bent, J.—Venkataramani, V.—LeRoy, N.—Roy, A.—Stanley, J.—

Arpaci-Dusseau, A.—Arpaci-Dusseau, R.—Livny, M.: Grid Resource Mana-
gement. Kluwer Academic Publishers 2003.

[4] Buyya, R.—Chapin, S. J.—DiNucci, D. C.: Architectural Models for Resource
Management in the Grid. In GRID 2000, pp. 18–35.

[5] Drotz, A.—Gruber, R.—Keller, V.—Thimard, M.—Tolou, A.—

Tran, T. M.—Cristiano, K.—Kuonen, P.—Wieder, P.—Wldrich, O.—

Ziegler, W.—Manneback, P.—Schwiegelshohn, U.—Yahyapour, R.—

Kunszt, P.—Maffioletti, S.—Sawley, M. C.—Witzig, C.: Application-

Oriented Scheduling for HPC Grids. Technical Report TR-0070, Institute on Resource
Management and Scheduling, CoreGRID – Network of Excellence, February 2007.

[6] Forgy, C. L. Rete: A Fast Algorithm for the Many Patterns/Many Objects Match
Problem. Artificial Intelligence, Vol. 19, 1982, No. 1, pp. 17–37.

[7] Fowler, M.: Inversion of Control Containers and the Dependancy Injection Pattern.
Technical report, ThoughtWorks, January 2004.

[8] Funika, W.—Korcyl, K.—Pieczykolan, J.—Skita l, L.—Ba los, K.—

S lota, R.—Guzy, K.—Dutka, L.—Kitowski, J.—Zieliński, K.: Adapting
a HEP Application for Running on the Grid. Computing and Informatics, Vol. 28,
2009, No. 3, pp. 353–367.

[9] Friedman Hill, E.: Jess in Action: Java Rule-Based Systems. Manning Publica-
tions Co., Greenwich, CT, USA 2003.

[10] Jpcap library manual. Online. http://http://netresearch.ics.uci.edu/kfujii/

~jpcap/doc/.



Virtual Grid Resources Management System 759

[11] Kosiński, J.—Zieliński, K.: Enhancing Grid Computing With Virtual Grid Con-

cept Model. In Marian Bubak, Michal Turaa, Kazimierz Wiatr (Eds.): Cracow Grid
Workshop 2007, Kraków, Poland, October 2007, pp. 291–298.

[12] Krauter, K.—Buyya, R.—Maheswaran, M.: A Taxonomy and Survey of Grid

Resource Management Systems for Distributed Computing. Software – Practice and
Experience, Vol. 32, 2002, No. 2, pp. 135–164.

[13] Krsul, I. V.—Ganguly, A.—Zhang, J.—Fortes, J. A. B.—Figueiredo,

R. J.: VMPlants: Providing and Managing Virtual Machine Execution Environments
for Grid Computing. In Proceedings of Supercomputing Conference, November 2004.

[14] Kryza, B.—Dutka, L.—Sota, R.—Kitowski, J.: Dynamic VO Establishment
in Distributed Heterogeneous Business Environments. In G. Allen, J. Nabrzyski,

E. Seidel, G.D. van Albada, J. Dongarra, and P.M.A. Sloot (Eds.): Computational
Science – ICCS 2009, 9th International Conference, Baton Rouge, LA, USA, May
2009, Springer LNCS Vol. 5545, pp. 709–718.

[15] Sandia National Laboratories. Jess, the Rule Engine for the Java Platform. Online.

[16] Livny, M.—Raman, R.: High-Throughput Resource Management. In Ian Foster,
Carl Kesselman (Eds.): The Grid: Blueprint for a New Computing Infrastructure,

Morgan Kaufmann 1998.

[17] Schwiegelshohn, U.—Yahyapour, R.—Wieder, P.: Resource Management for
Future Generation Grids. Technical Report TR-0005, Institute on Resource Manage-

ment and Scheduling, CoreGRID – Network of Excellence, May 2005.

[18] Seidel, J.—Wldrich, O.—Ziegler, W.—Wieder, P.—Yahyapour, R.: Us-
ing SLA for Resource Management and Scheduling – A Survey. Technical Report

TR-0096, Institute on Resource Management and Scheduling, CoreGRID – Network
of Excellence, August 2007.

[19] Spring framework. Online. http://www.springframework.org/.

[20] Sun Microsystems, Santa Clara, CA, USA. Java Management Extensions (JMX)
Specification, Version 1.4, JSR 160, 2006.

[21] Sun Microsystems, Santa Clara, CA, USA. Java Management Extensions (JMX)
Specification, Version 2.0, JSR 255, February 2008.

[22] Tonellotto, N.—Wieder, Ph.—Yahyapour, R.: A Proposal for a Generic Grid
Scheduling Architecture. In Sergei Gorlatch and Marco Danelutto (Eds.): Proceedings
of the Integrated Research in Grid Computing Workshop, pp. 337–346, Università di
Pisa, November 2005, CoreGRID Technical Report TR-0015.

[23] Vde, project homepage. Online. http://sourceforge.net/projects/vde/.

[24] Young, C.: Microsoft’s Rule Engine Scalability Results – A comparison with Jess
and Drools. Technical report, Solidsoft, September 2005.



760 J. Kosińska, J. Kosiński, K. Zieliński

Joanna Kosi�nska is a research assistant at the Department of

Computer Science, AGH University of Science and Technology,
Kraków since 2001. Her main interests focus on distributed en-
vironments and portal technologies based on Java. She has par-
ticipated in several national and international research projects,
mainly EU-funded.

Jacek Kosi�nski is a research assistant at the department of
Computer Science, AGH University of Science Technology, Kra-
ków since 2000. His main interests focus on computer networks
and operating systems. He is a CCNP instructor. He has par-
ticipated in several national and international research projects,
mainly EU-funded.

Krzysztof Zieli�nski is a Full Professor and Head of the Insti-
tute of Computer Science at AGH-UST. His interests focus on
networking, distributed computing, object-oriented distributed
system engineering and SOA-related technologies. He is the
author/co-author of over 150 papers in the above mentioned
areas. He served as co-chair and PC member of many confer-
ences and workshops worldwide. He is a member of the IEEE
Computer Society, ACM, and the Polish Academy of Sciences
(Computer Science Chapter).


