
Computing and Informatics, Vol. 30, 2011, 531–557

FAULT-BASED TEST OF XML SCHEMAS

Maria Claudia Figueiredo Pereira Emer, Igor Fabiano Nazar
Silvia Regina Vergilio, Mario Jino

Computer Science Department

Federal University of Paraná, Brazil

CP: 19081, CEP: 81531-970

e-mail: {mcemer, jino}@dca.fee.unicamp.br,
{ifnazar, silvia}@inf.ufpr.br

Communicated by Jacek Kitowski

Abstract. XML is largely used by most applications to exchange data among dif-
ferent software components. XML documents, in most cases, follow a grammar or

schema that describes which elements and data types are expected by the applica-
tion. These schemas are translated from specifications written in natural language,
and consequently, in this process some mistakes are usually made. Because of this,
faults can be introduced in the schemas, and incorrect XML documents can be vali-
dated, causing a failure in the application. Hence, to test schemas is a fundamental
activity to ensure the integrity of the XML data. With the growing number of
Web applications and increased use of XML, there is a demand for specific testing
approaches and tools to test schemas. To fulfill this demand, this work introduces
a fault-based approach for testing XML schemas. This approach is based on a clas-
sification of common faults found in schemas. A supporting tool was implemented
and used in evaluation studies. The obtained results show the applicability of the
fault-based testing in this context and its efficacy in revealing faults.

Keywords: Fault-based testing techniques, XML Schema, web applications

1 INTRODUCTION

XML (eXtensible Markup Language) [19] is a markup language that has been largely
used to manipulate data from different sources. The use of XML to exchange data

532 M.C.F. P. Emer, I. F. Nazar, S. R. Vergilio, M. Jino

among different components is rising, mainly in Web-based applications, such as
e-commerce [14] and e-science [6].

XML documents need to be well-formed and valid. A well-formed document
obeys XML syntax, and this can be detected by using a checker. A valid document
follows rules defined in a schema that specifies the grammar expected for the docu-
ment. Examples of schemas generally used are: DTD [21] and XML Schema [20].

Since developers are responsible for writing the schemas, some mistakes can be
made and incorrect schemas can be generated. A faulty schema can validate an
incorrect XML document. If such an incorrect document is manipulated, this can
cause a failure in the application that uses the schema. This happens because during
the validation process only syntactic aspects are checked. Semantic aspects of the
documents are not considered, i.e., the meaning of the stored data in the XML
document is not evaluated.

As a consequence, the use of testing techniques and criteria to reveal faults in
the schemas is fundamental. They can ensure the data integrity and reliability of
the XML documents, and consequently, of the application that manipulates them.

There are three basic testing techniques that can be used: functional, structural
and fault-based. The fault-based technique considers the main faults that are gene-
rally found in the programs being tested to generate the test data. In some studies of
the literature, it has been considered as the most efficacious in terms of the number
of revealed faults [24]. Mutation Analysis [7] is the best known and most frequently
used fault-based criterion.

We find in the literature some works that explore fault-based testing in the
context of Web-based applications. The works described in [12, 15, 25] introduce
XML based mutation operators with the goal of testing the interaction between Web
components, mainly Web services; but they do not address the testing of schemas.
Li and Miller [13] introduce mutation operators for XML schemas and show that
schemas modified by these operators are often considered valid by most parsers
commonly used to validate schemas. However, the authors do not present a test-
ing process and do not explain how test cases are generated to detect faults in the
schemas. Franzotte and Vergilio [10] propose new mutation operators and apply
mutation analysis criterion on XML schemas. However, in the proposed testing pro-
cess, the tester identifies the test data manually, and equivalent mutant schemas can
be generated. The manual test data generation and the determination of equivalent
schemas increase the costs and efforts of the testing activity.

Considering the promising ideas of the above-mentioned works, in our previous
work [9], we introduced a fault-based approach for testing XML schemas, particu-
larly the test of XML Schema documents. The idea of the introduced approach
is the automatic generation of test data. Each test data is composed by an XML
document that describes a typical fault and queries to this document. The testing
result is the result obtained by executing such queries.

In the present paper we grouped the faults in classes and illustrate each class
with examples. In addition to that, we implemented a supporting tool, named
XTool, to make possible the use and evaluation of the introduced approach. This

Fault-Based Test of XML Schemas 533

tool is also described. By using XTool, we conducted experiments that show the
applicability and efficacy of the approach, as well as allowing a comparison with
mutation testing.

This paper is organized as follows: Section 2 reviews basic concepts and provides
a background on XML, XML Schema and XML query languages. Section 3 describes
related works. Section 4 introduces classes of the common faults found in XML
schemas. Considering these classes, Section 5 introduces the fault-based approach.
Section 6 presents experimental results. Section 7 contains conclusions and future
work.

2 BASIC CONCEPTS

2.1 XML

XML (eXtensible Markup Language) is a text format used for data exchange among
applications and heterogeneous hardware platforms [19]. XML was defined by W3C
(World Wide Web Consortium). Data are represented in XML format as a hierar-
chy of elements specified by names, optional attributes and optional content. Tags
are textual descriptions of data delimited by the symbols “<” and “>”, which are
used to indicate the logical structure of the document and to identify the data con-
tent. Example 1 presents a sample of an XML document. This document contains
information about sellers.

Example 1: A fragment of XML document about sellers

<?xml version="1.0" ?>

<sellers xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<seller sellerID="ac12DD23">

<sellerName>Eduardo</sellerName>

<nickName>du</nickName>

<glancePage>0k</glancePage>

<about>0k</about>

<moreAbout>0k</moreAbout>

<averageFeedbackRating>7</averageFeedbackRating>

<totalFeedback>2</totalFeedback>

<totalFeedbackPages>1</totalFeedbackPages>

<location>

<city>Blumenau</city>

<state>Santa Catarina</state>

<country>Brazil</country>

</location>

<sellerFeedback>

<feedback>

<rating>7</rating>

<comment>good</comment>

534 M.C.F. P. Emer, I. F. Nazar, S. R. Vergilio, M. Jino

<date>2006-05-26</date>

<ratedBy>Greg</ratedBy>

</feedback>

</sellerFeedback>

</seller>

...

</sellers>

2.2 Schemas for XML

An XML document must meet XML syntax rules to be considered well-formed.
Moreover, a well-formed document needs to follow rules defined by a schema to be
a valid XML document.

A schema is a grammar that defines the logical structure of an XML document.
It defines elements, attributes, and constraints for elements and attributes. Schemas
are usually written using DTD (Document Type Definition) [21] and XML Schema
(XML Language Schema) [20]. Some advantages of XML Schema against DTD are:
XML Schema is written in XML; it has a type system; and it is a much richer
language for describing the content of an XML document.

Example 2 presents the XML Schema for the XML document of Example 1.
This XML Schema was obtained through hyperModel application [4] and contains
information of an XML vocabulary used by Amazon e-commerce service.

Example 2: XML Schema for XML document of Example 1

<?xml version="1.0" encoding="ISO-8859-1"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:element name="sellers">

<xs:complexType>

<xs:sequence>

<xs:element name="seller" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="sellerName" type="xs:string" minOccurs="0"/>

<xs:element name="nickName" type="xs:string" minOccurs="0"/>

<xs:element name="glancePage" type="xs:string" minOccurs="0"/>

<xs:element name="about" type="xs:string" minOccurs="0"/>

<xs:element name="moreAbout" type="xs:string" minOccurs="0"/>

<xs:element name="averageFeedbackRating" type="xs:decimal"

minOccurs="0"/>

<xs:element name="totalFeedback" type="xs:nonNegativeInteger"

minOccurs="0"/>

<xs:element name="totalFeedbackPages" type="xs:nonNegativeInteger"

minOccurs="0"/>

<xs:element name="location" minOccurs="0">

Fault-Based Test of XML Schemas 535

<xs:complexType>

<xs:sequence>

<xs:element name="city" type="xs:string" minOccurs="0"/>

<xs:element name="state" type="xs:string" minOccurs="0"/>

<xs:element name="country" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="sellerFeedback" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element name="feedback" minOccurs="1"

maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="rating" type="xs:nonNegativeInteger"

minOccurs="0"/>

<xs:element name="comment" minOccurs="0">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:maxLength value="100"/>

<xs:whiteSpace value="preserve"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="date" type="xs:date" minOccurs="0"/>

<xs:element name="ratedBy" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="sellerID" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:pattern value="[a-zA-Z0-9]{8}"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

536 M.C.F. P. Emer, I. F. Nazar, S. R. Vergilio, M. Jino

</xs:element>

</xs:schema>

2.3 XML Query

One way to access data on XML documents is through query languages. XML-QL [8],
Quilt [5], XQL [17] and XQuery [11, 18] are query languages created to access data
directly from XML documents. In this work, we use XQuery to obtain information
from XML documents. It was proposed by W3C to define a standard query language
for XML documents [3].

XQuery is a functional language (expressions can be nested), strongly typed
(operands, operators and functions must conform to the expected types) and case-
sensitive (keywords use lower-case characters) [3]. In XQuery, queries are expressions
that are evaluated by generating a value. Example 3 shows a query written in
XQuery. This query obtains the element sellerName with attribute sellerID

equal to “ac12DD23” related to the element seller of Example 1.

Example 3: Query formulated in XQuery.

for $l in document("seller.xml")//seller

where $l/@sellerID="ac12DD23"

return

$l/sellerName

There are some tools to execute expressions in XQuery. For example, Qexo [16]
is a free software to perform queries in XQuery, on the Java platform.

3 RELATED WORKS

In this section we describe some works from the literature, among them we cite the
works that are the basis of our work and others on XML or that address the same
subject.

Software test includes test data generation, and XML has been used in many
works to support this task. For example, Bulbul and Bakir [2] propose a system
based on XML to generate the test data automatically according to the given data
definition.

Other works [12, 15, 25] modify XML documents and use these documents to
test communication of Web components. Lee and Offutt [12] introduce two muta-
tion operators: lenghtOf and memberOf for XML documents. The mutants are
created by application of the operators and used to test the communication between
components of a Web application.

Offutt and Xu [15] explore the use of perturbation operators to test interaction
of Web services. In this testing approach, request messages are altered, and res-
ponse messages are analyzed in relation to the correct behavior. Data perturbation
includes data value and interaction perturbation. Data value perturbation modifies

Fault-Based Test of XML Schemas 537

values according to data types in SOAP (Simple Object Access Protocol – message in
XML format) messages. Interaction perturbation alters messages in RPC (Remote
Procedure Calls – messages with values for the arguments of remote procedure
functions) and in data communication (messages to transfer data).

With the same objective, to test communication of Web Services, Xu et al. [25]
apply mutation operators in XML schema to generate incorrect XML messages.
The schema is represented by a tree T, and operators that change sub-trees and
nodes of T are introduced to create incorrect XML messages used in the test of Web
services.

The above-mentioned works investigate ideas related to fault-based testing of
interaction among Web components, done through XML messages. However, they
do not address schema testing. In spite of this different objective, they specify some
kinds of faults that are commonly found in XML documents. These faults served
as the basis of our classification, since schemas written in XML Schema are XML
documents too.

Works with similar objective to ours, addressing testing of schemas, are des-
cribed in [10, 13]. Li and Miller [13] introduce a set of 18 mutation operators for
XML Schema and a mutation analysis model. They can be used to detect faults
involving namespaces, complex type definition, simple type definition, type facets
and inheritance. The mutation analysis model presents how XML schema mutants
are generated, however it does not address about how the Mutation Analysis crite-
rion would be applied in the context of XML Schemas. The authors do not present
an experiment to evaluate their mutation operators. They only conduct an exper-
iment to show that commonly used parsers do not reveal most faults described by
their operators.

Franzotte and Vergilio [10] apply mutation analysis criterion for testing XML
schemas. The authors propose a set of mutation operators that extends the set
proposed by Li and Miller. These operators represent possible faults in the schema
and are shown in Table 1. Mutation operators are used to alter the XML schema
being tested, generating diverse mutants. After this, the tester needs to provide
a set of test data, XML documents. Each mutant schema, as well as the original
one, is used to validate all the documents in the test set. A mutant is considered
dead, if the validation of a test case, by using the mutant, produces a different result
from the validation of the same test case against the original schema.

At the end, the mutation score is obtained for the test set provided by the tester.
If necessary, additional XML documents can be used to improve the score and to
kill the remaining alive mutants. Among these mutants, there can be some ones
that are equivalent to the original schema, and they are determined and excluded.
A tool, named XTM (Tool for XML Schema Testing Based on Mutation) [10], was
implemented to support their operators.

This mutation based approach holds some limitations: it does not offer any au-
tomatic support to the generation of the XML documents that are used as test data,
and the determination of equivalent mutants is an effort-consuming task, because it
can not be completely automated. The authors also do not present a fault model to

538 M.C.F. P. Emer, I. F. Nazar, S. R. Vergilio, M. Jino

Operator Description

GO – GroupOrder changes the order in which the elements may appear

REQ – Required changes type (optional or obligatory) of the attributes

DT – DataTypes changes data type of elements and attributes

LO – LengthOf changes the name size of the element

CSP – ChangeSingPlural changes the element size by adding or removing
characters at the end of the string

CTP – ChangeTag changes the most common node tag used

SO – SizeOccurs changes the maximum and minimum occurrence
of the elements

STE – SubTreeexchange inverts the sub-trees below some node

IT – InsertTree adds a node in the structure of the sub-tree

RT – DeleteTree removes the node (or sub-tree) from the structure
of the tree

Table 1. Mutation Operators implemented by XTM [10]

allow classification, and the operators need improvement to describe other kinds of
faults.

Considering these aspects, we introduce in the next sections a classification for
the main faults found in the XML schemas, and a new fault-based approach that
automatically generates XML documents and queries to these documents.

4 FAULTS IN XML SCHEMAS

The faults identified in this section were obtained through analyses of XML schemas
and investigation of the above-mentioned works [10, 12, 13, 15, 25]. The fault classes
represent common mistakes which may be made during the development of the XML
schema or in its updating. The focus of this paper is on the semantic faults, that is,
we are not interested in syntactical faults easily revealed by the parsers during the
validation of the schemas.

The fault classes are described next. They are organized into three fault groups
and are illustrated with fragments of XML schemas. Supposing that each fragment
is correct according to the data specification, an example of change (fault) that
would make the schema incorrect is also presented.

1. G1 (Group 1): Domain Constraints: faults related to domain definition of
the element or attribute values.

• IDT – Incorrect Data Type: incorrect definition of data type. The most
common data types in XML Schema are: string, decimal, integer, Boolean,
date and time. For example:

Correct fragment Incorrect change

xs:element name="$totalFeedbackPages" ...

type="xs:nonNegativeInteger"/> type="xs:integer"/>

Fault-Based Test of XML Schemas 539

• IV – Incorrect Value: incorrect definition of default or fixed value. The value
is defined as default if it should be automatically assigned when no other
value is provided. The value is defined as fixed if it is the only acceptable
value. In this case the value can be incorrect or the value definition as default
or fixed can be incorrect. For example:

Correct fragment Incorrect change

<xs:attribute name="signal" ...

type="xs:string" default="negative"/> default="positive"/>

• IEV – Incorrect Enumerated Value: incorrect definition of the list of accep-
table values. For example:

Correct fragment Incorrect change

<xs:element name="semaphore_colors">

<simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="red"/> ...

<xs:enumeration <xs:enumeration

value="yellow/"> value="orange/">

<xs:enumeration value="green"/> ...

</xs:restriction>

</xs:simpleType>

</xs:element>

• IMMV – Incorrect Maximum and Minimum Values: incorrect definition of
upper and lower bounds for numeric values. For example:

Correct fragment Incorrect change

<xs:element name="numbers">

<simpleType>

<xs:restriction base="xs:integer"> ...

<xs:minInclusive value="1"/> <xs:maxInclusive

<xs:maxInclusive value="6"/> value="7"/>

</xs:restriction> ...

</xs:simpleType>

</xs:element>

• IL – Incorrect Length: incorrect definition of the number of characters al-
lowed for values. For example:

Correct fragment Incorrect change

<xs:element name="comment" minOccurs="0">

<simpleType>

<xs:restriction base="xs:string"> ...

<xs:maxLength value="100"/> <xs:maxLength

</xs:restriction> value="10"/>

</xs:simpleType> ...

</xs:element>

540 M.C.F. P. Emer, I. F. Nazar, S. R. Vergilio, M. Jino

• ID – Incorrect Digits: incorrect definition of the total amount of digits or
decimal digits for numeric values. For example:

Correct fragment Incorrect change

<xs:element name="productid"

<simpleType> ...

<xs:restriction base="xs:integer"> <xs:totalDigits

<xs:totalDigits value="4"/> value="6"/>

</xs:restriction> ...

</xs:simpleType>

</xs:element>

• IP – Incorrect Pattern: incorrect definition of the sequence of characters or
numbers allowed for values. For example:

Correct fragment Incorrect change

<xs:attributename="sellerID"

use="required">

<simpleType>

<xs:restrictionbase="xs:string"> ...

<xs:pattern <xs:pattern

value="[A-Za-z0-9]{8}"/> value="[a-z0-9]{8}"/>

</xs:restriction> ...

</xs:simpleType>

</xs:attribute>

• IWSC – Incorrect White Space Characters: incorrect definition of how white
space characters must be treated. It should be preserved, removed or re-
placed. For example:

Correct fragment Incorrect change

<xs:element name="comment"

minOccurs="0">

<simpleType>

<xs:restriction base="xs:string"> ...

<xs:whiteSpace <xs:whiteSpace

value="preserve"/> value="collapse"/>

</xs:restriction> ...

</xs:simpleType>

</xs:element>

2. G2 (Group 2): Definition Constraints: faults related to the attribute
definition concerning data integrity.

• IU – Incorrect Use: the attribute is defined incorrectly as optional or obli-
gatory. For example,

Fault-Based Test of XML Schemas 541

Correct fragment Incorrect change

<xs:attribute name="sellerID" ...

use="required"> use="optional">

3. G3 (Group 3): Relationship Constraints: faults related to relationship
definition among elements.

• IO – Incorrect Occurrence: incorrect definition of the number of times a same
element may occur. This number is defined by minimum and maximum
values. The default value for minimum and maximum is 1. For exam-
ple:

Correct fragment Incorrect change

<xs:element name="SellerName" ...

type="xs:string" minOccurs="0"/> minOccurs="1"/>

• IR – Incorrect Order: incorrect definition of the order of the elements. The
order is defined through the words all, sequence and choice, that mean res-
pectively: the child elements can appear in any order, the child elements
should obey the order of its definition in the schema and only one of the
child elements can occur in the XML document. For example:

Correct fragment Incorrect change

<xs:element name="location" minOccurs="0">

<xs:complexType> ...

<xs:sequence> <xs:all>

<xs:element name="city"type="xs:string"

minOccurs="0"/> ...

<xs:element name="state"type="xs:string"

minOccurs="0"/>

<xs:element name="country" type="xs:string"

minOccurs="0"/>

</xs:sequence> </xs:all>

</xs:complexType> ...

</xs:element>

• IA – Incorrect Association: incorrect definition of an association, for exam-
ple, a generalization/specialization. An element may be based on an existing
complex element by using complex content. The complex content indicates
the intention to restrict or extend the content of a complex type. For exam-
ple:

542 M.C.F. P. Emer, I. F. Nazar, S. R. Vergilio, M. Jino

Correct fragment Incorrect change

<xs:complexType name="person">

<xs:sequence>

<xs:element name="fullname"

type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="client">

<xs:complexContent> ...

<xs:restriction <xs:extension

base="person"> base="person">

<xs:sequence> ...

<xs:element name="code" type="xs:string"/>

</xs:sequence>

</xs:restriction> </xs:extension>

</xs:complexContent> ...

</xs:complexType>

The fault classes defined represent typical faults that can be found in the
schemas. The next section describes a testing approach to generate test data capable
of detecting these specific faults.

5 THE FAULT-BASED APPROACH

The steps of the approach are presented in Figure 1 and described next. The ap-
proach is general and can be applied in the testing of different kinds of schemas; but
in this work it is illustrated with XML Schema. This kind of schema was chosen
because it is written in XML format and supports data types. In addition to that,
XML Schema has become very popular and is used extensively.

The tester provides the XML Schema to be tested and one corresponding valid
XML document. This document is named the original XML document.

The schema is represented in a formal way so that its main characteristics (ele-
ments, attributes and restrictions) can be automatically identified and associated
to possible classes of faults. In spite of this step being completely automatic, the
tester can also provide other fault associations or choose specific kinds of faults to
be considered.

By using the fault associations, alternatives to the original XML document are
generated and validated, as well as some queries that will be executed on the valid
documents generated. The results of the queries should be evaluated by the tester,
who is in fact the oracle.

In the sequence, each step is better explained and illustrated.

Fault-Based Test of XML Schemas 543

Fig. 1. Testing approach for XML Schemas

544 M.C.F. P. Emer, I. F. Nazar, S. R. Vergilio, M. Jino

5.1 Generate Formal Representation

In this section a formal representation of the schema to be tested is introduced.
It allows automatic identification of the elements, attributes, constraints and as-
sociations among them. The formal representation is employed to determine fault
associations found in the schema under test.

An XML schema S is denoted by S = (E,A,R, P) where:

• E is a finite set of elements;

• A is a finite set of attributes;

• R is a finite set of constraints concerning domain, definition, relationship, and
semantics associated to the elements and attributes;

• P is a finite set of association rules among elements, attributes and constraints.
Consider U = E ∪ A, the association rules are represented by:

– p(x, y)|x, y,∈ U ∧ x 6= y;

– p(x, r)|x ∈ U ∧ r ∈ R;

– p(x, r, SU)|x ∈ U ∧ r ∈ R ∧ SU = {u1, u2, ..., um} ⊂ U, ∀ui 6= x, 1 ≤ i ≤
m,m ≥ 1 , where m is the number of elements and attributes in SU .

Example 4 shows a fragment of the formal representation for the schema of
Example 2.

Example 4: Fragment of the formal representation for the schema of Example 2

E = {sellers, seller, sellerName, nickName, ...}

A = {selleID}

R = {type, occurs, pattern, use, ...}

P = { p1(sellers, seller), p2 (sellers, order, seller) ,

p3 (seller, sellerID), p4 (seller, sellerName), ... ,

p10 (sellerID, pattern), p11 (sellerID, use),

p12 (sellerName, type), p13 (sellerName, occurs), ...}

5.2 Identify/Select Associations

Fault associations are associations among elements or attributes of the schema under
test and the fault classes. These fault associations are identified and selected auto-
matically through elements, attributes and constraints found in the formal represen-
tation of the schema. For example, we can observe in the schema of Example 2 two
restrictions on the element sellerName related to data type and number of occur-
rences. From this information, the following associations with respective fault classes
G1-IDT and G3-IO are identified: (sellerName,G1-IDT) and (sellerName,G3-IO).

Based on the fault associations, the alternative XML documents and queries are
generated. Moreover, the tester may manually identify and select fault associations,

Fault-Based Test of XML Schemas 545

which are not found in the schema automatically. These associations are related to
absent constraint definitions1. For example, the minimum occurrence of the element
sellerName is defined in the specification as zero. Suppose that this constraint is
not in the schema, i.e. the minimum occurrence of that element was not defined in
the schema. This is an absent constraint. If the tester is not sure about it, that
is, whether this restriction should be found in the schema, he or she should add
this constraint and analyze the test results. Otherwise, he or she should correct the
schema before continuing testing.

5.3 Generate Alternatives

Alternative documents are generated by a single modification in the original XML
document and represent possible faults in the schema. The structure of the modifi-
cations is defined in a set of modification patterns related to the fault classes. The
patterns specify how the original document can be modified by inserting, removing
or changing values of elements or attributes. For example, suppose the element
sellerName},whose number of allowed characters for the content is 20, conforms
to the data specification. Considering the fault association (sellerName,G1-IL)
(Group 1 – Incorrect Length), an alternative document could be generated by in-
serting characters in the name content to check the content length.

Some generated alternatives may be invalid for the schema under test. The
alternatives are separated into valid and invalid ones. Only valid alternatives are
queried.

Table 2 shows fragments of valid and invalid alternative XML documents. The
alternative is considered invalid because in the schema under test (Example 2) the
attribute sellerId is obligatory. This information can point out a fault in the
schema. So, we can observe that in spite of the queries being executed only in valid
alternatives, invalid ones may be used by the tester during the analysis of the test
results.

5.4 Generate Queries

Queries are automatically generated based on the fault associations and query pat-
terns defined for each fault class. Example 5 contains a query pattern. It is formu-
lated in XQuery for fault class G3-IO (Group 3 – Incorrect Occurrence). The query
returns the number of occurrences of a specified element in the alternative XML
document.

1 This kind of missing constraint is analogous to the missing path error in programs.

A functionality that should be implemented by the program is missing, i.e., a path in the
program is missing. This constitutes a limitation of structural and fault-based techniques,
because they derive test data only based on the program and can not guarantee that this
kind of fault is revealed.

546 M.C.F. P. Emer, I. F. Nazar, S. R. Vergilio, M. Jino

Valid alternative Invalid alternative

... ...

<seller sellerID="ac12DD23"> <seller>

<sellerName>Eduardo</sellerName> <sellerName>Eduardo</sellerName>

<nickName>du</nickName> <nickName>du</nickName>

<glancePage>0k</glancePage> <glancePage>0k</glancePage>

<about>0k</about> <about>0k</about>

<moreAbout>0k</moreAbout> <moreAbout>0k</moreAbout>

... ...

</seller> </seller>

... ...

Table 2. Fragments of valid and invalid alternative documents

Example 5: A query pattern in XQuery

let $doc := document("[?documento?]")

for $i in $doc[?tempRaiz?]

for $j in $i[?raiz?]

let $count := count($j[?elemento?])

return <result> {$count} </result>

5.5 Execute Test Data

Test data are obtained automatically, because test data are formed by a valid al-
ternative XML document and a query to this alternative. Hence, the test data are
executed by executing the queries in the alternative XML documents. In Table 3
we present an example of test data composed by a valid alternative XML docu-
ment and a query in XQuery generated by fault association (sellerName,G3-IO)
of Example 2 according to the pattern of Example 5.

5.6 Analyze Test Results

The result obtained for the test data is the query result. In our test data exam-
ple (Table 3), the query result is equal to 0. This result needs to be analyzed by
the tester. Suppose that in the specification the element sellerName is required
to appear at least once. Then the schema under test has a fault. The element
sellerName is defined with the constraint minOccurs="0" in the schema (Exam-
ple 2), which allows a valid document without this element.

In addition to the query results, other testing results include: the number of fault
associations, valid and invalid alternative XML documents; the fault associations
(elements or attributes associated to fault classes); a description of the query results,
and the why alternative XML documents were considered invalid.

Fault-Based Test of XML Schemas 547

Valid alternative Query

...

<sellers xmlns:xsi="http:// let $doc := document

www.w3.org/2001/ ("minOccursSellerNameValid.xml")

XMLSchema-instance"> for $i in $doc//sellers

<seller sellerID="ac12DD23"> for $j in $i/seller

<nickName>du</nickName> let $count := count($j/sellerName)

<glancePage>0k</glancePage> return <result> {$count} </result>

<about>0k</about>

<moreAbout>0k</moreAbout>

...

</seller>

</sellers>

Table 3. Test data example

The test results are compared to the expected results from the specification for
the schema. Therefore, if during the process, unexpected results of a query are
obtained, the fault described by the corresponding fault class is in the schema and
must be corrected.

6 EVALUATION OF THE INTRODUCED APPROACH

To evaluate the approach introduced, we implemented a supporting tool named
XTool, and conducted two case studies – the first, to evaluate costs and efficacy; the
second, to allow a comparison with the mutation based approach.

6.1 Supporting Tool

XTool (XML Schema Testing Tool) is a tool implemented to support the testing
approach based on queries. This tool was developed by using Java. It was imple-
mented to test schemas written in XML Schemas. It uses DOM (Document Object
Model) [22] to process XML schema, manipulate and validate alternative XML do-
cuments; and XQuery through the framework Qexo [16] to query alternative XML
documents. Qexo is a free software executed on the Java platform. XTool imple-
ments all steps described in the last section.

6.2 Case Study 1

This first case study was conducted to evaluate the applicability of the approach,
and to analyze cost and efficacy, in terms of revealed faults. Because of this, we
have used schemas designed during the development of Web-based applications.
The faults reported in this study were not seeded.

548 M.C.F. P. Emer, I. F. Nazar, S. R. Vergilio, M. Jino

This case study was conducted on two Web-based systems2: library and regis-
tration system. The systems were developed by two groups of students enrolled in
a graduate course. The students’ goal was the development of a Web application
using UML models. Specifications of the systems and of the schemas were given to
each group.

The library system contains data referring to the registered users and on the
available titles in the collection. XML documents are based on two XML Schemas:
user.xsd and title.xsd. The registration system has data referring to the students
and the available courses in the program based on two XML Schemas: student.xsd
and course.xsd.

Table 4 presents characteristics such as the number of elements and attributes
found in the schemas, and the number of registers of the corresponding XML docu-
ments. Such characteristics may influence the application of the testing approaches.

Schema Elements Attributes Constraints Schema Registers

depth

User 8 0 4 3 6

Title 11 0 4 4 7

Student 10 0 4 3 5

Course 10 0 4 3 6

Table 4. Characteristics of each schema (Case Study 1)

All the schemas of Table 4 were submitted to XTool. Table 5 presents the
number of fault associations identified by XTool and selected manually by the tester.
Moreover, this table shows the number of alternative XML documents generated
and the number of queries produced by XTool, according to the fault associations
selected.

Original Fault associations Queries Alternative XML documents

schema Automatic Manual Valid Invalid

User 12 10 22 187 73

Title 16 4 20 252 138

Student 16 14 30 241 42

Course 16 10 26 283 43

Table 5. XTool results (Case Study 1)

In Table 5, we can observe that the number of fault associations is equal to
the number of queries generated for the schemas, because for each fault association
only one query is generated according to the query patterns. The alternative XML

2 These systems are the same as those used in the studies reported in [9]. In that our
previous work, the results were obtained from the manual application of the approach.
We repeated the same study now using XTool; because of this, some results, such as the
number of valid and invalid alternatives presented here, are not the same.

Fault-Based Test of XML Schemas 549

documents are generated conform to the modification pattern related to the fault
class in the fault association. Because of this, some alternatives generated can not
be in conformity with the definitions specified in the schema under test. These al-
ternatives are considered invalid. The test data composed of the valid alternative
XML documents and of the corresponding queries were executed. The results ob-
tained from the test data were compared to the specification of the expected results,
according to the data specification of each schema and system.

The case study results have shown the presence of faults in the schemas of the
XML documents. The faults are related to the incorrect definition of the data type,
occurrence, maximum and minimum value, pattern and length of some elements.
Table 6 presents the faults revealed by the test, regarding each XML schema and
type of fault.

Schema Fault Classes Revealed faults

User G1-IDT, G1-IP, G1-IL, G1-IMMV 9

Title G1-IDT, G1-IP, G1-IL 3

Student G1-IDT, G1-IP, G1-IL 12

Course G1-IDT, G1-IP, G1-IL, G3-IO 8

Total 5 32

Table 6. Revealed faults

This conducted case study provides the following implications:

1. the cost, associated with the number of queries is not so great. It does not
increase proportionally to the number of elements. However, the tester is the
only person that knows the expected results (a very common fact in any testing
process), and the present version of XTool does not offer any help in this task.
This contributed to an increase in the tester’s efforts to compare the queries’
results to those of the data specification;

2. with respect to efficacy, our testing approach by using XTool was effective in
revealing faults covered by the fault classes found in the schemas under test.

6.3 Case Study 2

The goal of the second case study was to evaluate the efficacy of our fault-based
testing approach with respect to the faults described by the mutant operators im-
plemented by XTM [10].

Mutant schemas were generated with XTM. Hence, each mutant represents
an incorrect version of the schema. XTool was then used to test each mutant and
to verify if the fault represented by it is revealed by the test data generated by the
introduced approach.

Five XML Schemas were used in the case study. These schemas were obtained
from diagrams produced by hyperModel application [4] and were called original

550 M.C.F. P. Emer, I. F. Nazar, S. R. Vergilio, M. Jino

schemas. The schemas are based on vocabularies related to a product catalog (ca-
talog.xsd) and to information used by the Amazon e-commerce service (seller.xsd,
cart.xsd, transaction.xsd, customer.xsd). A valid XML document was available for
each original schema. These documents are called original XML documents.

Table 7 presents some characteristics of the original schemas, such as: the num-
ber of elements, attributes, and constraints, the schema depth (by considering a tree
structure), and the number of registers of the original XML documents used in the
case study.

Schema Elements Attributes Constraints Schema Registers

depth

Catalog 20 0 5 5 6

Seller 21 1 8 5 1

Cart 36 0 5 5 4

Transaction 51 0 5 6 9

Customer 21 0 7 5 1

Table 7. Characteristics of the original schemas (Case Study 2)

The case study procedure and the results obtained in each step are reported next.
First, XTool was executed with the original schemas by using the corresponding
original XML document. Table 8 presents some results generated by XTool for the
original schemas.

Original Fault Queries Alternative XML documents

schema associations Valid Invalid

Catalog 28 28 345 87

Seller 45 45 174 60

Cart 71 71 235 110

Transaction 86 86 723 189

Customer 46 46 139 63

Table 8. XTool results for the original schemas (Case Study 2)

The second step was the creation of schema mutants by using XTM for the
original schemas under test. The mutation operators introduced by Franzotte and
Vergilio [10] applied in the original schemas by XTM were: DT, LO, CSP, STE, RT.
Generated mutants were syntactically validated and invalid mutants were discarded.
These mutants were validated by commonly used parsers, such as W3C XML Schema
validator [23]. Mutant schemas that are equivalent to the corresponding original one
were also discarded. Table 9 shows the number of valid mutants generated by XTM
for each original schema.

The mutant schemas generated by XTM were tested by using XTool. To do this,
valid XML documents for each valid mutant schema were generated based on corres-
ponding original XML documents. In Table 10, some results generated by XTool

Fault-Based Test of XML Schemas 551

Schema Mutation Operator Total

DT LO CSP STE RT

Catalog 56 20 20 52 39 187

Seller 55 21 20 56 27 179

Cart 27 36 36 160 32 291

Transaction 35 51 51 136 46 319

Customer 16 21 21 65 19 142

Total 189 149 148 469 163 1 118

Table 9. Number of mutants generated by XTM

are presented. The number of fault associations, valid and invalid alternative XML
documents are related to the sum of test results of all the mutant schemas generated
by each mutant operator. For example, observe that the operator STE generated
52 mutant schemas for the original schema catalog (Table 9). In Table 10, 1 456
is the sum of the fault associations identified and selected for these 52 mutants
being tested by XTool. Moreover, we can observe that the number of identified
fault associations and generated queries for each valid mutant schema were the
same as those generated for the corresponding original schema. The only exception
occurred with the mutants created by the structural operator RT, because this
operator removes elements from the original schema.

To analyze the test results, we considered the results of the original schemas as
the expected ones. In this case, the results of the mutant schemas of XTool could
be compared automatically. We consider that the fault represented by a determined
mutant is revealed if the test results of this mutant differ from the test results of the
corresponding original schema. This means that our fault-based testing approach is
also capable of revealing the faults described by the mutation operators used in the
case study. Table 11 presents the number of revealed faults in the mutant schemas.

We can see in Table 11 that our fault-based testing approach is able to reveal
all faults represented by the mutants. It is important to remark that most faults
represented by the valid mutant schemas created by XTM would not be revealed
by common parsers used to validate schemas. As a result of this case study we can
observe that the fault classes of our approach covered all faults described by the
mutant operators.

Beside this, we have observed that the fault classes can represent other types
of faults not represented by the mutant operator approach. For example, a mutant
operator to describe a fault related to definitions of pattern constraints for elements
or attributes was not proposed by the operator approach. Consider the schema of
Example 2, and suppose that in the data specification, the attribute sellerID can
contain only letters of “A” to “Z” and “a” to “z”. Hence, the schema of Example 2
is incorrect because it also allows numbers for the content of the attribute sellerID.
However, XTM does not have a mutation operator to describe that fault. Then, the
fault would not be revealed by the mutant operator approach but would be revealed
by our fault-based testing approach.

552 M.C.F. P. Emer, I. F. Nazar, S. R. Vergilio, M. Jino

Mutant Mutant Fault Alternative XML documents

schema operator associations Valid Invalid

Catalog STE 1456 17 948 4 516
CSP 560 6 564 1 740
DT 1400 16 832 4 768
RT 904 7 466 2 138
LO 560 6 564 1 740

Seller STE 2464 9 688 3 360
CSP 880 3 462 1 359
DT 2422 9 256 3 561
RT 1082 4 143 1 423
LO 924 3 633 1 260

Cart STE 11 360 13 440 2 080
CSP 2 556 2 989 433
DT 1915 2 285 370
RT 2144 2 425 419
LO 2556 2 984 428

Transaction STE 11 696 15 112 3 416
CSP 4 386 5 567 1 181
DT 3008 3 889 881
RT 3772 4 765 996
LO 4386 5 561 1 175

Customer STE 2990 3 835 845
CSP 966 1 295 329
DT 731 944 211
RT 782 1 006 224
LO 966 1 295 329

Table 10. XTool results for each generated mutant schema by mutant operators

7 CONCLUSIONS

We have presented a fault-based testing approach for XML schemas. This ap-
proach is based on introduced fault classes, which represent common faults found
in schemas. Three groups of faults were presented. They are used to establish
fault associations for a schema under testing. The associations are related to pat-

Mutant schema Revealed faults

Catalog 187
Seller 179
Cart 291
Transaction 319
Customer 142

Table 11. Number of revealed faults described by the operators

Fault-Based Test of XML Schemas 553

terns previously defined that are used to generate alternative XML documents and
queries. The results of these queries are the testing results to be analyzed by the
tester.

We have implemented a tool, named XTool, to support the approach. The tool
is fundamental to making this approach practical. This tool provides the test of
schemas written in XML Schema. However, the testing approach may be applied in
other types of schemas for XML.

We show results of two case studies conducted by using XTool. The first case
study used four schemas written by students during the development process of
Web applications. The case study results indicate that the cost and efforts related
to the use of XTool are associated with the analysis of the queries’ results by the
tester. Another result from this study is that our testing approach is applicable and
effective in revealing faults covered by the fault classes introduced.

In the second case study, our testing approach was evaluated by considering
faults described by some mutation operators found in the literature and implemented
by XTM. Differently from the first case study, the XML schemas (original schemas)
tested in this case study are used in real applications. The results of this case
study show that our testing approach is effective in revealing faults described by
the mutation operators. The faults described by all the mutants generated by XTM
were revealed by the test data generated by XTool.

An advantage of our testing approach is the automatic test data generation,
because in applying mutation testing by using XTM, the tester generates test data
manually, and needs to determine equivalent mutants.

Another advantage is that the testing approach allows the tester to identify
other kinds of faults related to missing restrictions. These missing restrictions are
related to functionalities not found in the schema.

Moreover, the fault-based approach can test schemas even if the application is
not available and the different generated data instances may also be used, in the
context of XML, to test applications that manipulate a document in XML format,
interaction among Web components and Web services.

A problem with our approach is the cost, because a great number of test data
can be generated and the testing results need to be analyzed. This is also a limita-
tion of the testing activity, the oracle can be only partially automated, and because
of this the tester plays a fundamental role. Fault-based techniques, such as muta-
tion analysis, are generally most expensive because of the great number of mutants
generated and test cases required. Some works have pointed to some strategies, such
as determination of essential operators to reduce this cost [1]. We think this kind of
strategy can also be used to refine and select the most essential fault classes related
to XML schemas.

We should conduct other evaluation studies with other kinds of schemas. These
studies can be used to refine the proposed fault classification. Other refinements
should be implemented in XTool. We are now implementing an “oracle” module to
help the tester in the analysis of the results.

554 M.C.F. P. Emer, I. F. Nazar, S. R. Vergilio, M. Jino

As mentioned above, the approach can be applied in other contexts. We intend
to investigate its application in the context of relational database schemas and Web
services.

Acknowledgements

We would like to thank André L. S. Solino, Everton F. R. Seára, Luciana Umburanas,
Rafael Caiuta and Wendel G. Pedrozo for their assistance during the case studies.

REFERENCES

[1] Barbosa, E. F.—Maldonado, J. C.—Vicenzi, A.M.R.: Towards the Deter-
mination of Sufficient Mutant Operators for C. Software Testing, Verification and

Reliability 2011, No. 11, pp. 113–136.

[2] Bulbul, H. I.—Bakir, T.: XML-Based Automatic Test Data Generation. Com-
puting and Informatics. Vol. 27, 2008, No. 4, pp. 681–698.

[3] Boag, S.—Chamberlin, D.—Fernandez, M.F. et al.: XQuery 1.0: An XML
Query Language. Working Draft, W3C World Wide Web Consortium, November
2003. Available on: http://www.w3.org/TR/2003/WD-xquery-20031112 (accessed
May 2004).

[4] Carlson, D.: HyperModel Application. 2006. Available on: http://www.

xmlmodeling.com/models/index.html (Accessed May 2006).

[5] Chamberlin, D.—Robie, J.—Florescu, D.: Quilt: An XML Language for Hete-
rogeneous Data Sources. Journal Lecture Notes in Computer Science, Vol. 1997, 2001,
available on: http://citeseer.ist.psu.edu/chamberlin00quilt.html (accessed
September 2004).

[6] Chen, H.—Ma, J.—Wang, Y.—Wu, Z.: A Survey on Semantic E-Science Appli-
cations. Computing and Informatics, Vol. 27, 2008, No. 1, pp. 5–20.

[7] DeMillo, R.A.—Lipton, R. J.—Sayward, F.G.: Hints on Test Data Selection:
Help for the Practicing Programmer. IEEE Computer, Vol. 11, 1998, No. 4, pp. 34–41.

[8] Deutsch, A.—Fernandez, M.—Florescu, D.—Levy, A.—Suciu, D.: XML-
QL: The Query Language Goes XML. 2004, available on: http://www.w3c.org/TR/
NOTE-xml-ql (Accessed September 2004).

[9] Emer, M.C.F. P.—Vergilio, S. R.—Jino, M.: A Testing Approach for XML
Schemas. In: The 29th Annual International Computer Software and Applications
Conference COMPSAC – QATWBA, July 2005.

[10] Franzotte, L.—Vergilio, S. R.: Applying Mutation Testing to XML Schemas.
In: The 18th International Conference on Software Engineering and Knowledge En-
gineering (SEKE ’06), July 2006.

[11] Katz, H. (Ed.): XQuery from the Experts-Guide to the W3C XML Query Language.
Addison-Wesley 2003.

Fault-Based Test of XML Schemas 555

[12] Lee, S. C.—Offutt, J.: Generating Test Cases for XML-based Web Component

Interaction Using Mutation Analysis. In: The 12th International Symposium on Soft-
ware Reliability Engineering, Hong Kong, China November 2001, pp. 200–209.

[13] Li, J. B.—Miller, J.: Testing the Semantics of W3C XML Schema. In:

The 29th Annual International Computer Software and Applications Conference
COMPSAC, July 2005.

[14] Offutt, J.: Quality attributes of Web software applications. IEEE Software, Vol. 19,

2002, No. 2, pp. 25–32.

[15] Offutt, J.—Xu, W.: Generating Test Cases for Web Services Using Data Pertur-
bation. In: TAV-WEB Proceedings, September 2004.

[16] Qexo: The GNU Kawa implementation of XQuery. Available on: http://www.gnu.
org/software/qexo (a ccessed October 2004).

[17] Robie, J.—Lapp, J.—Schach, J.: XML Query Language (XQL). XQL Proposal,
W3C World Wide Web Consortium 2004, available on: http://www.w3.or/TandS/

QL/QL98/pp/xql.html (accessed September 2004).

[18] Sousa, A.A.—Pereira, J. L.—Carvalho, J.A.: Querying XML Databases. In
Proc. of the XXII International Conference of the Chilean Computer Science Society,
November 2002, pp. 142–150.

[19] W3C: Extensible Markup Language (XML) 1.0 (second edition) W3C recommenda-
tion, October 2000. Available on: http://www.w3.org/XML (accessed January 2005).

[20] W3C: XML Schema recommendation. May 2001, available on: http://www.w3.org/
tr (accessed January 2005).

[21] W3C: Document Type Definition. Available on: http://www.w3schools.com/dtd/

default.asp (accessed February 2005).

[22] W3C: DOM – Document ObjectModel. 2005. Available on: http://www.w3.org/DOM
(accessed November 2005).

[23] W3C: Validator for XML Schema. Available on: http://www.w3.org/2001/03/

webdata/xsv (accessed November 2005).

[24] Wong, W.E.—Mathur, A.P.—Maldonado, J. C.: Mutation Versus All-uses:
An Empirical Evaluation of Cost, Strength and Effectiveness. In: Software Quality
and Productivity Theory, Practice, Education and Training. Hong Kong, December
1994.

[25] Xu, W.—Offutt, J.—Luo, J.: Testing Web Services by XML Perturbation. In:
The 16th IEEE International Symposium on Software Reliability Engineering Novem-
ber 2005.

556 M.C.F. P. Emer, I. F. Nazar, S. R. Vergilio, M. Jino

Maria Claudia Figueiredo Pereira Emer is currently an As-

sistant Professor at the Informatics Department of the Federal
University of Technology of Paraná (UTFPR), Brazil. She re-
ceived her Dr. Sc. degree in Electrical Engineering from State
University of Campinas (UNICAMP), Săo Paulo, Brazil, in 2007,
her M. Sc. degree in Informatics from Federal University of Pa-
raná, Brazil, in 2002, and her B. Sc. degree in Informatics from
State University of Western Paraná (UNIOESTE), Brazil, in
1997. Her research interests include software testing.

Igor Fabiano Nazar received his M. Sc. degree in Informatics

from Federal University of Paraná (UFPR), Brazil, in 2007, and
his B. Sc. degree in Informatics from State University of Ponta
Grossa (UEPG), Brazil, in 2004. His current research interests
include software testing and development methodologies.

Silvia Regina Vergilio received the M. Sc. (1991) and Dr. Sc.
(1997) degrees from University of Campinas (UNICAMP), Bra-
zil. She is currently at the Computer Science Department of the
Federal University of Paraná (UFPR), Brazil, where she has been
a faculty member since 1993. She has been involved in several
projects and her research interests are in the area of software
engineering, such as search based software engineering, software
testing, software quality and software metrics. She is a member
of ACM and SBC – the Brazilian Computer Society.

Fault-Based Test of XML Schemas 557

Mario Jino received the B. Sc. Degree In Electronic Engineer-

ing from Instituto Tecnológico de Aeronáutica (ITA), Brazil in
1967, the M. Sc. Degree in Electrical Engineering from the State
University of Campinas (UNICAMP), Brazil, in 1974, and the
Ph.D. degree in Computer Sciences from the University of Illi-
nois, Urbana-Champaign, Illinois, USA, in 1978. Since 1971 he
is a teacher at UNICAMP where he is presently a Full Professor
in the Department of Computer Engineering and Industrial Au-
tomation of the School of Electrical and Computer Engineering.
His current research interests include software quality; software

testing, debugging and maintenance; object orientation; and software metrics. He has
been involved in several technological development projects with government and private
entities, and has served as technical advisor/referee for Brazilian research funding agen-
cies as well as in several scientific conferences and symposiums. He is a member of the
IEEE Computer Society, the IEEE, the ACM, SBA – the Brazilian Society of Automatic
Control, and SBC – the Brazilian Computer Society.

