
Computing and Informatics, Vol. 30, 2011, 267–293

NEW INHERITANCE COMPLEXITY METRICS
FOR OBJECT-ORIENTED SOFTWARE SYSTEMS:
AN EVALUATION WITH WEYUKER’S PROPERTIES

Deepti Mishra

Department of Computer Engineering

Atilim University

Ankara, Turkey

e-mail: deepti@atilim.edu.tr

Manuscript received 30 July 2008; revised 12 April 2010

Communicated by David Darcy

Abstract. Two inheritance complexity metrics, one at class level CCI (Class Com-

plexity due to Inheritance) and another at program level ACI (Average Complexity
of a program due to Inheritance), have been proposed for object-oriented software
systems. These proposed metrics are evaluated with Weyuker’s properties and com-
pared with other well known object-oriented inheritance metrics. It has been found
that the proposed metrics better represent the complexity, due to inheritance, of
a class and a program. Weyuker’s property 7 (Significance of Permutation) has
received a negative response regarding its applicability to object-oriented software
metrics. It has been observed that this property is not satisfied by any of the
object-oriented inheritance metrics proposed so far. Contrary to past beliefs, the
relevance of this property to object-oriented systems has been brought out in this
paper. Examples with C++ code are also presented to support the applicability of
this property.

Keywords: Weyuker’s properties, software metrics, object-oriented systems, in-
heritance, complexity

1 INTRODUCTION

Object-oriented metrics have been successfully applied in various domains and pro-
gramming languages in countries worldwide [15]. They have consistently demon-

268 D. Mishra

strated relationships to quality factors such as costs, defects, reuse, and maintain-
ability [15] which is due to the presence of good programming style [33]. Inheritance
is one of the most powerful features of an object-oriented paradigm. Programming
without inheritance is distinctly not object-oriented programming and may be called
programming with abstract data type [35]. Many object-oriented metrics have been
proposed over the last decade and some are actually being used by a number of
organizations as part of an effort to manage quality [16]. Some of the well known
object-oriented inheritance metrics are proposed by Chidamber and Kemerer [12],
Abreu and Carapuca [2], Henderson-Sellers [22], Lorenz and Kid [29], and Li [27].
These inheritance metrics are based on

• depth of the inheritance tree

• total numbers of classes inherited in a program

• number of classes inherited (directly/indirectly) by a class

• number of classes inheriting (directly/indirectly) from a class

• number of methods inherited by a class

• number of methods overridden by a class etc.

Complexity due to inheritance is not only dependent on the number of classes in-
herited but also on the number of methods inherited and the complexity of these
methods. This is also supported by Abreu and Carapuca [2] that the greater the
inheritance relation is, the greater the number of methods a class is likely to in-
herit, making it more complex and therefore requiring more testing. A method with
a complex decision structure will be harder to test and maintain and is more er-
rorprone [2]. They suggested that complexity metrics based on the above criteria
allow to pin-point potentially troublesome classes or methods, thus helping in the
planning of the review and test efforts [2] which are fundamental components of the
software quality process [34]. There is no comprehensive object oriented inheritance
metric that takes into account all these issues. Therefore, the main motivation of
this paper is to propose inheritance metrics that takes into account not only the
number of classes inherited but also the number and complexity of the methods
inherited.

In this paper, two metrics, one at class level CCI (Class Complexity due to In-
heritance) and another at program level ACI (Average Complexity of a program due
to Inheritance), have been proposed to evaluate complexity (due to inheritance) of
object-oriented programs. These metrics will help identifying classes and programs
having high complexity. This identification can lead to either channeling more test-
ing efforts to improve quality or redesigning programs to reduce the complexity.

Any proposed metric should have sound theoretical and mathematical founda-
tion and should also be relevant to practitioners in software development organiza-
tions. Weyuker [44] and other researchers [32, 37] have proposed sets of properties
to serve as a basis for the evaluation of complexity metrics. Several researchers have
evaluated their metric suites against Weyuker’s properties [2, 11, 12, 19, 39, 40]

New Inheritance Complexity Metrics for OO Software Systems 269

while others are skeptical about these properties [18, 24, 45]. Chidamber and Ke-
merer [12] proposed a metric suite for object oriented design and also evaluated it
by Weyuker’s set of properties. They claimed that Weyuker’s property 7 should
not be considered for object oriented metrics. Weyuker’s property 7 states that
changing the order of statements may affect the complexity of the program. They
further supported their argument by stating that “Cherniavsky and Smith speci-
fically suggest that this property is not appropriate for OOD metrics because the
rationales used may be applicable only to traditional progamming” [12, p. 481]. In
fact, Cherniavsky and Smith [11] stated this not specifically for property 7 but for
all 9 Weyuker’s properties that many of the rationale used for the properties apply
only to traditional programming languages and object oriented programming lan-
guages will require a different set of properties [11, p. 638]. They concluded that,
at best, satisfying all the nine properties is a necessary, but not sufficient, condition
for a good complexity measure. The following reason has been given to support the
non applicability of property 7 for object-oriented systems: In OOD, a class is an
abstraction of the problem space, and the order of statements within the class defi-
nition has no impact on its eventual execution and use [12]. For example, changing
the order in which methods are declared does not affect the order in which they
are executed, since methods are triggered by the receipt of different messages from
other objects [12]. We agree with this argument as far as order of the statements
within a class are concerned. However, methods are parts of a class and the order of
statements within a method will affect the execution and complexity of the method
which will eventually affect the complexity of the class as a whole.

This paper is organized as follows: In the next section, related work is described.
Two new inheritance complexity metrics and one method complexity metric have
been proposed in Section 3. These proposed inheritance complexity metrics are
evaluated against Weyuker’s properties in Section 4. In Section 5, proposed metrics
are compared with some well known inheritance metrics for object-oriented systems.
Finally, the paper concludes in Section 6.

2 LITERATURE SURVEY

Many metrics have been proposed to evaluate the quality of object-oriented systems
which can aid developers in understanding design complexity, in detecting design
flaws, and in predicting certain quality outcomes such as software defects, testing
and maintenance efforts [12, 22, 30]. Several empirical validation studies [1, 3, 38,
13, 26, 17, 5] of Chidamber and Kemerer’s metrics suite [12] as well as Abreu and
Carapuca’s MOOD (Metrics for Object-Oriented Design) metric set [2] suggest that
these metrics are important indicators of external quality factors. There is evidence
that design metrics are related to a variety of quality characteristics of software
products such as reliability, testability and maintainability [42].

It is not possible to conduct an exhaustive inspection of code or a thorough
testing of all modules due to lack of resources such as people and time. Therefore,

270 D. Mishra

available resources for quality control must be cleverly applied to cover at least
20% of the total modules that usually stand for more than 80% of the faults (the
“old” Paretto Law) [23]. Experimental data confirms that the phenomenon of defect
clustering still holds for object-oriented systems [43]. Complexity metrics can help
finding those 20% modules [2]. Complexity metric for a program code is a well
known metric since it is a good indicator of a well-designed, understandable, and
easy to modify program. Inheritance is one of the key features of object-oriented
paradigm as it promotes reuse. Many studies [4, 10, 12, 28] have claimed that
the use of inheritance reduces the amount of software maintenance necessary and
eases the burden of testing. The reuse of software through inheritance is claimed to
produce more maintainable, understandable and reliable software [5, 6, 7]; but Har-
rison, Counsell and Nithi [21] contradict this through their experimental assessment
that systems without inheritance are easier to modify than corresponding systems
containing three or five levels of inheritance. Also, they found [21] that systems
without inheritance are easier to understand than corresponding systems contain-
ing three levels of inheritance. Lattanzi and Henry [25] found in their comparative
study that inheritance relationship seems to be detrimental to software productivi-
ty. They found a correlation between reuse through inheritance and the number of
integration errors. Ordinarily, it is agreed that the deeper the inheritance hierarchy,
the better the reusability of classes, but the higher the coupling between inherited
classes, the harder it is to maintain the system [41]. The designers may tend to
keep the inheritance hierarchies shallow, forsaking reusability through inheritance
for simplicity of understanding [12]. Therefore, it was concluded that deriving new
classes from existing library classes makes the system harder to integrate correctly.
The obvious reason is that to inherit a new class, the parent’s implementation must
be, at least partially, understood as well as any of the parent’s ancestors. Although
inheritance within an object-oriented system is a great way to enhance the reada-
bility and internal organization of a large program, inheriting from classes designed
and written by other programmers (library classes) can prove too costly in terms of
time and effort required to understand the implementation of the library classes.

3 PROPOSED INHERITANCE METRICS

Twometrics for inheritance, Class Complexity due to Inheritance (CCI) and Average
Complexity of a program due to Inheritance (ACI) are proposed.

Also, one more metric is proposed to calculate the complexity of a method (MC)
which is based on McCabe’s cyclomatic complexity [31] but it also takes into account
the depth of control structures. McCabe’s cyclomatic complexity of two programs,
one having two sequential loops and the other having same loops nested, is the same.
This is not an ideal situation because the complexity of a program increases with
nesting. This is also supported by Piwowarski [36].

New Inheritance Complexity Metrics for OO Software Systems 271

Method Complexity (MC)

MC = P +D + 1, (1)

where

• P is the number of predicates in a method,

• D is the maximum depth of control structures in a method; if there is no
nested control structures then D = 0; if there is one inside another then
D = 1 and so on.

Class Complexity due to Inheritance (CCI)

CCIi =
k
∑

ifrom=1

CCIifrom +
l

∑

j=1

MCj, (2)

where

• CCIi is the complexity of an ith class due to inheritance,

• k is the number of classes, ith class is inheriting,

• CCIifrom is the complexity of a parent class, ith class is inheriting,

• l is the number of methods in ith class,

• MCj is the complexity of jth method in ith class.

Average Complexity of a program due to Inheritance (ACI)

ACI =

∑n
i=1

CCIi
n

, (3)

where

• n is the total number of classes in the program,

• CCIi is the complexity, due to inheritance, of ith class in the program.

Inheritance metrics should not only consider the number of classes a particular
class is inheriting but also the complexity of the inherited classes. Complexity of an
inherited class can be calculated by considering the number of methods and com-
plexities of these methods. However, constructors and destructors are not inherited
but the default constructor and destructor of the base class is always called whenever
an object of the derived class is created or destroyed. Also, other constructors of the
base class can be called in the constructor of the derived class. So, constructors and
destructors are included in the calculations. It should also be considered whether
a class is inherited as it is or some of the methods are overridden. This can be taken
into account by adding the method complexities of the inheriting class. Consider
program 1 and program 2 given in the appendix. Let us just consider the base class
Person and one derived class Employee in program 1. Similarly, let us just consider

272 D. Mishra

base class Shape and one derived class Triangle in program 2. Now, both these
programs are similar as both have one base class and one derived class. Complexity
due to inheritance is as follows:

Program 1: Complexity of base class Person can be calculated as

CCIi =
k
∑

ifrom=1

CCIifrom +
l

∑

j=1

MCj

= 0 + (MC1 +MC2 +MC3)

= 3

k
∑

ifrom=1

CCIifrom = 0 as base class is not inheriting any class

 .

Complexity of derived class Employee can be calculated as

CCIi =
k
∑

ifrom=1

CCIifrom +
l

∑

j=1

MCj

= 3 + (MC1 +MC2 +MC3)

= 3 + 3 = 6

k
∑

ifrom=1

CCIifrom = 3 as it is only inheriting class Person with CCI = 3

 .

Average Complexity of full program due to inheritance (ACI)

=

∑n
i=1

CCIi
n

= (3 + 6)/2 = 9/2 = 4.5.

Program 2: Complexity of base class Shape can be calculated as

CCIi =
k
∑

ifrom=1

CCIifrom +
l

∑

j=1

MCj

= 0 + (MC1 +MC2 +MC3 +MC4 +MC5

+MC6 +MC7 +MC8 +MC9 +MC10)

= 10

k
∑

ifrom=1

CCIifrom = 0 as base class is not inheriting any class

 .

Complexity of derived class Triangle can be calculated as

CCIi =
k
∑

ifrom=1

CCIifrom +
l

∑

j=1

MCj

New Inheritance Complexity Metrics for OO Software Systems 273

= 10 + (MC1 +MC2 +MC3 +MC4)

= 10 + 4 = 14

k
∑

ifrom=1

CCIifrom = 10 as it is only inheriting class Shape with CCI = 10

 .

Average Complexity of full program due to inheritance (ACI)

=

∑n
i=1

CCIi
n

= (10 + 14)/2 = 24/2 = 12.

If the inheritance metric only considers the number of classes inherited then
it gives value 1 for both examples; but if the number of classes inherited, the
complexity of the inherited classes as well as the complexity of the derived class
are all taken into consideration then the value of inheritance metric for program 1
and program 2 are 4.5 and 12, respectively. These values are more reasonable as
program 1 is simpler than program 2 in terms of inheritance. The derived class
is inheriting fewer methods from base class in program 1 whereas the derived
class is inheriting more methods in program 2.

4 EVALUATION OF PROPOSED METRICS
BY WEYUKER’S PROPERTIES

Weyuker [44] has proposed a set of properties of syntactic software complexity mea-
sures to serve as a basis for the evaluation of such measures. These types of forma-
lized evaluations help clarify the strengths and weaknesses of existing and proposed
complexity measures, aid in the selection of appropriate measures and ultimately
lead to the definition of a better measure by emphasizing important properties [44].
A good complexity measure should satisfy most of Weyuker’s properties.

Property 1: Non-coarseness – (∃P)(∃Q)(|P | 6= |Q|) where P and Q are two dif-
ferent classes.

This means different classes should have different values for metrics, as far as
possible. This property is satisfied by proposed metrics CCI and ACI.

Class Employee (program 1) and class Rectangle (program 2) have different CCI
values 6 and 14, respectively, although they both are inheriting just one class
and their level is also the same. Also, the ACI for two programs (program 1 has
ACI = 8.67 and program 2 has ACI = 13.5) is different.

Property 2: Granularity – Let c be a non-negative number. Then there are only
finitely many programs of complexity c.

This property states that there will be a finite number of cases having the same
metric value. Since the universe of discourse deals with at most a finite set of
applications, each of which has a finite number of classes, this property will be

274 D. Mishra

met by any metric measured at the class level [2]. Therefore, this property is sa-
tisfied by proposed class level metric CCI. The other proposed metric at program
level (ACI) is the sum of the complexities of all classes in a program divided by
the number of classes in that program. Programs are made by combining classes
and there are a finite number of classes of the same complexity. Therefore, ACI
satisfies this property.

Property 3: Non-uniqueness – There are distinct classes P and Q such that |P | =
|Q|.
This means that two different classes may have the same metric value. This
property is satisfied by proposed metrics CCI and ACI. Class Sal Emp (pro-
gram 1) and class Shape (program 2) have the same CCI = 10. Also, classes
within a program can have the same complexity, e.g. class Employee and class
Student both have CCI = 6 (program 1). Moreover, the ACI for two programs
can also be the same.

Property 4: Design Implication – (∃P)(∃Q)(P ≡ Q and |P | 6= |Q|).
This means that if two designers implement the same class or program, the
metric values need not be identical. This property is satisfied by proposed
metrics CCI and ACI. CCI depends on the internal structure of the class such
as the number and complexity of inherited classes, number of methods within the
class and the complexity of each method. Even if a class is producing the same
output, its internal structure may be different when implemented by two different
people and therefore will produce a different CCI value. Similarly at program
level, ACI gives different values depending on the internal structure of a program
such as the number of classes, the complexities of these classes, the type of
inheritance, the level of inheritance, etc. Both these metrics are implementation
based so their value will be different for different implementations even if they
provide the same functionality.

Property 5: Monotonicity – (∃P)(∃Q)(|P | ≤ |P ;Q| & |Q| ≤ |P ;Q|).
This means that if we concatenate two classes, the combined metric value must
be greater than (or at least equal to) the greatest value from the two base classes.
When any two classes P and Q are combined, there are three possible cases:

1. When P and Q are siblings.

Consider program 1, class Employee and class Student are siblings of each
other and both have CCI = 6. If these two classes are combined, there are
two ways of combination:

(a) Keep class Employee methods (get info(), put info()) and class Student
methods (get info(), put info()) as they are. In this case, the combined
class (P +Q) will have four methods of complexity 1 each and also their
constructors. Therefore, CCI(P + Q) = Complexity of inherited class
Person + complexities of all methods = 3 + 6 = 9 which is greater than
both CCI(P) and CCI(Q).

New Inheritance Complexity Metrics for OO Software Systems 275

(b) Combine Employee methods (get info(), put info()) and class Student
methods (get info(), put info()) as one single get info() and put info()
method with one “if .. else”, so that the method can selectively get or
put either employee or student information. In this case, the combined
class (P +Q) will have two methods of complexity; 2 each and also their
constructors. Therefore CCI(P + Q) = 3 + 6 = 9 which is greater than
both CCI(P) and CCI(Q).

2. When one is the child of another.

Consider program 1, Class Person (CCI = 3) is the parent of the class
Employee (CCI = 6). If we combine these two classes, then there are again
the two possibilities mentioned above as both classes have methods get info()
and put info().

In case (a), combined class (P + Q) will have four methods of complexity;
1 each and also their constructors. Therefore CCI(P +Q) = 6 which is equal
to CCI(Q).

In case (b), combined class (P+Q) will have two methods (namely get info(),
put info()) of complexity; 2 each and also their constructors. Therefore
CCI(P +Q) = 6 which is equal to CCI(Q).

3. When P and Q are neither children nor siblings of each other.

Consider program 1, class Student (CCI = 6) and class Sal Emp (CCI = 10).
If these two classes are combined, then the right place for (P + Q) is the
current place of class Sal Emp so that it can inherit from both class Person
as well as class Employee. These classes can be combined in two ways:

(a) Either keep class Sal Emp methods (get info(), put info()) and class Stu-
dent methods (get info(), put info()) as they are. In this case, the com-
bined class (P + Q) will have four methods and also their constructors.
Therefore, CCI(P + Q) = Complexity of inherited class Employee +
complexities of all methods = 6 + 7 = 13 which is greater than both
CCI(P) and CCI(Q).

(b) Combine Sal Emp methods (get info(), put info()) and class Student
methods (get info(), put info()) as one single get info(), put info() me-
thod with one “if .. else”, so that the method can selectively get or put
either Sal Emp or Student information. In this case, combined class
(P +Q) will have two methods get info() with CCI value 4 (P +D+1 =
2+1+1 = 4) and put info() with CCI value 2 (P+D+1 = 1+0+1 = 2)
each and also their constructors. Therefore CCI(P + Q) = 6 + 8 = 14
which is greater than both CCI(P) and CCI(Q).

Based on the above explanations, this property is satisfied by proposed metric
CCI.

This property can also be satisfied by program level metric ACI by considering
two programs and then combining them.

276 D. Mishra

Property 6: Non-equivalence of Interaction –

(a) (∃P)(∃Q)(∃R)(|P | = |Q| & |P ;R| 6= |Q;R|)
(b) (∃P)(∃Q)(∃R)(|P | = |Q| & |R;P | 6= |R;Q|)

This means that if two classes, P and Q, have equal metric values, then combin-
ing a third class, say R, with each of them may produce different metric values
(i.e., concatenation of P and R need not be equal to concatenation of Q and R,
as far as metrics are concerned).

This property is satisfied by both proposed metrics CCI and ACI. Consider
program 2, class Triangle and class Rectangle both have CCI = 14. If we
add class NmTriangle to both of them, Class Triangle CCI will be 16, whereas
class Rectangle CCI will be 15. This is because class NmTriangle has a method
displayName() which is already there in class Rectangle whereas it is not present
in class Triangle. So, class Triangle will have displayName() method whereas
class Rectangle will not have this method as it is already present. The same can
be proven for metric ACI as adding a new program to two existing programs
will have a different effect.

Property 7: Significance of Permutation – There are program bodies P and Q such
that Q is formed by permuting the order of the statements of P , and |P | 6= |Q|.
This means that if two classes differ only in the ordering of elements within
them, it cannot be assumed that the metric values will be identical.

Consider program 1 (ACI = 8.67), class Hour Emp (CCI = 14) has a method
get info() (MC2 = P +D+1 = 4+1+1 = 6) that contains a “nested if .. else”
with depth D = 1. If we change the order of the statement, i.e. 2 sequential
“if .. else” are used instead of one “nested if .. else” then get info() method
complexity will be MC2 = P +D + 1 = 4 + 0 + 1 = 5.

So, class Hour Emp CCI can be calculated as

k
∑

ifrom=1

CCIifrom +
l

∑

j=1

MCj

= 6 + (MC1 +MC2 +MC3)

= 6 + (1 + 5 + 1) = 6 + 7 = 13

which is now different than the previous value 14.

As class Hour Emp CCI has changed so ACI (Average complexity of program
due to inheritance) will also change. So, ACI will be (3+6+6+10+13+13)/6 =
51/6 = 8.5.

This property is satisfied by proposed metric CCI as well as ACI.

Property 8: No change on renaming – If P is a renaming of Q, then |P | = |Q|.
This property is satisfied by proposed metric CCI as well as ACI as both are
implementation based. Changing the name of class will not affect CCI and
therefore ACI will not be affected too.

New Inheritance Complexity Metrics for OO Software Systems 277

Property 9: Interaction Complexity – This means that the complexity of two in-
teracting classes will be greater than (or at least equal to) the sum of the metrics
of individual classes. (∃P)(∃Q)(|P | + |Q| < |P ;Q|) This property is satisfied
by proposed metric ACI. We will consider a program having two classes P
and Q. We will consider ACI values before and after the composition of P
and Q. When any two classes P and Q are combined, there are three possible
cases:

1. When P and Q are siblings.

Consider program 1 (ACI = 8.67), class Employee and class Student are sib-
lings of each other and both have CCI = 6. If these two classes are combined,
there are two ways for combination:

(a) Keep class Employee methods (get info(), put info()) and class Student
methods (get info(), put info()) as they are. In this case, combined class
(P + Q) will have four methods of complexity; 1 each and also their
constructors. Therefore, CCI(P + Q) = Complexity of inherited class
Person + complexities of all methods = 3 + 6 = 9.

(b) Combine Employee methods (get info(), put info()) and class Student
methods (get info(), put info()) as one single get info() and put info()
methods with one “if .. else”, so that the method can selectively get
or put either employee or student information. In this case, combined
class (P +Q) will have two methods of complexity; 2 each and also their
constructors. Therefore CCI(P +Q) = 3 + 6 = 9.
Now, there are 5 classes left instead of 6, i.e. Person, class (P + Q),
Sal Emp, Hour Emp,Comm Emp. But the CCI value of classes Sal Emp,
Hour Emp, Comm Emp will change now because they are now inherit-
ing class (P + Q) instead of class Employee. Changed value of CCI
for Sal Emp, Hour Emp, Comm Emp is 13, 17, and 16, respectively.
Therefore, ACI after composition of P and Q = (3 + 9 + 13 + 17 +
16)/5 = 11.6 which is greater than ACI (8.67) before composition of P
and Q.

2. When one is child of another.

Consider program 1 (ACI = 8.67), Class Person (CCI = 3) is parent of class
Employee (CCI = 6). If we combine these two classes, then there are again
the two possibilities mentioned above as both classes have methods get info()
and put info().

In case (a), combined class (P + Q) will have four methods of complexity;
1 each and also their constructors. Therefore, CCI(P +Q) = 6.

In case (b), combined class (P+Q) will have two methods (namely get info(),
put info()) of complexity; 2 each and also their constructors. Therefore
CCI(P +Q) = 6.

278 D. Mishra

Now, there are 5 classes left instead of 6 i.e. class (P+Q), Student, Sal Emp,
Hour Emp, Comm Emp; but the CCI value of Student will change now be-
cause it is now inheriting class (P + Q) instead of class Employee. The
changed value of CCI for Student is 9. Therefore, ACI after composition
of P and Q = (6 + 9 + 10 + 14 + 13)/5 = 10.4 which is greater than ACI
(8.67) before composition of P and Q.

3. When P and Q are neither children nor siblings of each other.

Consider program 1 (ACI = 8.67), class Student (CCI = 6) and class
Sal Emp (CCI = 10). If these two classes are combined, then the right
place for (P + Q) is the current place of class Sal Emp so that it can in-
herit from both class Person as well as class Employee. These classes can be
combined in two ways:

(a) Keep class Sal Emp methods (get info(), put info()) and class Student
methods (get info(),put info()) as they are. In this case, combined class
(P + Q) will have four methods and also their constructors. Therefore,
CCI(P +Q) = Complexity of inherited class Employee+ complexities of
all methods = 6 + 7 = 13.
Now, there are 5 classes left instead of 6, i.e. Person, Employee, class
(P +Q), Hour Emp,Comm Emp. Therefore, ACI after composition of P
and Q = (3+ 6+ 13+ 14+ 13)/5 = 9.8 which is greater than ACI (8.67)
before composition of P and Q.

(b) Combine Sal Emp methods (get info(), put info()) and class Student
methods (get info(), put info()) as one single get info(), put info() me-
thods with one “if .. else”, so that the method can selectively get or
put either Sal Emp or Student information. In this case, combined class
(P +Q) will have two methods get info() with CCI value 4 (P +D+1 =
2+1+1 = 4) and put info() with CCI value 2 (P+D+1 = 1+0+1 = 2)
each and also their constructors. Therefore CCI(P + Q) = 6 + 8 = 14.
Now, there are 5 classes left instead of 6, i.e. Person, Employee, class
(P + Q), Hour Emp, Comm Emp. Therefore, ACI after composition of
P and Q = (3+6+14+14+13)/5 = 10 which is greater than ACI (8.67)
before composition of P and Q.

Therefore, we can say that this property is satisfied by proposed metric ACI.

5 COMPARISON WITH OTHER INHERITANCE METRICS

Some well known inheritance metrics are summarized in Table 1. Metrics which
are validated theoretically and most importantly empirically are considered in this
study. Chidamber and Kemerer’s metrics suite [12] as well as Abreu and Carapuca’s
MOOD (Metrics for Object-Oriented Design) [2] are probably most widely referenced
set of object oriented metrics. Some of the studies which validated the metrics
considered in this study are: Chidamber and Kemerer metrics suite [12, 5], Abreu

New Inheritance Complexity Metrics for OO Software Systems 279

and Carapuca [1, 20], Henderson-Sellers [41, 14, 8, 9], Lorenz and Kid [8, 9], and
Li [27, 28]. These metrics values are calculated for two programs (attached in the
appendix) and the result is presented in Tables 2 and 3.

Metric Description

Inheritance Metrics by Chidamber and Kemerer [12]

Depth of Inheritance
Tree (DIT)

Depth of inheritance of the class is the DIT metric for the
class. In cases involving multiple inheritance, the DIT will
be the maximum length from the node to the root of the
tree.

Number of Children
(NOC)

Number of immediate subclasses subordinated to a class in
the class inheritance hierarchy is the the NOC for that class.

Inheritance Metrics by Abreu and Carapuca [2]

Total Children Count
(TCC)

Number of classes that inherit directly is the Total Children
Count TCC of that class.

Total Progeny Count
(TPC)

Number of classes that inherit directly or indirectly from
a class is the Total Progeny Count (TPC) of that class.

Total Parent Count

(TPAC)

The number of super classes from which a class inherits di-

rectly is the Total Parent Count (TPAC) of that class.

Total Ascendancy
Count (TAC)

The number of super classes from which a class inherits di-
rectly or indirectly is the Total Ascendancy Count (TAC) of
that class.

Total length of inheri-
tance chain (TLI)

Total number of edges in the inheritance hierarchy graph.

Inheritance Metrics by Henderson-Sellers [22]

Average Inheritance
Depth (AID)

AID = Sum of depth of each class/Number of classes.

Inheritance Metrics by Lorenz and Kid [29]

Number of Methods
Inherited (NMI)

Number of methods inherited by a subclass.

Number of Methods
Overridden (NMO)

Number of methods overridden by a subclass. superclass.

Number of New
Methods (NNA)

Number of new methods in a subclass.

Inheritance Metrics by Li [27]

Number of Ancestor
Classes (NAC)

Total number of ancestor classes from which a class inherits
is the NAC of that class.

Number of Descendent
Classes (NDC)

Total number of Descendent classes (subclasses) of a class is
the NDC of that class.

Table 1. Inheritance metrics

All metrics except TLI, AID and ACI are class level metrics. They may be used
to determine the complexity of a class whereas TLI, AID and ACI can be used to
determine the complexity of a program or module (consisting of many classes) as
a whole.

280 D. Mishra

5.1 Comparison of Class Level Metrics with Proposed Metric CCI

It is obvious that classes at lower level in the hierarchy in an inheritance tree are
more complex because understanding these classes requires understanding, at least
partially, parent’s implementation as well as any of the parent’s ancestors. In this
case, DIT, TAC, NMI, NAC and the proposed class level metric CCI are more
suitable to determine the complexity of a class since these metrics values are higher
for lower level classes as given in Table 2. What makes the proposed metric different
from DIT, TAC, and NAC is that values of DIT, TAC, and NAC for class Employee
(program 1) and class Triangle (program 2) are the same as they are both inheriting
from one class; but their parent classes are different in complexity and they are
inheriting different methods in terms of number and complexity, so their values
should be different. NMI and CCI values are different for class Employee and class
Triangle; but NMI only considers the number of methods inherited by a class. It does
not consider the complexity of the methods inherited. So, NMI value for two classes
inheriting the same number of methods will be the same but their CCI values will
be different if the complexities of the inherited methods are different. So, proposed
metric CCI better represents the complexity of a class due to inheritance.

Pr. Class D N T T T T N N N N N C
I O C P P A A D M M N C
T C C C A C C C I O A I

C

1 Person 0 2 2 5 0 0 0 5 N.A. N.A. N.A. 3

Employee 1 3 3 3 1 1 1 3 2 2 0 6

Student 1 0 0 0 1 1 1 0 2 2 0 6

Sal Emp 2 0 0 0 1 2 2 0 4 2 0 10

Comm Emp 2 0 0 0 1 2 2 0 4 2 0 13

Hour Emp 2 0 0 0 1 2 2 0 4 2 0 14

2 Shape 0 2 2 3 0 0 0 3 N.A. N.A. N.A 10

Triangle 1 1 1 1 1 1 1 1 7 1 1 14

Rectangle 1 0 0 0 1 1 1 0 7 1 1 14

NmTriangle 2 0 0 0 1 2 2 0 9 0 1 16

Table 2. Class level inheritance metrics values for program 1 and program 2

5.2 Comparison of program level metric AID with proposed metric ACI

According to Table 3, TLI, AID and the proposed metric ACI values are contra-
dictory. TLI considers the numbers of classes inherited whereas AID just considers
the average number of classes inherited in an inheritance tree. These metrics do not
consider how complex the inherited classes are, how many methods are inherited or
how complex the inherited methods are. As the number of classes inherited is more
in program 1 than in program 2, TLI and AID values for program 1 are higher.

New Inheritance Complexity Metrics for OO Software Systems 281

Although the number of classes inherited is less in program 2, the complexity of the
inherited classes is higher in program 2. The inherited classes in program 2 have
more methods than the inherited classes in program 1. So, the complexity, due to
inheritance, of program 2 is higher than that of program 1 and therefore ACI better
represents the complexity (due to inheritance) of a program.

Program TLI AID ACI

1 5 1.33 8.67

2 3 1.00 13.5

Table 3. Program level inheritance metrics values for program 1 and program 2

5.3 Comparison with Respect to Weyuker’s Properties

A good complexity measure should satisfy most of Weyuker’s properties. Some of
the object oriented inheritance metrics (DIT, NOC, TPC, TPAC, TAC) were already
evaluated with Weyuker’s properties. Other metrics (TCC, TLI, AID, NMI, NMO,
NNA, NAC, NDC) are evaluated against all 9 Weyuker’s properties during this
study. The result is summarized in Table 4. It was found that none of the inheritance
metrics except proposed metrics CCI and ACI satisfies Weyuker’s property 7. Also,
Weyuker’s property 9 is only satisfied by ACI metric.

Property D N T T T T N N N N N C T A A
I O C P P A A D M M N C L I C
T C C C A C C C I O A I I D I

C

1
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

2
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

3
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

4
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

5 × √ √ × √ × × × × √ √ √ ×1 ×1
√1

6
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

7 × × × × × × × × × × × √ × × √

8
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

9 × × × × × × × × × × × × × × √

Table 4. Evaluation of inheritance metrics against Weyuker’s properties

√
indicates that the metric satisfies the corresponding property.

× indicates that the metric does not satisfy the corresponding property.

1 for calculations: individual P and Q inheritance depth is considered against (P +Q)
inheritance depth in 3 different cases: a) P and Q are siblings, b) one is the child of
another, c) they are neither siblings not child to each other.

282 D. Mishra

6 CONCLUSIONS

Two new object-oriented inheritance complexity metrics CCI (Class Complexity due
to Inheritance) and ACI (Average Complexity of a program due to Inheritance) have
been proposed in this paper. These proposed metrics are evaluated with Weyuker’s
properties and also compared with other well known object-oriented inheritance
metrics. It has been found that the proposed metrics CCI and ACI better represent
the complexity of a class and program due to inheritance.

It has been mentioned many times that Weyuker’s property 7 is not applicable
for object-oriented systems. Weyuker’s property 7 states that changing the order of
statements may affect the complexity of the program. Both proposed object-oriented
inheritance complexity metrics CCI (Class Complexity due to Inheritance) and ACI
(Average Complexity of a program due to Inheritance) satisfy Weyuker’s property 7.
This has also been illustrated by help of examples. It has been found that class
level inheritance metric CCI satisfies all Weyuker’s properties except property 9,
whereas program level inheritance metric ACI satisfies all 9 of Weyuker’s properties
(including property 7). To the best of my knowledge, ACI (Average Complexity of
a program due to Inheritance) is the only metric based on inheritance of an object-
oriented program that satisfies all 9 Weyuker’s properties.

Classes with higher CCI values are complex and therefore can be considered to
be more error prone. So, testing efforts should be directed more towards these classes
than classes with lower CCI values. Similarly, programs with higher ACI values have
complex design so these programs will require more efforts during testing, specifically
integration testing. As a future work, these metrics can be used for fault prediction
in a quantitative way. It is also planned to develop a tool to calculate the proposed
metrics.

7 APPENDICES

Program 1

#include<conio.h>

#include<stdio.h>

#include<iostream.h>

//base class Person

class Person

{

char name[50],gen[6];

int age;

public:

Person(){} //MC1 = 1

void get_info();

void put_info();

};

New Inheritance Complexity Metrics for OO Software Systems 283

Person

StudentEmployee

Sal_Emp

CCIi = 6 + 4

 = 10

CCIi= 3 + 3 = 6CCIi= 3 + 3 = 6

CCIi= 3

ACI

= (3+6+6+10+14+13) / 6

 = 8.67

Hour_Emp Comm_Emp

CCIi = 6 + 8

 = 14

CCIi = 6 + 7

 = 13

Fig. 1. Inheritance structure of program 1

void Person::get_info()

{

cout<<"Enter the name of person?";

gets(name);

cout<<"Enter the gender of person?"; //MC2 = 1

cin>>gen;

cout<<"Enter the age of person?";

cin>>age;

}

void Person::put_info()

{

cout<<name<<"\t";

cout<<gen<<"\t"; //MC3 = 1

cout<<age<<"\t";

}

//**

// employee class derived from person

class Employee:public Person

{

int empid;

char des[20];

public:

Employee(){} //MC1 = 1

void get_info();

void put_info();

284 D. Mishra

};

void Employee::get_info()

{

Person::get_info();

cout<<"Enter emp id?"; //MC2 = 1

cin>>empid;

cout<<"Enter designation?";

gets(des);

}

void Employee::put_info()

{

Person::put_info();

cout<<empid<<"\t"; //MC3 = 1

cout<<des<<"\n";

}

//***

//Salary_Emp class derived from Employee

class Sal_Emp: public Employee

{

double salary;

public:

Sal_Emp(){} //MC1 = 1

void get_info();

void put_info();

};

void Sal_Emp::get_info()

{

Employee::get_info();

cout<<"Enter salary"; //MC2 = 2

cin>>salary;

if (salary < 0.0)

salary = 0.0;

}

void Sal_Emp::put_info()

{

Employee::put_info(); //MC3 = 1

cout<<salary<<"\n";

}

//**

//Hourly_Emp class derived from Employee

class Hour_Emp: public Employee

{

int hoursWorked;

double wage;

New Inheritance Complexity Metrics for OO Software Systems 285

double earning;

public:

Hour_Emp(){} //MC1 = 1

void get_info();

void put_info();

};

void Hour_Emp:: get_info()

{

Employee::get_info();

cout<<"Enter number of hours worked";

cin>>hoursWorked;

cout<<"Enter hourly wage";

cin>>wage;

if (hoursWorked >= 0.0)

{

if (hoursWorked <= 168.0)

hoursWorked = hoursWorked;

else

hoursWorked = 0.0;

}

else

hoursWorked = 0.0;

if (wage < 0.0) //MC2 = P+D+1

wage = 0.0; // = 4+1+1= 6

if (hoursWorked <= 40.0)

earning = hoursWorked*wage;

else

earning =(40*wage)+((hoursWorked-40)*wage*1.5);

}

void Hour_Emp::put_info()

{

Employee::put_info();

cout<<hoursWorked<<"\t"; //MC3 = 1

cout<<wage<<"\t";

cout<<earning<<"\n";

}

//**

//Commission_Emp class derived from Employee

class Comm_Emp: public Employee

{

int sale;

double commRate;

double earning;

public:

286 D. Mishra

Comm_Emp(){} //MC1 = 1

void get_info();

void put_info();

};

void Comm_Emp::get_info()

{

Employee::get_info();

cout<<"Enter gross sale amount";

cin>>sale;

cout<<"Enter commission rate";

cin>>commRate;

if (sale < 0.0)

sale = 0.0;

if (commRate > 0.0) //MC2 = P+D+1

{ // = 3+1+1=5

if (commRate < 1.0)

commRate = commRate;

else

commRate = 0.0;

}

else

commRate = 0.0;

earning = sale*commRate;

}

void Comm_Emp::put_info()

{

Employee::put_info(); //MC3 = 1

cout<<sale<<"\t";

cout<<CommRate<<"\t";

cout<<earning<<"\n";

}

//**

//Student class derived from Person

class Student:public Person

{

int studid;

char class_name[10];

public:

Student() {} //MC1 = 1

void get_info();

void put_info();

};

void Student::get_info()

{

New Inheritance Complexity Metrics for OO Software Systems 287

Person::get_info();

cout<<"Enter stud id?";

cin>>studid;

cout<<"enter student class name?"; //MC2 = 1

gets(class_name);

}

void Student::put_info()

{

Person::put_info();

cout<<studid<<"\t"; //MC3 = 1

cout<<class_name<<"\n";

}

void main()

{

clrscr();

Employee e;

cout<<"\n\nENTER EMPLOYEE INFORMATION\n\n";

e.get_info();

Student p;

cout<<"\n\nENTER STUDENT INFORMATION \n\n";

p.get_info();

cout<<"\n NAME\tGENDER\tAGE\tEMPID\tSALARY\tDESIGNATION\n";

e.put_info();

cout<<"\n NAME\tGENDER\tAGE\tSTUDID\tCLASS NAME\n";

p.put_info();

}

Program 2

#include <iostream>

#include <cstring>

using namespace std;

// base class Shape

class Shape {

double width;

double height;

char name[20];

public:

Shape() {

width = height = 0.0; //MC1 = 1

strcpy(name, "unknown");

}

Shape(double w, double h, char *n) {

width = w;

288 D. Mishra

Shape

RectangleTriangle

NmTriangle CCIi= 14 + 12 = 16

CCIi= 10 + 4 = 14
CCIi= 10 + 4

= 14

CCIi= 10

ACI = (10+14+14+16) /4

 = 13.5

Fig. 2. Inheritance structure of program 2

height = h; //MC2 = 1

strcpy(name, n);

}

Shape(double x, char *n) {

width = height = x; //MC3 = 1

strcpy(name, n);

}

void display() {

cout << "Width and height are " << width << " and "

<< height << "\n"; //MC4 = 1

}

double getWidth() { return width; } //MC5 = 1

double getHeight() { return height; } //MC6 = 1

void setWidth(double w) { width = w; } //MC7 = 1

void setHeight(double h) { height = h; } //MC8 = 1

char *getName() { return name; } //MC9 = 1

virtual double area() {

cout << "Error: area() must be overridden.\n";

return 0.0; //MC10 = 1

}

};

//**

//class Triangle derived from Shape

class Triangle : public Shape {

char style[20];

public:

Triangle(char *str, double w, double h) : Shape(w, h, "triangle") {

strcpy(style, str); //MC1 = 1

New Inheritance Complexity Metrics for OO Software Systems 289

}

Triangle(double x) : Shape(x, "triangle") {

strcpy(style, "isosceles"); //MC2 = 1

}

double area() {

return getWidth() * getHeight() / 2; //MC3 = 1

}

void showStyle() {

cout << "Triangle is " << style << "\n"; //MC4 = 1

}

};

//**

// class NameTriangle derived from Triangle

class NmTriangle : public Triangle {

char name[20];

public:

NmTriangle(char *clr, char *style, double w, double h) :

Triangle(style, w, h) {

strcpy(name, clr); //MC1 = 1

}

void displayName() {

cout << "Name is " << name << "\n"; //MC2 = 1

}

};

//**

//class Rectangle derived from Shape

class Rectangle : public Shape {

public:

Rectangle(double w, double h) : Shape(w, h, "rectangle") { }//MC1 = 1

Rectangle(double x) : Shape(x, "rectangle") { } //MC2 = 1

void displayName() {

cout << "Name is " << getName() << "\n";

} //MC3 = 1

double area() {

return getWidth() * getHeight(); //MC4 = 1

}

};

int main() {

Shape *shapes[5];

shapes[0] = &Triangle("right", 8.0, 12.0);

shapes[1] = &Rectangle(10);

shapes[2] = &Rectangle(10, 4);

shapes[3] = &Triangle(7.0);

shapes[4] = &Shape(10, 20, "generic");

290 D. Mishra

for(int i=0; i < 5; i++) {

cout << "object is " << shapes[i]->getName() << "\n";

cout << "Area is " << shapes[i]->area() << "\n\n";

}

NmTriangle t1("A", "right", 8.0, 12.0);

NmTriangle t2("B", "isosceles", 2.0, 2.0);

t1.showStyle();

t1.display();

t1.displayName();

cout << "Area is " << t1.area() << "\n";

t2.showStyle();

t2.display();

t2.displayName();

cout << "Area is " << t2.area() << "\n";

return 0;

}

REFERENCES

[1] Abreu, F.B.—Melo, W.: Evaluating the Impact of Object-Oriented Design on
Software Quality. In METRICS ’96: Proceedings of the 3rd International Symposium
on Software Metrics, p. 90, IEEE Computer Society Washington, DC, USA 1996.

[2] Abreu, F.B.—Carapuca, R.: Candidate Metrics for Object-Oriented Software
within a Taxonomy Framework. Journal of System Software, Vol. 26, 1994, pp. 87–96.

[3] Arisholm, E.—Briand, L.C.—Foyen, A.: Dynamic Coupling Measurement for
Object-Oriented Software. IEEE Trans. Softw. Eng., Vol. 30, 2004, No. 8, pp. 491–506.

[4] Basili, V.R.:Viewing Maintenance As Reuse Oriented Software Development. IEEE
Software, Vol. 7, 1990, No. 1, pp. 19–25.

[5] Basili, V.R.—Briand, L.C.—Melo, L.W.: A Validation of Object-Oriented
Design Metrics As Quality Indicators. IEEE Transactions on Software Engineering,
Vol. 22, 1996, No. 10, pp. 751–761.

[6] Basili, V.R.—Briand, L.C.—Melo, W.L.: How Reuse Influences Productivity
in Object-Oriented System. Commun. ACM, Vol. 39, 1996, No. 10, pp. 104–116.

[7] Briand, L.—Bunse, L.—Daly, J.—Differding, C.: An Experimental Compa-
rison of the Maintainability of Object-Oriented and Structured Design Documents.
In: Proceedings of Empirical Assessment in Software Engineering (EASE), Keele, UK

1997.

[8] Briand, L.C.—Daly, J.W.—Porter, V.—Wst, J.: A Comprehensive Em-
pirical Validation of Product Measures for Object-Oriented Systems. Technical Re-
port ISERN-98-07, 1998. available at http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.51.152.

New Inheritance Complexity Metrics for OO Software Systems 291

[9] Briand, L.C.—Wst, J.—Daly, J.W.—Porter, D.V.: Exploring the Relation-

ships between Design Measures and Software Quality in Object-Oriented Systems.
Journal of Systems and Software, Vol. 51, 2000, No. 3, pp. 245–273.

[10] Cartwright, M.—Shepperd, M.: An Empirical Analysis of Object Oriented Soft-

ware in Industry. In: Bournemouth Metrics Workshop, April, Bournemouth, UK
1996.

[11] Cherniavsky, J.—Smith, C.: OnWeyukers Axioms for Software Complexity Mea-
sures. IEEE Transaction on Software Engineering, Vol. 17, 1991, No. 6, pp. 636–638.

[12] Chidamber, S. R.—Kemerer, C.F.: A Metrics Suite for Object Oriented Design.

IEEE Transactions on Software Engineering, Vol. 20, 1994, No. 6, pp. 476–493.

[13] Chidamber, S. R.—Darcy, D.P.—Kemerer, C. F.: Managerial Use of Metrics

for Objectoriented Software: An Exploratory Analysis. IEEE Trans. Softw. Eng.,
Vol. 24, 1998, No. 8, pp. 629–639.

[14] Dagpinar, M.—Jahnke, J.H.: Predicting Maintainability with Object-Oriented
Metrics – An Empirical Comparison. In Proceedings of the 10th Working Conference
on Reverse Engineering (November 13–17, 2003), WCRE. IEEE Computer Society,
Washington, DC, p. 155.

[15] Darcy, D.P.—Kemerer, C. F.: OO Metrics in Practice. IEEE Softw. 22,
6 November 2005, pp. 17–19. DOI: http://dx.doi.org/10.1109/MS.2005.

[16] El Emam, K.: A Primer on Object-Oriented Measurement. In Proceedings of the
7th international Symposium on Software Metrics (April 04–06, 2001), METRICS.
IEEE Computer Society, Washington, DC, p. 185.

[17] El Emam, K.—Melo, W.—Machado, J. C.: The Prediction of Faulty Classes
Using Object-Oriented Design Metrics. J. Syst. Softw., Vol. 56, 2001, No. 1, pp. 63–75.

[18] Fenton, N.: Software Measurement: A Necessary Scientific Basis. IEEE Trans. on
Software Engg., Vol. 20, 1994, No. 6, pp. 199–206.

[19] Gursaran, G.R.: On the Applicability of Weyuker Property Nine to Object-
Oriented Structural Inheritance Complexity Metrics. IEEE Transaction on Software
Engineering, Vol. 27, 2001, No. 4, pp. 361–364.

[20] Harrison, R.–Counsell, S. J.: An Evaluation of the Mood Set of Object-Oriented
Software Metrics. IEEE Transactions on Software Engineering, Vol. 21, 1995, No. 12,
pp. 929–944.

[21] Harrison, R.—Counsell, S.—Nithi, R.: Experimental Assessment of the Effect
of Inheritance on the Maintainability of Object-Oriented Systems. Journal of Systems
and Software, Vol. 52, 2000, pp. 173–179.

[22] Henderson-Sellers, B.: Object Oriented Metrics: Measures of Complexity. Pren-
tice Hall PTR: Englewood Cliffs, NJ, 1996; pp. 130–132.

[23] Humphrey, W. S.: Managing the Software Process. SEI Series in Software Engi-
neering, Addison-Wesley Publishing Company 1989.

[24] Kitchenham, B.—Pfleeger, S. L.—Fenton, N.: Towards a Framework for Soft-
ware Measurement Validation. IEEE Trans. on Software Engg., Vol. 21, 1995, No. 12,
pp. 929-944.

[25] Lattanzi, M.—Henry, S.: Software Reuse Using C++ Classes. The Question of
Inheritance Journal of Systems and Software, Vol. 41, 1998, pp. 127–132.

292 D. Mishra

[26] Lavazza, L.—Denaro, G.—Pezze, M.: An Empirical Evaluation of Object Orien-

ted Metrics in Industrial Setting. In The 5th CaberNet Plenary Workshop, Porto
Santo, Madeira Archipelago, Portugal, November 2003.

[27] Li, W.: Another Metric Suite for Object-Oriented Programming. Journal of Systems
and Software, Vol. 44, 1998, pp. 155–162.

[28] Li, W.—Henry, S.: Object-Oriented Metrics That Predict Maintainability. Journal
of Systems and Software, Vol. 23, 1994, No. 2, pp. 111–122.

[29] Lorenz, M.—Kidd, J.: Object-Oriented Software Metrics. Prentice Hall 1994,
ISBN: 013179292X.

[30] Martin, R.C.: Agile Software Development: Principles, patterns, and Practices.
Prentice Hall PTR, Upper Saddle River, NJ, USA 2002.

[31] McCabe, T. J.: A Complexity Measure. IEEE Transactions on Software Engineer-
ing, Vol. SE-2, 1976, No. 4, pp. 308–320,

[32] Melton, A.—Gustafson, D.—Bieman, J.—Baker, A.: A Mathematical Per-
spective for Software Measure Research. Journal of Software Eng., Vol. 5, 1990, No. 5,
pp. 246–254.

[33] Mishra, D.—Mishra, A.: An Efficient Software Review Process for
Small &Medium Enterprises. IET Software, Vol. 1, 2007, No. 4, pp. 132–142.

[34] Mishra, D.—Mishra, A.: Simplified Software Inspection in Compliance with Inter-
national Standards. Computer Standards and Interfaces, Vol. 31, No. 4, pp. 763–771.

[35] Pason, D.: Object-Oriented Programming. DP Publication 1994.

[36] Piwowarski, P.: A Nesting Level Complexity Measure. SIGPLAN Notices, Vol. 17,
1982, No. 9, pp. 44–50.

[37] Prather, R. E.: An Axiomatic Theory of Software Complexity Measurement. Com-
puting Journal, Vol. 27, 1984, No. 4, pp. 340–346.

[38] Prechelt, L.—Unger, B.—Philippsen, M.—Tichy, W.: A Controlled Expe-
riment on Inheritance Depth As a Cost Factor for Code Maintenance. Journal Syst.
Softw., Vol. 65, 2003, No. 2, pp. 115–126.

[39] Roy, G.: On the Applicability of Weyuker Property Nine to Object-Oriented Struc-
tural Inheritance Complexity Metrics. M. Tech. Minor Project Report, Faculty of
Eng., Dayalbagh Educational Inst., Agra 1997.

[40] Sharma, N.—Joshi, P.—Joshi, R.K.: Applicability of Weyuker’s Property 9 to

Object-Oriented Metrics. IEEE Transaction on Software Engineering, Vol. 32, 2006,
No. 3, pp. 209–211.

[41] Sheldon, F. T.—Jerath, K.—Chung, H.: Metrics for Maintainability of Class In-
heritance Hierarchies. Journal of Software Maintenance 14, 3 May 2002, pp. 147–160.

[42] Shepperd, M.: Products, Processes and Metrics. Information and Software Tech-
nology, Vol. 34, 1992, No. 10, pp. 674–680.

[43] Walsh, J. F.: Preliminary Defect Data from the Iterative Development of a Large
C++ program (Experience Report). In Proc. of OOPSLA92, pp. 178–183, 1992.

[44] Weyuker, E. J.: Evaluating Software Complexity Measures. IEEE Transactions on
Software Engineering, Vol. 14, 1988, No. 9, pp. 1357–1365.

New Inheritance Complexity Metrics for OO Software Systems 293

[45] Zhang, L.—Xie, D.: Comments on On the applicability of Weyuker Property Nine

to Object-Oriented Structural Inheritance Complexity Metrics. IEEE Transactions
on Software Engineering, Vol. 28, 2002, No. 5, pp. 526–527.

Deepti Mishra is an Assistant Professor of Computer Engi-
neering at Atilim University, Ankara, Turkey. She has received
her Ph.D. in Computer Science (Software Engineering) and Mas-
ters in Computer Science and Applications. Her research inter-
ests include software process improvement, software quality, re-
quirement engineering and databases. She has published many
research papers and book chapters at international and national
levels. She has been granted the Department of Information
Technology Scholarship of Government of India.

