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Abstract. Modern information retrieval systems use distributed and parallel al-
gorithms to meet their operational requirements, and commonly operate on sparse
vectors; but dimensionality-reducing techniques produce dense and relatively short
feature vectors. Motivated by this relevance of dense vectors, we have parallelized
the vector space model for dense matrices and vectors. Our algorithm uses a hy-
brid partitioning splitting documents and features and operates on a mesh of hosts

holding a block partitioned corpus matrix. We show that the theoretic speed-up is
optimal. The empirical evaluation of an MPI-based implementation reveals that we
obtain a super-linear speed-up on a cluster using Nehalem Xeon CPUs.
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1 INTRODUCTION

In text retrieval, we have a range of techniques for reducing the dimensionality of
a corpus, such as latent semantic indexing [4] or spectral decomposition of the feature
covariance matrix [8]. All of these methods approximate the original similarities
amongst the sparse vectors in the original corpus with dense vectors of reduced
dimensionality. Furthermore, content-based retrieval of other forms of media such
as images, video or sound has to operate on signal processing features, leading to
vectors that are dense and relatively low dimensional. Consequently, dense vectors
play an important role in contemporary information retrieval systems.

The discrepancy between the traditional focus on sparse vector processing on
one hand, and the importance of dense vectors for multimedia retrieval and dimen-
sionality reduction techniques on the other hand, has indeed left a gap in parallel and
distributed information retrieval methods. We have developed a parallel algorithm
to meet this demand, which is briefly sketched as follows:

• Both features and documents are split into balanced partitions.

• The vector-matrix multiplication, which dominates the complexity of retrieval
for dense vectors in the vector-space model, is performed in parallel across all
feature groups.

• The results are aggregated through a parallel merge-sort across the document
groups.

This paper is organized as follows: Section 2 contains a concise, mathematical
definition of retrieval in the vector space model under partitioned features and docu-
ments. The resulting parallel algorithm is described in Section 3. In Section 4, we
formally show that the theoretic speed-up without communication costs is linear in
the number of hosts and hence optimal. We complete the performance evaluation
with empiric measurements on a small cluster. Due to improved utilization of the
multi-level memory hierarchy of a modern multi-core processor, we experience a so-
called super-linear speed-up effect – the speed-up we obtained is actually greater
than the number of processes.

2 PARALLEL APPROACH

Assume that we have a set of features F = {f1, . . . , fm} and a set of documents
D = {d1, . . . , dn}. Furthermore, we have a corpus matrix C, which is a column-wise

assembly of the documents’ vectors, formally C =
[

~d1, . . . , ~dn

]

∈ R
m×n. Similarity

between two vectors d and e is defined as the cosine of the enclosed angle

sim(d, e) := cos(d, e) =
〈d, e〉

‖d‖‖e‖
.
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For any two documents di and dj, we can rewrite the above equation to use the
corresponding components of the corpus matrix C and simplify the sums to obtain

sim(di, dj) =

(

CTC
)

i,j
√

(

CTC
)

i,i

√

(

CTC
)

j,j

.

If we compute a similarity matrix D̃ containing the inner products of all pairs
of documents using matrix multiplication, D̃ = CTC ∈ R

n×n, we can compute
document similarity with one multiplication, one division, one square root and three
matrix component load operations. When responding to a dynamic query with
a vector q ∈ R

m, we can compute similarity via the vector-matrix product

sim(q, di) =
(qC)i

‖q‖
√

D̃i,i

.

Now, we partition our corpus intoM pairwise disjoint sets of features F1, . . . , FM ,
where ‖Fi‖ = mi, and N pairwise disjoint sets of documents D1, . . . , DN , where
‖Di‖ = ni, we partition our corpus matrix into blocks C[i, j] ∈ R

mi×ni with corre-
sponding D̃[i, j] ∈ R

mi×nj , such that

C =











C[1, 1] C[1, 2] · · · C[1, N ]
C[2, 1] C[2, 2] · · · C[2, N ]

...
...

. . .
...

C[M, 1] C[M, 2] · · · C[M,N ]











.

We can now compute similarity between two documents du,i ∈ Du and dv,j ∈ Dv as

sim(du,i, dv,j) =

{

sim1(du,i, dv,j) . . .u = v,

sim2(du,i, dv,j) . . .u 6= v.
, where

sim1(du,i, dv,j) =

∑M

l=1 D̃[l, u]i,j
√

∑M

l=1 D̃[l, u]i,i
∑M

l=1 D̃[l, u]j,j

,

sim2(du,i, dv,j) =

∑M

l=1

(

~du,iC[l, v]
)

j

‖~du,i‖
√

∑M

l=1 D̃[l, v]j,j

.

For a previously unknown query vector q ∈ R
m, split according to our partitioning

into q[1], . . . , q[M ], we can use the formula

sim(q, du,i) =

∑M

l=1 (q[l]C[l, u])i

‖q[l]‖
√

∑M

l=1 D̃[l, u]i,i

.
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Using inverted files as a sparse matrix representation for information retrieval,
the feature and document partitioning approaches [6] and the hybrid partitioning
strategy [11] have been successfully applied in a parallel setting [9, 10]. For dense
vectors, there is a rich background in parallel matrix computations. We can compute
the similarity matrices of the vector space model using parallel matrix multiplication,
as described in e.g. [5] for shared memory computers, [3] for SIMD machines or [1]
for bulk synchronous parallel computers. For the analysis of the similarities of
an established corpus, we can use a suitable algorithm for matrix multiplication
for the available hardware architecture; but we are more interested in dynamic
queries and hence vector-matrix multiplication. The parallel, partitioned multiply-
accumulate computation is difficult to improve on mainstream processors without
specialized hardware features.

Conceptually, we think of the nodes of our cluster as being arranged as a mesh.
All hosts within one row hold the same set of features and all hosts in one column the
same set of documents. Every host thereby belongs to exactly one feature-group of
hosts, i.e. the row, and one document-group of hosts, i.e. the column. Note that this
organizational concept does not make any assumptions about the communication
topology among hosts, but merely serves as a convenient metaphor for discussing
our algorithm. If we compute vector similarity as discussed above, the complete
query process can be sketched as follows:

1. For corpus queries, we must first locate the query document and retrieve its
vector. First, we broadcast the document identifier to all nodes of the system.

Those nodes which hold a part of the document’s vector then broadcast their
vector segment to all nodes within the same row.

Once all nodes hold the applicable part of the document vector they can proceed
with the local query processing. We have depicted this process in Figure 1.

2. For vector queries, we simply broadcast the entire query vector, discard the
irrelevant features and compute the local dot products and square vector lengths,
as shown in Figure 2.

3. We then compute the global results in three steps sketched in Figure 3:

(a) Compute the individual sums given in the mathematical model in parallel
across the feature partitions (i.e. rows of hosts).

(b) Compute the cosine similarity from the individual sums.

(c) Sort the results of the different document partitions into a single, global
result list.

3 PARALLEL ALGORITHM

A full implementation of the algorithm contains numerous details to deal with mes-
sage passing and various management aspects of an information retrieval service,
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Fig. 1. Communication flow for corpus query initialization. The identifier for the query
document is broadcast to all nodes (top left). The nodes within that document group,
which hosts the requested document, broadcast the local part of the document vector

within their respective feature groups (top right). Now all hosts can proceed with the
local query processing (bottom).

which are detailed in [2]. We give a bird-eye view of the query process by exa-
mining the global behavior and the operations on the partitioned corpus matrix as
pseudo-code in Algorithm 1.

We have used the Message Passing Interface (MPI) as communication middle-
ware to implement our algorithm. It has served us especially well for two of the
collective communication operations: broadcasting to all hosts and computing the
parallel sum. The broadcast functionality allows us to perform a broadcast without
having to deal with platform-specific details, because vendor-specific MPI imple-
mentations can be expected to provide an efficient realization. The parallel sum is
provided by MPI as a collective operation on vectors and requires only a few lines of
code to implement. One noteworthy drawback of MPI for our purposes was the lack
of collective operations on lists. We have written a straightforward implementation
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if query with a known document d then

broadcast the document identifier to all nodes;
if d is locally available then

fetch the local part of the document’s vector;
broadcast the vector to all nodes on the same row;

else

receive the broadcast;
end

else if query with an unknown document’s vector ~q then

broadcast the query vector from the root to all nodes;
drop all features of ~q that are not in the local feature partition;

end

for h = 1, . . . , M and k = 1, . . . , N do in parallel

if a vector ~q has been received then
compute

R[h, k] =

















(qC[h, k])1 ‖q[h]‖2 D̃[h, k]1,1
...

...
...

(qC[h, k])i ‖q[h]‖2 D̃[h, k]i,i
...

...
...

(qC[h, k])nk
‖q[h]‖2 D̃[h, k]nk,nk

















;

else if the document d = dj was locally available then
compute

R[h, k] =

















D̃[h, k]1,j D̃[h, k]j,j D̃[h, k]1,1
...

...
...

D̃[h, k]i,j D̃[h, k]j,j D̃[h, k]i,i
...

...
...

D̃[h, k]nk,j D̃[h, k]j,j D̃[h, k]nk,nk

















;

end

end

for k = 1, . . . , N do in parallel

compute the parallel sum R[k] =
∑M

h=1 R[h, k];
compute the list of document-similarity pairs S[k] = (S[k]1, . . . , S[k]n),
where

S[k]i =

(

di,
R[k]i,1

√

R[k]i,2R[k]i,3

)

;

end

merge sort the lists of document-similarity pairs S[k] across all columns to
generate a complete result list S;
return S;

Algorithm 1: Parallel Query Algorithm
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Fig. 2. Communication flow for vector query initialization. The query vector is broadcast
to all nodes (left). The individual nodes then discard all unnecessary features and
proceed with the local query processing (right).

of a parallel merge sort algorithm with a flat-tree communication structure using
MPI’s point-to-point communication primitives.

Communication in MPI is based on the concept of a communicator, which pro-
vides a common communication domain for a subset of all MPI processes in an ap-
plication. Since we require global, row-wise and column-wise communication, we use
the initial, global communicator to derive sub-domains for every row and column of
the mesh. We call these sub-domains row or column communicators and refer to the
global communicator as mesh communicator. That said, we can now describe the
query process for symmetric multiprocessing using message-passing from the leap-
frog perspective of a single node by giving those algorithms, which are executed on
every individual processor. Algorithms 2 and 3 describe the query initiation pro-
cess for corpus and vector queries up to and including the local query processing.
Algorithm 4 describes the query result aggregation, which computes the similarity
scores for the individual document partitions before sorting them into a single list
of search results.

Let us now examine the performance, effectiveness and scalability of our algo-
rithm and the prototype implementation in detail.

4 RESULTS

For our discussion of the algorithmic complexity, let us first assume an optimal,
balanced distribution of features and documents for the sake of simplicity. To initiate
a query, we must conduct one or two subsequent broadcasts. For a corpus query, we
must first announce the document we wish to search with, before the holding process
can send it to all other hosts. For vector queries, it suffices to send the query vector
to all processes. Either way, these broadcasts can be realized in O(logM +logN) =
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if row = 0 and col = 0 then

broadcast/send query document ID on mesh communicator;
else

broadcast/receive query document ID on mesh communicator;
end

if ID available in local document partition then

broadcast/send query vector on row communicator;
conduct local corpus query to produce R[row, col];

else

broadcast/receive query vector on row communicator;
conduct local vector query to produce R[row, col];

end

Algorithm 2: Initiating a Corpus Query

if row = 0 then

if col = 0 then

broadcast/send query vector on column communicator;
else

broadcast/receive query vector on column communicator;
end

drop non-local feature components;
broadcast/send query vector on row communicator;

else

broadcast/receive query vector on row communicator;
end

conduct local vector query to produce R[row, col];

Algorithm 3: Initiating a Vector Query

reduce/sum operation on column communicator to compute R[col];
if row = 0 then

convert R[col] to S[col];
run a parallel merge sort on the row communicator;
if col = 0 then

return S;
end

end

Algorithm 4: Query Result Aggregation
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Fig. 3. Communication flow for result aggregation. The parallel matrix-vector product is
computed using a parallel sum within document groups (top left). The group-specific
hit lists are then sorted into a single, global hit list using a parallel merge-sort within
a single feature group (top right). The final result is then returned to the inquiring
client (bottom).

O(logMN) serial message sends in any modern point-to-point network. The entire
query vector must be distributed, therefore the size of the message is of O(m).
The vector must be restricted to the locally available features, which has a time
complexity of O(m).

The local processing for both vector and corpus queries is bound by a time com-
plexity of O (mn/(MN)). In a serial system, this phase has a time complexity of
O(mn) for vector queries. For corpus queries, it depends largely on the available
memory. If the system has enough memory to store O (n2) document similarity
values, then we can pre-compute all intra-corpus similarity scores using matrix mul-
tiplication. After that, a corpus query can be answered in O(n), because we must
copy n document similarity scores. However, this approach is problematic for large
values of n, because the memory required grows with n2. It very quickly becomes
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necessary to exchange the memory cost for a computational cost of O(mn) and
answer corpus queries dynamically using matrix-vector multiplication. For corpus
queries with pre-computed similarity scores our system has a clear disadvantage,
as we experience a speed-up of O(MN/m), which is typically less than 1 since the
number of features m can be expected to be greater than the number of hosts MN .
This theoretic speed-up would be greater than 1 only for exceptionally large parallel
systems or trivially low numbers of features. In both cases, the cost of communica-
tion would be out of proportion. For vector queries we obtain a theoretic speed-up
of O(MN), which is linear in the number of hosts and thus optimal.

Once we have computed the local inner products and lengths, we must combine
these distributed results and form an aggregate, global result. This is done in two
subsequent steps. First, we compute the parallel sum of the local query data. Then,
we sort our results by descending similarity. Regarding the complexity, we observe
the following:

1. Parallel sum: Parallel addition of the local results requires additional O(logM)
message sends. Each host must transmit the local dot product and length for
each of its documents, hence the message size is of O (n/N). On every step of this
parallel activity, we have to perform 3n/N additions. Hence the time complexity
is O(n/N logM) for the parallel computation of the sum and O(n/N) to convert
the distributed results into a similarity list.

2. Merge sort: For the parallel merge sort, we initially sort the local lists. We
use the asymptotic bound for a comparing sort algorithm, which sorts a list
of n elements in O(n logn) steps [7]. On every individual node, we first sort
a list of n/N elements, giving us a time complexity of

O
( n

N
log

n

N

)

= O
( n

N
logn−

n

N
logN

)

.

For simplicity, assume that we have N = 2L columns of hosts. In general, the
bounds derived here also hold for L = ⌈logN⌉. In the first step, every second
host must merge a total of n2−(L−1) entities – its own entities and those of
another host. In the second step, every fourth host merges n2−(L−2) entities.
In all further steps the number of hosts is halved and the number of entities is
doubled. So for 2L hosts we require

L−1
∑

k=0

n

2k
=

2L − 1

2L−1
n = 2n

N − 1

N

serial steps of computation. The number of messages sent sequentially is in
the order of O(logN). Consequently, the average message size is of O(2n(N −
1)/(N logN)).

In a serial retrieval system, we only have to sort the global results in O(n logn)
steps. If we form the speed-up by dividing this time complexity by the total time
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complexity of all parallel steps and analyze the asymptotic behavior of the resulting
expression, we see that our parallel result aggregation comes to a speed-up of O(N)
for n → ∞; but this limit is reached at a logarithmic rate. So despite the fact that
this speed-up is linear in N , we would not expect an almost linear effect to manifest
except for substantially large document collections.

Summarizing, we note that the time complexity of the entire query process
is dominated by the vector-matrix product and is of O(mn). Using our parallel
algorithm we obtain a speed-up of S = O(MN) without communication costs,
which is theoretically optimal. Let us now examine the behavior of our prototype
implementation on a real system.

To evaluate the speed-up empirically, we have conducted preliminary timing
measurements on a cluster consisting of eight nodes equipped with an Intel Xeon
E5520 CPU clocked at 2.27GHz with 4 cores equipped with 48GiB of RAM.We used
between 8 processes on 2 machines and 32 processes on 8 machines, using 4 threads
per processor, one per physically available core. While we did not explicitly use
the hyper-threading feature, which provides two virtual threads per physical core,
we kept it enabled throughout the tests to allow the operating system to use these
extra threads. Measurements have been performed using a test corpus containing
random vectors with 1 024, 2 048 and 4 096 features. For reasons of scope, we only
report our results for 1 024 and 4 096 features, because speed-up and efficiency for
2 048 features follow the general trend. The number of documents has been sampled
over different ranges so that the problem size, i.e. the product of the number of
features and document, is equal for all sampling points. For 1 024 features we have
conducted experiments with 131 072 to 1 048 576 documents. With 4 096 features
we have used a quarter thereof, 32 768 to 262 144 documents.

We then conducted corpus queries without pre-computed similarity matrices,
because the document similarity matrix D̃ is too big to be kept in memory for just
over one million documents. We measured the complete response time from dispatch
of the query to the return of the complete result list for a single process. Then, we
measured the parallel execution time of the hybrid partitioning strategy using mesh
layouts of 2 × 4 to 2 × 16 processes. We experimented with a variety of field sizes,
but found using two feature groups most beneficial for our problem sizes.

Before we discuss our results, we also need to point out that our implementation
uses 32-bit, single-precision floating point variables and arrays, because the available
memory bandwidth plays an important role in the efficiency of a parallel algorithm
on a multi-core CPU. While every core has its own local level 1 cache and a local but
synchronized level 2 cache, they all share a limited number of memory channels to
access the DRAM. The bandwidth of these channels is an important limiting factor,
because all cores have to be kept supplied with data to process. The efficiency with
double precision data is worse than the values reported here.

The first component required for computing the speed-up is the serial run-time.
The serial processing times for our sample problem sizes are depicted in Figure 4.
This diagram also gives a good visual indication of the impact of the vector-matrix
product on the execution time. The time spent on sorting has hardly any impact
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Fig. 4. Serial query processing time with 1 024, 2 048 and 4 096 features

on the execution time, despite the fact that the number of documents differed by as
much as a factor of 4 for different feature sizes.

Figure 5 shows the results for the document partitioning strategy with 1 024
features. While the parallel efficiency is generally between 80% and 100% (see
Figure 6) we fail to obtain any super-linear speed-up effects (see Figure 7).

In Figures 8 to 13 we can clearly see the super-linear speed-up effect for both
1 024 and 4 096 features. The speed-up is almost linear across the sampled range of
documents until the main memory is almost full, meaning that the parallel algorithm
does not strongly suffer from adverse effects as the number of documents grows. The
higher speed-up and better efficiency with 4 096 features suggests that a host mesh
with two feature groups can not only handle such a number of features, but is in
fact more efficient as the number of features increases. This is again fortunate, as
the low number of feature groups allows us to use more document host groups to
accelerate the parallel merge sort and deal with large numbers of documents more
effectively.

5 SUMMARY AND CONCLUSION

In this paper, we have applied a hybrid partitioning of features and documents
to the mathematical formulation of the vector space model and derived a parallel
algorithm based on message passing. We analyzed the theoretic speed-up without
communication cost and showed that it is linear in the number of processes and
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hence optimal. Then, we empirically evaluated the performance of an MPI-based
implementation and found that our algorithm delivers a super-linear speed-up due
to efficient utilization of the memory hierarchy. These measurements indicate that
we can confidently utilize all available cores, without having to fear the bottleneck
of the shared DRAM channels or destructive interference on the level 2 data caches.
Lastly, our data illustrates that we can increase the number of documents until we
reach the practical limit of the computers main memory without having to fear a loss
of efficiency.
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