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Abstract. Recently, a mixed-radix decimation in frequency (DIF) fast MDCT al-
gorithm only for the mixed-radix decompositions or composite lengths N = 3m×2,
m > 0, has been proposed in [4]. An improved mixed-radix DIF fast MDCT algo-
rithm both in terms of the regularity and computational complexity is described.

Based on observed simple algebraic identities in the original proposed algorithm [4],
new formulas are derived resulting in a very regular computational structure. Con-
sequently, the number of arithmetic operations is reduced significantly. Moreover,
the improved algorithm is extended to all composite lengths N = 3m×2p, m, p > 0.
The improved algorithm defines new sparse matrix factorizations of the MDCT ma-
trix for the composite lengths N = 3m × 2p, m, p > 0, and finally it provides new
implementations of the forward/backward MDCT in MPEG-1/2 layer III (MP3)
audio coding standard.
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1 INTRODUCTION

The modified discrete cosine transform (MDCT) [1] has become the fundamental
processing block in the current international audio coding standards and commercial
digital audio compression algorithms for high-quality compression/decompression of
digital audio signals in consumer electronics [2, 3]. Since the forward and backward
MDCT computation are the most time-consuming operations in audio codecs, an ef-
ficient implementation of the MDCT processor has become the key technology to
realize real-time low-cost and low-power audio decoders in (portable) audio players
and digital multimedia systems. In particular, with the popularity of MPEG-1/2
layer III audio coding standard known as MP3, where the size of an audio data
block is N = 12 (the short block) or N = 36 (the long block), much research has
been devoted to develop an efficient implementation of the MDCT in MP3. A com-
prehensive list of references covering various fast MDCT algorithms and hardware
implementations developed and adopted in the last decade for the efficient MDCT
implementation in MP3 can be found in [6, 7]. Among the recently proposed fast
algorithms which can be adopted for the efficient MDCT implementation in MP3
are two mixed-radix fast MDCT algorithms: the first one obtained by the “deci-
mation in frequency” (DIF) decomposition method only for the composite lengths
N = 3m × 2, m > 0 [4], and the second one obtained by the “decimation in
time” (DIT) decomposition method only for the composite lengths N = 3m × 4,
m > 0 [5].

In this paper, an improved mixed-radix DIF fast MDCT algorithm both in terms
of the regularity and computational complexity is described. Based on observed sim-
ple algebraic identities in the original proposed algorithm [4], new formulas are de-
rived resulting in a very regular computational structure. Consequently, the number
of arithmetic operations is reduced significantly. Moreover, the improved algorithm
is extended to all mixed-radix decompositions or composite lengths N = 3m × 2p,
m, p > 0. This fact allows to combine mixed-radix DIF and DIT fast MDCT al-
gorithms with a recursive radix-2 fast MDCT algorithm [5] to further widespread
existing choices of sequence lengths as well as to construct a variety of the MDCT
implementations with a different fast computational structure and a different com-
putational complexity. The improved algorithm defines new sparse matrix factori-
zations of the MDCT matrix for the composite lengths N = 3m × 2p, m, p > 0.
Finally, it provides new implementations of the forward/backward MDCT in MP3
audio coding standard.

It is important to note that the analysis of computational structure and associa-
ted arithmetic complexity of the mixed-radix fast MDCT algorithm published in [4]
is incomplete and is not properly/fully investigated. Further, some errors occurring
in the published paper [4] are corrected. Essentially, compared to [4], the improved
mixed-radix DIF fast MDCT algorithm with the complete computational analysis
for all composite lengths N = 3m × 2p, m, p > 0 is presented here.
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2 DEFINITIONS AND MIXED-RADIX

DIF FAST MDCT ALGORITHM

The forward and backward MDCT block transforms are, respectively, defined as [1]
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The input data sequence {xn} in (1) is assumed to be windowed by a windowing
function before its transformation. {x̂n} in (1) represents the time-domain aliased
data sequence recovered by the backward MDCT block transform which does not
correspond to the original data sequence {xn}.

Recently, the mixed-radix DIF fast MDCT algorithm for composite lengths N =
3m × 2, m > 0, has been proposed in [4]. Importantly, the strictly defined radix-3
MDCT algorithm cannot be constructed since from the MDCT definition it follows
that 3m is not divisible by 2. Complete formulas of the original mixed-radix DIF
fast MDCT algorithm are expressed in the more convenient form as
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and taking into account Equation (2) the complete set of MDCT coefficients is
obtained as
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Thus, the N -point MDCT is obtained from the computation of three N
3
-point MD-

CTs. The factors 1
2
from (6) can be simply absorbed into Equation (4). For compo-

site lengthsN = 3m×2,m > 0, the arithmetic complexity of the original mixed-radix
DIF fast algorithm [4] without any optimization (MN is the number of multiplica-
tions and AN is the number of additions) is given by

MN = 3×MN
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, AN = 3× AN
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+
10N

3
,

where for N = 3 × 2 = 6, M2 = A2 = 0. Note that N

3
multiplications by 2 are

implicitly taken as shift operations in [4].
The main motivation to improve and extend the proposed mixed-radix DIF fast

MDCT algorithm is based on the following essential facts implied from the original
paper [4]:

• Mixed-radix DIF fast MDCT algorithm in [4] is defined only for composite
lengths N = 3m × 2, m > 0. Additionally, a derived mixed-radix DIF fast algo-
rithm for the backward MDCT computation with composite lengths N = 3m×4,
m > 0, is almost redundant.

• There exists an error in Equation (10) of [4], where the “–” sign is forgotten
before the sum.

• The analysis of computational structure and associated arithmetic complexity
of algorithm [4] for the lengths N = 3m × 2, m > 0, is incomplete and is not
properly/fully investigated.

• A signal flow graph only for the 6-point forward MDCT computation has been
presented in [4] and, moreover, it is not correct (only the first two butterfly
stages are correct).

In particular, it can be seen from Equations (2) and (4) that all algebraic expressions
between round brackets combined with cosine/sine twiddle factors are quite different,
and, consequently, the regularity of a computational structure of the algorithm is
not clear. Possibly, this is probably the reason why the authors in [4] did not further
investigate the computational structure of their algorithm in detail.

3 IMPROVED AND EXTENDED MIXED-RADIX

DIF FAST MDCT ALGORITHM

The key result for the derivation of improved mixed-radix DIF fast MDCT algorithm
is an observation that each algebraic expression between round brackets under the
first sum of (4) corresponding to {ak} can be derived by a proper combination
of two algebraic expressions between round brackets under the second sum of (4)
corresponding to {bk}. Specifically, denoting
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the following simple algebraic identities hold:
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At first, substituting the algebraic identities (8) into the first sum of (4) subsequently
followed by substituting n′ = N

3
−1−n for n, after some algebraic manipulations we

get a new very regular form of the improved mixed-radix DIF fast MDCT algorithm
defined as
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The complete set of MDCT coefficients is obtained from (6). The factors 1
2
in (6)

can be simply absorbed into Equation (10). Due to the algorithm regularity the
expression between round brackets in (2) is rewritten into the more convenient
equivalent form in Equation (9). Comparing Equations (4) and (10) one can see
that the algebraic expressions (un and vn) combined with the sine/cosine twid-
dle factors in Equation (10) are the same. This fact enables us to investigate the
computational structure of the algorithm in detail for all the composite lengths
N = 3m × 2p, m, p > 0. The cosine transform kernel cosφN

3
−1−n,k in the first sum

of (10) is recognized as the MDCT transform kernel in the reverse order, whereby
cosφN

3
−1−n,k = (−1)k+1 sinφn,k. For a given N the computation of higher-order

MDCTs is obtained from recursively reused three lower-order N
3
-point MDCTs. The

backward MDCT computation can be simply realized by reversing a fast computa-
tional structure for the forward MDCT and performing the inverse operations.

4 ANALYSIS OF THE COMPUTATIONAL COMPLEXITY

In general, the computational complexity of improved mixed-radix DIF fast MDCT
algorithm for the composite lengths N = 3m × 2p, m, p > 0, is given mainly by
the computational complexity of three N

3
-point MDCTs associated with the value
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of p, and the computational complexity of (10). The best existing 2p-point (p > 1)
MDCT algorithm requires N

4
(p + 1) multiplications and N

4
(3p − 1) additions [6].

The evaluation of algebraic expressions in (7) requires 4N
3

additions, whereby N
3

multiplications by 2 are counted as additions (note that the multiplications by 2
can be efficiently implemented as shift operations). The evaluation of algebraic
expressions between the square brackets in (9) requires only N

3
additions because

the sub-expressions (x 2N

3
−1−n − xN−1−n) are pre-computed in (7). To compute {ak}

and {bk} in (10) we need 4N
3

multiplications and 2N
3

additions. Finally, to obtain
the complete set of MDCT coefficients from (6) we need N

3
additions. Then, the

total arithmetic complexity of the improved mixed-radix DIF fast MDCT algorithm
for the composite lengths N = 3m × 2p, m > 0, p > 2, is given by

MN = 3×MN
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,

where for N = 3 × 23, we get M8 = 8 and A8 = 16. Compared to the total
arithmetic complexity of the original algorithm [4], 2N

3
additions are saved in the

improved algorithm. For the composite lengths N = 3m × 2p, where p = 1 and
p = 2, the number of arithmetic operations for some special angles can be further
reduced separately as follows.

4.1 Mixed-Radix Decompositions N = 3m × 2, m > 0

Let the factors 1
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requiring 1 multiplication, 4 additions and 1 shift, where multiplication by 3 is
realized by 2 additions. On the other hand, for n = N
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requiring 1 multiplication and 1 shift, so totally saving 6 multiplications. Then, the
total arithmetic complexity for the composite lengths N = 3m × 2, m > 0, is given
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by

MN = 3×MN

3

+
4N

3
− 6, AN = 3× AN

3

+
8N

3
,

where for N = 3 × 2 = 6, M6 = 2, A6 = 16 plus 2 shifts (compare with the
arithmetic complexity M6 = 5, A6 = 15 in [4]). The correct signal flow graph for
the 6-point forward MDCT computation is shown in Figure 1. Exploiting the fact
that the transform kernel of 2-point forward MDCT is cos π

2
and cos π (and hence

M2 = A2 = 0), the 6-point forwardMDCT computation can be optimized in terms of
the arithmetic complexity. All redundant computations are indicated by the thicker
lines in the signal flow graph in Figure 1. Removing these redundant computations
results in a new 6-point forward MDCT module with the arithmetic complexity
M6 = 1, A6 = 11 (note that two multiplications by 2 are counted as 2 additions) plus
1 shift. Since the 6-point forward MDCT is recursively reused for the computation
of the higher-order forward MDCTs, the total arithmetic complexity is reduced
significantly. Comparison of the arithmetic complexity for the original and improved
DIF fast MDCT algorithms for some selected composite lengths N = 3m× 2, m > 0
is summarized in Table 1.
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Fig. 1. Signal flow graph for the 6-point forward MDCT computation. Redundant com-
putations are indicated by the thicker lines.

Mixed-radix decomposition Original algorithm [4] Improved algorithm
of N Mults Adds Mults Adds Shifts

3× 2 = 6 5 15 1 11 1
32 × 2 = 3× 6 = 18 36 100 21 81 3
33 × 2 = 3× 18 = 54 177 475 129 387 9
34 × 2 = 3× 54 = 162 744 1 960 597 1 593 27

Table 1. Comparison of the arithmetic complexity for the original and improved DIF fast
MDCT algorithms for some selected composite lengths N = 3m × 2, m > 0
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Note. The number of additions for composite lengths N = 3m × 2, m > 0, can be
further reduced using the optimized efficient 6/3-point forward/backward MDCT
modules [5] generated directly from the MDCT matrix-vector representation having
the arithmetic complexity 1 multiplication, 6/4 additions and 1 shift.

4.2 Mixed-Radix Decompositions N = 3m × 4, m > 0

Again, let the factors 1
2
in (6) be absorbed into Equation (10). For n = 1
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requiring 3 multiplications and 2 additions, so totally saving 1 multiplication. Then,
the total arithmetic complexity for the composite lengths N = 3m×4, m > 0 is given
by

MN = 3×MN

3

+
4N

3
− 1, AN = 3× AN

3

+
8N

3
,

where for N = 3× 4 = 12, M4 = 3, A4 = 5. The short and long block sizes in MP3
are just the composite lengths N = 3m × 4 for m = 1 and m = 2, respectively. The
regular generalized signal flow graph for 12-point forward MDCT computation is
shown in Figure 2. The total arithmetic complexity of the 12-point forward MDCT
is 24 multiplications and 47 additions, whereby 4 multiplications by 2 are counted as
4 additions. Since the 12-point forward MDCT is recursively reused for the 36-point
forward MDCT, the total arithmetic complexity of the 36-point forward MDCT
computation is 119 multiplications and 237 additions whereby 24 multiplications
by 2 are counted as 24 additions. Comparison of the arithmetic complexity for
the original and improved DIF fast MDCT algorithms for the composite lengths
N = 3m × 4, m = 1, 2 is summarized in Table 2.

Mixed-radix decomposition Original algorithm [4] Improved algorithm
of N Mults Adds Mults Adds

3× 4 = 12 28 52 24 47

32 × 4 = 3× 12 = 36 132 276 119 237

Table 2. Comparison of the arithmetic complexity for the original and improved DIF fast
MDCT algorithms for the composite lengths N = 3m × 4, m = 1, 2.

5 NEW MDCT IMPLEMENTATIONS IN MP3

The improved mixed-radix DIF fast algorithm provides new implementations of the
forward/backward MDCT in MP3 audio coding standard. The main multiplicative
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Fig. 2. Generalized signal flow graph for 12-point forward MDCT computation

complexity is concentrated in Equation (10) where the implementation for N =
12 (requiring 15 multiplications and 8 additions) is highlighted by shaded box in
Figure 2. It was observed that the multiplicative complexity as well as the number
of unique angles can be further reduced by an optimization procedure presented
below which is valid only for N = 12.

Consider algebraic expressions between the square brackets under two sums of
Equation (10) for N = 12 and n = 0, 1, 2, 3. Let the factors 1
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requiring 12 multiplications and 14 additions, so saving 3 multiplications at the cost
of 6 more additions. Thus, the optimized computation of 12-point forward MDCT
requires totally 21 multiplications and 53 additions, whereby 4 multiplications by 2
are counted as 4 additions. Since the 12-point forward MDCT is recursively reused
as a basic computational module for the 36-point forward MDCT computation,
the total arithmetic complexity of the 36-point forward MDCT computation is 110
multiplications and 255 additions, whereby 24 multiplications by 2 are counted as 24
additions. Comparison of MDCT implementations in MP3 (without optimization
and optimized) based on the improved mixed-radix DIF fast algorithm and efficient
MDCT implementations based on the associated mixed-radix DIT fast algorithm [5]
in terms of the arithmetic complexity is summarized in Table 3.

MDCT algorithm N = 12 N = 36
Mults Adds Mults Adds

Improved mixed-radix DIF without optimization 24 47 119 237

Optimized improved mixed-radix DIF 21 53 110 255

Mixed-radix DIT [5] 11 27 55 141

Table 3. Comparison of MDCT implementations in MP3 (without optimization and opti-

mized) based on the improved mixed-radix DIF fast algorithm and efficient MDCT
implementations based on the associated mixed-radix DIT fast algorithm [5] in
terms of the arithmetic complexity.

The backward MDCT computation requires exactly N

2
additions less than that

of the forward MDCT. The correctness of improved mixed-radix DIF fast MDCT
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algorithm optimized for the composite lengths N = 3×4 = 12 and N = 3×12 = 36
has been verified by the computer program in C.

6 DISCUSSION AND CONCLUSIONS

The improved mixed-radix DIF fast MDCT algorithm both in terms of the regularity
and computational complexity has been described. Based on the observed simple
algebraic identities in the original proposed algorithm [4], the new formulas have
been derived resulting in very regular computational structure. This fact enabled us
to investigate the computational structure of the improved algorithm in detail and
has lead to the following important and new results/conclusions:

• Although the improved mixed-radix DIF fast MDCT algorithm is not so ef-
ficient in terms of the computational complexity compared to the best fast
MDCT algorithms [6, 7], it shares all properties of the associated mixed-radix
DIT fast MDCT algorithm [5] with respect to the design criteria such as data
access scheme, modularity, regularity, in-place implementation and basic com-
putational module sharing.

• The improved algorithm has been extended to all the composite lengths N =
3m × 2p, m, p > 0. This fact allows to combine mixed-radix DIF and DIT fast
MDCT algorithms with the recursive radix-2 MDCT algorithm [5] to further
widespread existing choices of sequence lengths as well as to construct a variety
of the MDCT implementations with a different fast computational structure and
a different computational complexity.

• The number of arithmetic operations has been reduced significantly compared
to [4], in particular for the composite lengths N = 3m × 2 and N = 3m × 4,
m > 0.

• The improved algorithm provides new implementations of the forward/backward
MDCT in MP3 audio coding standard, where the 12-point MDCT is recursively
reusable for the 36-point MDCT computation so reducing hardware resources
in a potential hardware implementation.

• The improved algorithm defines new sparse matrix factorizations of the MDCT
matrix for composite lengths N = 3m × 2p, m, p > 0.
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