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Abstract. Timed Chi (χ) is a timed process algebra, designed for Modeling, simu-
lation, verification and real-time control. Its application domain consists of large
and complex manufacturing systems. The straightforward syntax and semantics
are also highly suited to architects, engineers and researchers from the hardware
design community. There are many different tools for timed Chi that support
the analysis and manipulation of timed Chi specifications; and such tools are the
results of software engineering research with a very strong foundation in formal
theories/methods. Since timed Chi is a well-developed algebraic theory from the
field of process algebras with timing, we have the idea that timed Chi is also well-
suited for addressing various aspects of hardware systems (discrete-time systems by
nature). To show that timed Chi is useful for the formal specification and analysis
of hardware systems, we illustrate the use of timed Chi with several benchmark
examples of hardware systems.
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1 INTRODUCTION

The goal of developing a Formal semantics is to provide a complete and unambigu-
ous specification of the language. It also contributes significantly to the sharing,
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portability and integration of various applications in simulation, synthesis and for-
mal verification.

Formal methods provide a set of notations that can be used to build mathema-
tical models of systems; and techniques for automatic verification of such models.
Over the years, formal methods have been widely and successfully used in a wide
range of problems and in practical applications in both academia and industry for the
specification and analysis of many different systems. Formal verification is intended
to prove some properties (e.g. expressed in temporal logic) hold in the system (i.e.
a mathematical model) under analysis. Although formal verification has shown to
be very useful for analysis of various systems (e.g. hardware circuits), its power is
still limited by the complexity of the analysis that grows very large as the size of
the systems increases (namely state space explosion problem).

Formal languages with a semantics formally defined in computer science increase
understanding of systems, increase clarity of specifications and help solving problems
and remove errors. Over the years, several flavors of formal languages have been
gaining industrial acceptance.

Process algebras [1] are formal languages that have formal syntax and seman-
tics for specifying and reasoning about different systems. They are also useful tools
for verification of various systems. Generally speaking, process algebras describe
the behavior of processes and provide operations that allow to compose systems in
order to obtain more complex systems. Moreover, the analysis and verification of
systems described using process algebras can be partially or completely carried out
by mathematical proofs using equational theory. In addition, the strength of the
field of process algebras lies in the ability to use algebraic reasoning (also known as
equational reasoning) that allows rewriting processes using axioms (e.g. for commu-
tativity and associativity) to a simpler form. By using axioms, we can also perform
calculations with processes. These can be advantageous for many forms of analysis.

Process algebras have also helped achieve a deeper understanding of the nature
of concepts like observable behavior in the presence of non-determinism, system com-
position by interconnection of system components modeled as processes in a parallel
context, and notions of behavioral equivalence (e.g. bisimulation) of such systems.

Serious efforts have been made in the past to deal with systems (e.g. real-time
systems [2, 3] and hybrid systems [6, 4]) in a process algebraic way. Over the years,
process algebras have been successfully used in a wide range of problems and in
practical applications in both academia and industry for analysis of many different
systems.

On the other hand, the need for a formal and well-defined semantics of a hard-
ware description language is widely accepted and desirable for architects, engineers
and researchers in the electronic design community.

In the hardware design community, architects use hardware description lan-
guages1 (that are not defined by means of mathematics) like Verilog [15] and

1 In industry, SystemC [17] and SystemVerilog [18] are widely used for modeling hard-
ware systems. Since they are languages for system-level designs and embedded system
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VHDL [16] to model hardware systems. Since these description languages are not
formally (i.e. mathematically) defined, the models described using them may be am-
biguous. It is worth mentioning that, after these description languages have been
widely used, some research works on their formal semantics have been done by other
researchers. Hence, we believe that there is a gap between the intuition behind the
description languages (given by the developers) and the formal semantics of the de-
scription languages defined by the researchers. Currently, the analysis of hardware
systems (e.g. modeled in Verilog and VHDL) is mainly addressed by a simulation
context. Simulation engineers apply the simulators, that are built based on their
semantics (that is not formally defined), to simulate the behavior of such systems.
The results are then not always guaranteed to be correct.

The ability of unambiguously specifying (in a mathematical sense) and rigorously
analyzing timing properties/constraints is fundamental to design correct hardware
systems. A formalism in which hardware behavior and timing properties can be pre-
cisely captured is a mandatory prerequisite for designing correct hardware systems.
The timed process algebra timed Chi (χ) [7] is such a formalism.

The timed Chi formalism is obtained by means of the simplification of hybrid
Chi formalism [4, 13]. Principally, the timed Chi formalism is suited to modeling,
simulation, verification and real-time control. Its application domain consists of
large and complex manufacturing systems.

The formal semantics of timed Chi is defined by means of deduction rules in
a Structured Operational Semantics (SOS) style [14] that associates a time transi-
tion system with a timed Chi process. A set of axioms/properties of timed Chi is
presented for a notion of equivalence (bisimulation). The straightforward syntax
and semantics is also highly suited to architects, engineers and researchers from the
hardware design community.

Since timed Chi is a well-developed algebraic theory from the field of process
algebras with timing, we have the idea that timed Chi is also well-suited for ad-
dressing various aspects of hardware systems (discrete-time systems by nature and
they are always modeled as finite-state machines)2. To show that timed Chi is
useful for formal specification and analysis of hardware systems and our idea is cor-
rect, in this paper we illustrate the use of timed Chi with some benchmark exam-
ples of hardware systems: a multiplexer (MUX), a D flip-flop, an asynchronous
arbiter and a simple arbiter (with assertion). Particularly, in this paper we em-
phasize the formal analysis of timed Chi specifications by means of mathematical

proofs.

designs (by nature), they are not further discussed. In this paper, we mainly intend to
show that timed Chi is useful for addressing various aspects of hardware and compare it

with other formalisms/specification languages that are used for model-ling and analyzing
hardware.

2 In this paper, our main interest is to show that timed Chi is useful for addressing
various aspects of hardware with timing. As we will see in Subsection 4.3 and Section 7,
timed Chi is also well-suited for formal specification and analysis of untimed hardware.
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In the rest of this paper, we may usually refer to timed Chi as χ. Also, we may
write formal χ specification as χ specification.

1.1 Related Work

1.1.1 Hardware Description Languages

Over the last ten years or so, research works in formal semantics in the electronic
design community that have targeted to obtain some applicable opportunity mainly
focused on various industrial hardware description languages. Quite often, their
definitions were based onAbstract State Machine (ASM) specifications, Denotational
Semantics and rewrite rules [19, 20, 21, 22, 23].

It is generally believed that a SOS provides more intuitive descriptions and
that ASM specifications and denotational semantics appear to be less suited to
describe the dynamic behavior of processes [34]. Since processes are the basic units of
execution within industrial hardware description languages that are used to simulate
the behavior of a device or a system, process algebras with a SOS style semantics
are more immediate choices for giving formal specifications of hardware systems in
the electronic design community.

In the recent years, various formal approaches (based on ASM specifications,
deduction rules and denotational semantics) have already been studied and inves-
tigated for Verilog and VHDL that can only be considered as theoretical frame-
works [19, 20, 21, 22, 23], because they are not directly executable.

In contrast to such formal approaches, specifications described in χ are com-
pletely executable (as in many process algebraic specifications). More precisely, the
behavior of a specification described in χ can be illustrated by means of transition
traces according to χ deduction rules together with the Timed Transition System
(TTS) associating to a χ process. Similarly, formal analysis of χ specifications can
be performed using χ deduction rules together with the TTS associating to the χ
processes (see Subsection 5.4 for details).

1.1.2 Formalisms

On the other hand, the χ formalism is a timed process algebra, and is thus related
to the other formalisms with timing3, for example, Timed CSP [29], TCOZ [30],
ATP [3], process algebra with timing from [2] and Timed Action Systems [31]. Some
comparisons and related works of the above-mentioned formalisms with timing can
already be found in [31] and [32].

Here we discuss the most important concepts and key features of χ in more
generality. Also, these concepts and features make χ suitable for formal specification
and analysis of various complex systems including hardware systems. The most
important concepts and key features of χ are summarized below:

3 Since there exist many different formalisms with timing, it is not our intention to list
them all in this paper.
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Ease of modeling. χ is principally designed with a well-defined semantics for mo-
deling purpose. It is especially suited to the specification and analysis of complex
systems. This is achieved by means of:

1. the process terms for scoping that integrate abstraction, local variables, local
channels and local recursion definitions;

2. the process definition, process instantiation and syntactic extensions that en-
able process re-use, encapsulation, hierarchical and/or modular composition
of processes;

3. the different interaction mechanisms, namely handshake synchronization and
synchronous communication that are mainly intended for processes that do
not share variables, and shared variables that are mainly intended for inter-
action between processes in a parallel context.

Ability to use algebraic reasoning. The use of algebraic reasoning for χ speci-
fications will be explained and shown in Subsections 3.3 and 5.4.

In contract to the above-mentioned formalisms, χ has a simulator and has a rich
set of back-end verification tool supported (see Section 6 for details).

1.1.3 Formal Verification Techniques and Tools

Over the years, model checking, SAT-based verification and theorem proving tech-
niques and tools [39, 40, 41] have been successfully and widely used for the formal
verification of hardware systems in industry.

χ is not only a simulation language with a semantics formally defined, but can
also be purportedly used for formal verification. In principal, χ is a formalism that
can be used for specifying concurrent/distributed systems, finite-state systems and
real-time systems (as in major hardware description languages) and χ can serve as
a single-formalism-multi-solution. This means that we can translate a χ specification
to the input languages of several verification tools (e.g. CADP [35], SPIN [36] and
UPPAAL [37]) and it can be verified in those verification tool environments. For
instance, safety properties of concurrent systems specified in χ can be verified by
translating those systems to PROMELA [36], which is the input language of the
SPIN Model Checker.

It is worth mentioning that several translations (between χ and some formalisms)
have been already automated and the correctness of such translations have been
carefully studied at the semantical level (see Section 6 for details). It is not hard
to see that χ can also be translated to the specification/input languages of several
theorem provers (e.g. ACL2 [41]). After having defined such translations, different
theorem provers can also be used as verification engines for χ specifications. Note
that a set of axioms/properties for χ was presented and the notion of stateless
bisimilarity was proved to be a congruence [1] with respect to all χ operators in [7].
As a consequence, algebraic reasoning is facilitated, since it is allowed to replace
equals by equals in any context (i.e. χ is compositional operationally). To the
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best of our understanding, such a congruence property has not been specifically
studied/proved for the specification/input languages used for the major theorem
provers.

Furthermore, an introduction paper of our research work in this direction can
be found in [44]4.

1.2 Paper Organization

This paper is organized as follows. In Section 2, we give a brief overview of the χ for-
malism. Through some simple examples, Section 3 shows that the deduction rules
of χ can ensure the correctness of specifications and can help modelers make correct
specifications. Some samples (modeling several benchmark hardware systems) of
the applications of χ are shown in Section 4. A more detailed account of the formal
syntax and formal semantics of χ is provided in Section 5. In the same section,
a complete mathematical proof for the analysis of the assertion of a simple arbiter
is given. A variety of approaches that can be used for the analysis of the formal
specifications described in χ is presented in Section 6. Finally, concluding remarks
are made in Section 7.

2 χ FORMALISM

χ is such a rich formalism and presenting the complete formal syntax and formal
semantics of it is far beyond the scope of this paper. Hence, in this section, we
informally present just a small part of χ, disregarding features5 that may not be
relevant for the use in this paper.

Nevertheless, Subsection 5.2 gives a more detailed account of the formal seman-
tics of χ. Again, in what follows, we refer to this small part of timed χ as χ. For
an extensive treatment of χ, the reader is referred to [7].

2.1 Data Types, Time Model, Synchronization

and Communication Model

Data types: χ is statically strongly typed. Every variable has a type which defines
the allowed values of that variable and the allowed operations on that variable.
The basic types are natural numbers, integers, real numbers, Booleans, strings
and enumerations. Type constructors operate on existing types to create struc-
tured types. χ uses type constructors to create sets, lists, array tuples, record

4 This is a very short paper. It only presented the syntax and semantics of χ in a very
informal way. Also, no deduction rules of χ and their usefulness were discussed and no
analysis example was given in such a paper.

5 For instance, recursive definitions, operators used for scoping and communication,
process definition and process instantiation are not treated in this paper.
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tuples, dictionaries, functions and distributions (for stochastic models). Chan-
nels also have a type that indicates the type of data that is communicated via
the channel. Pure synchronization channels, that do not communicate data, are
of the predefined type void.

Time model: The time in χ is dense. So, timing is measured on a continuous time
scale. χ has a strong time determinism principle. This means that passage of
time cannot result in making a choice between the two operands of the choice.
Also, the maximal progress (a process can delay only if it cannot do anything
else) is not implicit in χ.

Synchronization and communication model: In χ, the synchronization and
communication mechanism are based on CSP [33]. This means that, although
a channel can be used in any number of processes, synchronization or communi-
cation always occurs on a point-to-point basis, i.e. synchronization or communi-
cation always occurs between exactly two processes. Also, this synchronization
or communication mechanism is widely used in the hardware design community
for modeling asynchronous circuits.

2.2 χ Specification

A χ specification (restricted to the use in this paper) is of the following form:

〈 disc s1, . . . , sk
, chan h1, . . . , hl

, i
| p
〉

where

• s1, . . . , sk denote the discrete variables;

• h1, . . . , hl denote the channels;

• i denotes an initialization predicate that restricts the allowed values of the vari-
ables initially;

• p is a process term defining the behavior of the specification.

Notice that the keywords disc and chan are omitted where there are no discrete
variable declarations and are no channel declarations, respectively. Also, the initia-
lization predicate may be omitted, indicating a predicate that always holds.

The set P of process terms p ∈ P (for the use in this paper) is defined according
to the following grammar:

p ::= skip | xn := en | δ | ⊥ | ∆d | [p] | u y p | p; p
| b → p | p [] p | p ‖ p | h !!en | h ??xn | ∂A(p) | ∗p
| |[ disc sk, chan hm, i | p ]|



908 K. L. Man

Here, xn and en are a list of variables x1, . . . , xn (i.e. xn ) and a list of expres-
sions e1, . . . , en (i.e. en), respectively. d ∈ R≥0, b denotes a guard (i.e. a Boolean
expression) and u represents a predicate. h is a channel and A represents a set
of actions. Moreover, sk, hm and i are local discrete variables, local channels and
an initialization predicate predicate, respectively.

In χ, it is allowed to use common arithmetic operators (e.g. +,−), relational
operators (e.g. =,≥) and logical operators (e.g. ∧,∨) as in mathematics to construct
expressions over variables.

The operators are listed in descending order of their binding strength as follows:
{→ ,y}, ; , {‖, []}. The operators inside the braces have equal binding strength. In
addition, operators of equal binding strength associate to the right, and parentheses
may be used to group expressions. For example, p; q ; r means p; (q ; r), where
p, q, r ∈ P .

2.3 Concise Explanation of the Syntax

Atomic Process Terms

The atomic process terms of χ are undelayable process term constructors that cannot
be split into smaller process terms. They are:

1. The skip process term skip . It can only perform an internal action τ to termi-
nation.

2. The multi-assignment process term xn := en. It assigns the values of expressions
e1, . . . , en to variables x1, . . . , xn, respectively, in an atomic way.

3. The deadlock process term δ. It cannot perform any actions or delays, but it is
consistent (in the state).

4. The inconsistent process term ⊥. It is inconsistent in all states.

5. The send process term h !!en. It sends the values (must be defined) of expressions
e1, . . . , en via channel h by means of internal send actions.

6. The receive process term h ??xn. It receives values (of size n) via the channel h
and assigns them to the variables x1, . . . , xn by means of internal receive actions.

Operators

Atomic process terms can be combined using the following operators. The operators
are:

1. The delay operator ∆d denotes a process term that first delays for d time units,
and then terminates by means of the internal action τ .

2. The signal emission operator u y p, where u denotes a predicate, behaves as p
for those states where u holds. The process term is inconsistent in the state for
which u does not hold.
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3. The sequential composition of process terms p and q (i.e. p; q) behaves as process
term p until p terminates, and then continues to behave as process term q ∈ P .

4. By means of the any delay operator [p], delay behavior of arbitrary duration can
be specified. The resulting behavior is such that arbitrary delays are allowed.
As a consequence, any delay behavior of p is neglected. The action behavior of
p remains unchanged.

5. The guarded process term b → p can perform whatever actions p can perform
under the condition that the guard b (a Boolean expression) evaluates to true
in the current state. The guarded process term can delay according to p under
the condition that the guard b holds. The guarded process term can perform
arbitrary delays under the condition that the guard b does not hold.

6. The alternative composition of process terms p and q (i.e. p [] q) allows a non-
deterministic choice between different actions of the process term either p or q.
With respect to time behavior, the participants in the alternative composition
have to synchronize.

7. The parallel composition of process terms p and q (i.e. p ‖ q) executes p and q
concurrently in an interleaved fashion with the possibility of synchronization or
communication (in a CSP based) between p and q. Also, with respect to time
behavior, the participants in the parallel composition have to synchronize.

8. The encapsulation operator ∂A(p) is introduced to block the actions that p can
perform from the set A.

9. The repetition process term ∗p represents the infinite repetition of process
term p.

10. Themodeling scope operator process term (used for hierarchical modeling) |[ disc
sk, chan hm, i | p ]| is used to declare a scope consisting of local discrete variables
sk (as an abbreviation of s1, . . . , sk), local channels hm (as an abbreviation of
h1, . . . , hm) and initialization predicate i.

2.4 Formal Semantics of χ

This subsection informally describes the formal semantics of χ. It is defined by
means of deduction rules in SOS style that associate a time transition system with
a χ process. Three different kinds of transition relations are defined, namely:

1. one associated with termination transition;

2. one associated with action transition (for discrete action);

3. one associated with time transition (delay behavior).

3 CORRECTNESS OF χ SPECIFICATIONS

As we already mentioned in Section 2 the formal semantics of χ is defined by means
of deduction rules in SOS style. These deduction rules ensure the correctness of
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χ specifications and can help modelers make correct specifications. In this section,
for illustration purposes, we define some deduction rules (only for the use in this
section to give the first impression of such deduction rules to the reader) and show
their use through some toy examples in χ.

For those who have computer science background, this section can be left out.

3.1 Deduction Rules

Here, we define several deduction rules for atomic process term: multi-assignment;
and operators: sequential composition, alternative composition and parallel compo-
sition by leveraging “very high” abstraction to the original deduction rules for such
atomic process term and operators given in [7].

For the set P of process terms p ∈ P (for the use in this subsection), we have:

p ::= xn := en | p; p | p [] p | p ‖ p.

We further define the following deduction rules:

xn := en −→ X
1

p −→ X

p; q −→ q
2

p −→ X

p [] q −→ X
3

p −→ X

q [] p −→ X
4

p −→ X

p ‖ q −→ q
5

p −→ X

q ‖ p −→ q
6.

The above deduction rules (of the form premise

conclusion
) have two parts: on the top of the

bar we put premise of the rule, and below it the conclusion. If the premise holds,
then we infer that the conclusion holds as well. Moreover, −→ and X are used to
represent a transition and a terminated process, respectively.

Rule 1 states that xn := en can always perform a transition to a terminated
process (i.e. successful termination). The sequential composition of the process
terms p and q (i.e. p; q) behaves as process term p until p terminates, and then
continues to behave as process term q (see Rule 2). The effect of applying the
alternative operator to the process terms p and q (i.e. p [] q) is that the execution
of a transition by either one of them results in a definite choice as shown in Rules 3
and 4. The parallel composition of the process terms p and q (i.e. p ‖ q) has as its
behavior with respect to transitions the interleaving of the behaviors of p and q (see
Rules 5 and 6).

3.2 Running Examples

Using the above deduction rules, for instance, we can prove that:

1. Process term xn := en ; (x
′
n := e′n [] x′′

n := e′′n) can terminate successfully after
a finite number of transitions.
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• Proof: According to Rule 1, xn := en can always perform a transition to
a terminated process. Due to this, we can apply Rule 2 to obtain xn :=
en ; (x

′
n := e′n [] x

′′
n := e′′n) −→ x′

n := e′n [] x
′′
n := e′′n. Using Rule 1 together

with either Rule 3 or Rule 4, we can further have x′
n := e′n [] x

′′
n := e′′n −→X.

2. Process term (xn := en ‖ x′
n := e′n); x

′′
n := e′′n cannot terminate successfully

in two transitions.

• Proof: We assume to have (xn := en ‖ x′
n := e′n); x

′′
n := e′′n −→ x′′

n :=
e′′n −→ X according to Rules 1 and 2. This means that we must have the
transition xn := en ‖ x′

n := e′n −→ X as a premise necessarily. However, this
is not possible due to Rules 5 and 6.

3.3 Properties

We can also deduce some properties (that add to the level of confidence one has
with respect to the correctness of the formal semantics) for all specifications that
can be generated by the set P of process terms according to the deduction rules
as defined in Subsection 3.1. For instance, we can have the following properties for
equivalence:

• p [] q = q [] p and p ‖ q = q ‖ p (so-called commutativity property);

• p@(q@r) = (p@q)@r, for @ ∈ {; , [], ‖} (so-called associativity property).

Using properties, we can rewrite a χ specification to a simpler form. This can
be advantageous for many forms of analysis. As we already mentioned, in the field
of process algebras, this is so-called algebraic reasoning.

4 FORMAL χ SPECIFICATION OF HARDWARE SYSTEMS

This section presents some samples (modeling several benchmark hardware systems)
of the applications of χ.

4.1 MUX

In hardware systems, a multiplexer (MUX) is a device that encodes information
from two or more data input into a single output (i.e. multiplexers function as
multiple-input and single-output switches).

A multiplexer shown in Figure 1 has two inputs (a and b) and a selector (sel)
that connects a specific input to the single output (y). Below is the χ specification
of such a MUX:

〈 disc a, b, sel, y
, a = true, b = false, sel = true, y = true
| ∗(MUX ‖ SEL ‖ A ‖ B)
〉,
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sel

a

b

yMUX

Fig. 1. A MUX

MUX ≈ sel → y := a [] ¬sel → y := b,

SEL ≈ ∆3; (¬sel− → sel := true [] sel− → sel := false),

A ≈ ∆6; (¬a− → a := true [] a− → a := false),

B ≈ ∆9; (¬b− → b := true [] b− → b := false).

The complete system is modeled by a repetition of the parallel composition of process
terms MUX, SEL, A and B. The process term SEL assigns the selected input
(either a or b) to the output y. The process terms SEL, A and B model the behavior
of the variables sel, a and b with the frequency of 3, 6 and 9 time units (swapping
the values between “true and false”) respectively.

Note that all variables used in the χ specification are the type of Boolean variab-
les and x− denotes the value of variable x before execution of an discrete action.

4.2 A D Flip-Flop

D flip-flops are among the basic building blocks of Register-Transfer Level (RTL)
designs. A D flip-flop has a clock input (clk) in the sensitivity list, a data input (d)
and a data output (Q).

When a positive or negative edge occurs in the clock signal (which means that
(clk∧¬clk−)∨ (clk−∧¬clk)), the value of input port d is assigned to output port Q.

Figure 2 depicts such a D flip-flop.
A χ specification is given as follows:

〈 disc d,Q, clk
, d = true,Q = true, clk = false
| ∗(DFF ‖ (CLKa [] CLK7))
〉,

DFF ≈ (clk ∧ ¬clk−) ∨ (clk− ∧ ¬clk) → Q := d,

CLKa ≈ [SWITCH; INPUT],

CLK7 ≈ ∆7; SWITCH; INPUT,
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d

clk

Q

Fig. 2. A D flip-flop

SWITCH ≈ ¬clk− → clk := true [] clk− → clk := false,

INPUT ≈ d := true [] d := false.

In the χ specification, clk, d and Q are modeled by Boolean variables. The com-
plete system is modeled by a repetition of the parallel composition of process terms
DFF and a choice between process terms CLKa and CLK7. The process term DFF
describes the behavior of the D flip-flop. When a positive or negative edge occurs
in clk, the value of d is assigned to Q. Otherwise, it performs an arbitrary delay.

The process terms CLKa and CLK7 model the behavior of the clock clk with the
frequency of arbitrary and 7 time units respectively. The switching from positive
edge to negative edge or vice verse is modeled by the process term SWITCH. A non-
deterministic choice of the clock frequency (any value) for at most 7 time units is
assigned to clk by means of the alternative composition of CLKa and CLK7 (i.e.
CLKa [] CLK7).

In the process term CLKa, the any delay operator [ ] is needed to apply to
SWITCH; INPUT, because otherwise CLKa [] CLK7 may not delay together for
at most 7 time units (as already explained in Section 2 that χ a has strong time
determinism principle). For simulation purposes, a test-bench of d (assigning a value
“true” or “false” to d arbitrarily) is given by the process term INPUT.

4.3 An Asynchronous Arbiter

Asynchronous arbiter circuits are standard hardware verification benchmark circuits.
An arbiter circuit controls the exclusive access of one out of a number possibly
competing processes to a shared resource.

Figure 3 shows an (untimed) asynchronous arbiter (taken from [24]) such that
two clients (client-1 and client-2) complete for a shared resource. Each client sends
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a request (a number 1 for client-1 and a number 2 for client-2) for the resource to
the arbiter via an individual channel (a and b).

The arbiter chooses non-deterministically between clients with pending requests,
and then sends the number of the selected client-(1 or 2) via another channel (c) to
the environment.

client−1

client−2

a
c

arbiter

b

Fig. 3. An asynchronous arbiter

A χ specification is given as follows:

〈 disc x
, chan a, b, c
, x = 0
| ∗(∂A(CLI1 ‖ CLI2 ‖ ARB))
〉,

CLI1 ≈ a !! 1, CLI2 ≈ b !! 2,

ARB ≈ (a ?? x [] b ?? x); c !! x.

The process terms CLI1, CLI2 and ARB model the behavior of the client-1,
client-2 and arbiter, respectively, as described above. The encapsulation operator
is applied to CLI1 ‖ CLI2 ‖ ARB to block some undesired internal send and receive
actions (specified in the set A) via channels a and b. This means that only successful
communication actions via channels a and b are allowed.

4.4 Remarks

The examples given in this section are used to show the applicability of χ for hard-
ware system modeling and develop an insight into the essential (χ) features needed
for specifying hardware systems. For simplicity of reasoning, concrete delays are
used in most of the examples. Nevertheless, arbitrary delay and delay of any dura-
tion can be easily modeled in χ using the any delay operator ([ ]) and/or by means of
the predefined reserved global variable time (see Section 5 for details). For instance,
according to the semantics of χ, the process term [skip] can perform an arbitrary
delay and even a delay forever. However, as soon as the process term skip performs
the internal action τ (but it does not have to) to termination, the arbitrary delay
behavior of [skip] is neglected.
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In order to illustrate our work clearly, only simple hardware systems in χ
are given in this section. Nevertheless, the use of χ is generally applicable to all
sizes and levels of hardware systems. It is important to note that over the years,
timed Chi, hybrid Chi and their predecessors are being/have been widely used in
industry for modeling and analyzing complex systems (for example, we refer to
[9, 10, 11, 12]).

5 FORMAL ANALYSIS OF A χ SPECIFICATION

As we have shown in Section 4 χ can be used to formally represent hardware system
designs. Therefore, for illustration purposes, we formally analyze (an assertion of)
a simple arbiter described in χ.

5.1 A simple arbiter

In general, the role of an arbiter is to grant access to the shared resource by raising
the corresponding grant signal and keeping it that way until the request signal is
removed. A test for such an arbiter can be generated by an assertion as follows:

“assertion : grant ∧ request”.

If the assertion holds, this means that the arbiter work as expected. Using common
(temporal) logics (e.g. CTL [39] and LTL [36]), such an assertion can be expressed
(and considered) as a liveness property of the arbiter. As mentioned already in
Section 1, we aim to analyze the arbiter by means of a complete mathematical
proof in this paper. Nevertheless, Section 6 includes a few guidelines for verifying
properties of χ specifications using temporal logics.

5.2 Analysis Approach

We can formally analyze (the assertion of) the arbiter described above by means
of a complete mathematical proof via transition traces according to deduction rules
defined for χ. In order to show such a formal proof, we need to provide deduction
rules for some χ atomic process terms and operators in this subsection.

It is not our intention (also due to the reason of space) to give all χ deduction
rules defined in [7]. In this subsection, we define a minimum set of deduction rules
for atomic process terms and operators (in a restricted setting that is needed for
the formal proof in the following subsection) by leveraging “very high” abstraction
and simplification to the original deduction rules for such atomic process terms and
operators defined in [7]. Also, this restricted setting of deduction rules does not
support any synchronization/communication mechanism. So, the set of channels is
not assumed and is not used in this restricted setting of deduction rules.
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Data Types

In order to define the deduction rules, we need to make some assumptions about
the data types:

1. Let Var denote the set of all variables (x0, . . . , xn, time). Besides the variables
x0, . . . , xn, the existence of the predefined reserved global variable time which
denotes the current time, the value of which is initially zero, is assumed. This
variable cannot be declared.

2. Let Value denote the set of all possible values (v0, . . . , vm,⊥) that contains at
least all Reals, all Booleans and ⊥, where ⊥ denotes the “undefinedness”.

3. We then define a valuation as a partial function from variables to values. Syntac-
tically, a valuation is denoted by a set of pairs {x0 7→ v0, . . . , xn, 7→ vn,time 7→ t},
where xi ∈ Var represents a variable and vi ∈ Value its associating value; and
t ∈ R≥0.

4. Further to this, the set of all valuations is denoted by Σ.

Convention

To allow more intuitive specifications, a more user-friendly syntax for a χ specifi-
cation was given in Subsection 2.2. Such a χ specification is just an abbreviation
for the set of χ processes described using formal χ syntax (see [7] for details). For
the formal proof in the following subsection, we also need to present the formal χ
syntax.

For simplicity, formal χ syntax presented here is also in a sort of restricted
setting, which is limited to the use and the need of the formal proof in the following
subsection. For the complete formal χ syntax, we refer to [7].

Formal Syntax

A χ process is a pair 〈P,Σ〉 and we use the convention 〈p, σ〉 to write a χ process,
where p ∈ P (as defined in Subsection 2.2) and σ ∈ Σ.

Formal Semantics

We give a formal semantics to the formal syntax defined above for χ, by constructing
a kind of time transition system (TTS), for each process term and each possible
valuation of variables.

Definition 1. The set of actions Aτ contains at least aa(xn, vn) and τ , where
aa(xn, vn) is the assignment action (i.e. the values of v1, . . . , vn ∈ Value are cor-
respondingly assigned to variables x1, . . . , xn ∈ Var in an atomic way) and τ is the
internal action. The set Aτ is considered as a parameter of χ that can be freely
instantiated.
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Definition 2. We give a formal semantics for χ processes in terms of a time tran-
sition system (TTS), and define the following transition relations on processes of
χ:

• −→ 〈X, 〉 ⊆ (P ×Σ)×Aτ ×Σ, denotes termination, where X is used to indicate
a successful termination, and X is not a process term;

• −→ ⊆ (P × Σ)× Aτ × (P × Σ), denotes action transition;

• 7−→ ⊆ (P × Σ)× R≥0 × (P × Σ), denotes time transition (so-called delay).

For p,p′ ∈ P ; σ,σ′ ∈Σ, a∈Aτ and d ∈R>0, the three kinds of transition relations
can be explained as follows:

1. Firstly, a termination 〈p, σ〉
a
−→ 〈X, σ′〉 is that the process executes the action a

followed by termination.

2. Secondly, an action transition 〈p, σ〉
a
−→ 〈p′, σ′〉 is that the process 〈p, σ〉 executes

the action a starting with the current valuation σ and by this execution p evolves
into p′, where σ′ represents the accompanying valuation of the process after the
action a is executed.

3. Thirdly, a time transition 〈p, σ〉
d

7−→ 〈p′, σ′〉 is that the process 〈p, σ〉 may idle
during a d time units and then behaves like 〈p′, σ′〉.

Deduction Rules

We define several deduction rules (for some atomic process terms and operators)
that are specifically used and needed in the proof of the following subsection.

In the deduction rules below, we assume that the value of variables occurring in
a process term are not allowed to change in action transitions, unless their changes
are explicitly specified, for example by means of assigning a new value to such
a variable.

Multi-assignment

〈xn := en, σ〉
aa(xn,σ̄(en))
−−−−−−−→ 〈X, σ[σ̄(en)/xn]〉

7

By means of a multi-assignment (see Rule 7), the values of e1, . . . , en are assigned
to x1 . . . , xn. Notice that σ[σ̄(en)/xn] denotes the update of valuation σ such that
the new values σ̄(e1), . . . , σ̄(en) are assigned to x1, . . . , xn, respectively, in an atomic
way.

Delay

n = 0

〈∆n, σ〉
τ
−→ 〈X, σ〉

8
d ≤ n

〈∆n, σ〉
d

7−→ 〈∆(n− d), σ〉
9
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Rule 8 is used to model a delay of 0 duration by means of performing the internal τ
action. Rule 9 states that a delay process term can perform a delay which is smaller
than or equal to the value of the argument of the delay process term, and has no
effect on the valuation.

Sequential composition

〈p, σ〉
a
−→ 〈X, σ′〉

〈p; q, σ〉
a
−→ 〈q, σ′〉

10
〈p, σ〉

a
−→ 〈p′, σ′〉

〈p; q, σ〉
a
−→ 〈p′ ; q, σ′〉

11

〈p, σ〉
d

7−→ 〈p′, σ′〉

〈p; q, σ〉
d

7−→ 〈p′ ; q, σ′〉
12

The process term q is executed after (successful) termination of the process term p
as defined by Rules 10, 11 and 12.

Guard

〈p, σ〉
a
−→ 〈X, σ′〉, σ |= b

〈b → p, σ〉
a
−→ 〈X, σ′〉

13
〈p, σ〉

a
−→ 〈p′, σ′〉, σ |= b

〈b → p, σ〉
a
−→ 〈p′, σ′〉

14

If b evaluates to true in σ (denoted by σ |= b), for termination and action transition,
the guarded process term (i.e. b → p) behaves as process term p (see from Rule 13
to Rule 14).

Parallel composition

〈p, σ〉
a
−→ 〈X, σ′〉

〈p ‖ q, σ〉
a
−→ 〈q, σ′〉

15
〈q, σ〉

a
−→ 〈X, σ′〉

〈p ‖ q, σ〉
a
−→ 〈p, σ′〉

16

〈p, σ〉
a
−→ 〈p′, σ′〉

〈p ‖ q, σ〉
a
−→ 〈p′ ‖ q, σ′〉

17
〈q, σ〉

a
−→ 〈q′, σ′〉

〈p ‖ q, σ〉
a
−→ 〈p ‖ q′, σ′〉

18

〈p, σ〉
d

7−→ 〈p′, σ′〉, 〈q, σ〉
d

7−→ 〈q′, σ′〉

〈p ‖ q, σ〉
d

7−→ 〈p′ ‖ q′, σ′〉
19

The parallel composition of the process terms p and q (i.e. p ‖ q) has as its behavior
with respect to action transitions the interleaving of the behaviors of process terms p
and q (see Rules from 15 to 18).

If both process terms p and q can perform the same delay, then the parallel
composition of process terms p and q (i.e. p ‖ q) can also perform that delay, as
defined by Rule 19.
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Repetition

〈p, σ〉
a
−→ 〈X, σ′〉

〈∗p, σ〉
a
−→ 〈∗p, σ′〉

20
〈p, σ〉

a
−→ 〈p′, σ′〉

〈∗p, σ〉
a
−→ 〈p′; ∗p, σ′〉

21

〈p, σ〉
d

7−→ 〈p′, σ′〉

〈∗p, σ〉
d

7−→ 〈p′; ∗p, σ′〉
22

Rule 20 states that a repetition process term ∗p repeats itself if its argument (i.e. p)
terminates. Rule 21 states that if the process term p can perform an action transition
or time transition, then the repetition process term ∗p can also perform that action
transition or time transition followed by its repetition (i.e. p′; ∗p).

χ Properties

To apply algebraic reasoning to ease the formal proof in the following subsection,
we list several χ properties that are used in such a formal proof. For p, q, r ∈ P , we
have:

1. false → p = true, in case a process term is guarded by a false predicate, process
term false → p can perform any time transition, hence equals a true predicate.

2. (p; q); r = p; (q ; r), the sequential composition is associative.

3. p ‖ q = q ‖ p, the parallel composition is commutative.

4. (p ‖ q) ‖ r = p ‖ (q ‖ r), the parallel composition is associative.

5.3 Formal Specification of the Arbiter

Below is a χ specification (in formal χ syntax) of the simple arbiter as described in
Subsection 5.1:

〈 INIT; ∗(ARB ‖ CLK ‖ ASSER), σ 〉, where

INIT ≈ clk , grant , request := false, false, false
ARB ≈ R1 ; G; R0

R1 ≈ ∆4; request := true
G ≈ ∆4; grant := true
R0 ≈ ∆4; request := false
CLK ≈ ∆5; clkc, clk := clk ,¬clk

ASSER ≈ ¬clkc
− ∧ clk− ∧ grant−∧

request− → t := time

σ = {clk = clkc = grant = request = t 7→ ⊥, time 7→ 0}.

The χ specification of the arbiter is a sequential composition of the process terms
INIT and the repetition of the parallel composition of process terms ARB, CLK and
ASSER:
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• INIT – It assigns the initial values to variables clk , clkc, grant and request (i.e.
the initialization).

• ARB – It models the change of behavior of variables clk , clkc, grant and request

according to time.

• CLK – It models the behavior of a clock (i.e. clk) which swaps the values between
“false” and “true” every 5 time units.

• ASSER – It expresses the assertion for the arbiter (as indicated above). Also,
it models the fact that the test of the assertion is executed whenever there is
a positive change in clk . When this happens, the current time is assigned to the
variable t.

In the process term CLK, variable clkc is introduced (as a copy of clkc) to save
the temporary value of clk , which is used to model event change on the variable clk
(i.e. event controls).

5.4 Formal Proof Via Transition Traces

To increase the readability of the following formal proof:

• We often apply the commutativity property and associativity property of the
parallel composition without explicitly referring to the deduction rules and such
properties.

• Also, we do not specifically mention which assignment actions are used in the
action transitions. We just mention them as some actions a.

• Several unimportant brackets are introduced to group expressions, which may
help the reader follow the proof in a more intuitive way.

• We need to keep in mind that the process term ¬clkc
−∧ clk−∧ grant−∧ request−

→ t := time (i.e. the process term ASSER) performs arbitrary delay whenever
the guard ¬clkc

− ∧ clk− ∧ grant− ∧ request− does not hold in the state (i.e. the
application of the property: false→ p = true). We do not mention this again in
the formal proof.

• In the following proof, we only consider the maximum duration for a possible
time transition and the transitions of intermediate time points for such a time

transition are not shown. For example, we only show 〈∆5, σ〉
5

7−→ 〈∆0, σ〉 and

not 〈∆5, σ〉
ti7−→, . . . ,

tj
7−→ 〈∆0, σ〉 for some ti, tj ∈ R>0 such that ti + . . .+ tj = 5.

Formal Proof

1. We start with the process below:

〈INIT; ∗(ARB ‖ CLK ‖ ASSER), σ〉.
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2. Applying Rules 7 and 10, we obtain:

〈INIT; ∗(ARB ‖CLK ‖ASSER), σ〉
a
−→〈∗(ARB ‖CLK ‖ASSER), σ1〉,where σ1 =

{clk = grant = request 7→ false, clkc 7→ ⊥, t 7→ ⊥, time 7→ 0}.

3. Due to Rules 22, 20, 8 and 17, the process has to perform a time transition of 4
time units and then to execute the internal action τ as follows:

〈∗(ARB ‖ CLK ‖ ASSER), σ1〉
4

7−→
τ
−→ 〈(request := true; G; R0 ‖ ∆1; clkc , clk :=

clk ,¬clk ‖ ASSER); ∗(ARB ‖ CLK ‖ ASSER), σ2〉, where σ2 = {clk = grant =
request 7→ false, clkc 7→ ⊥, t 7→ ⊥, time 7→ 4}.

4. Followed by Rules 22, 10 and 7, we have:

〈(request := true; G; R0 ‖ ∆1; clkc, clk := clk ,¬clk ‖ ASSER); ∗(ARB ‖ CLK ‖
ASSER), σ2〉

a
−→ 〈(G; R0 ‖ ∆1; clkc , clk := clk ,¬clk ‖ ASSER); ∗(ARB ‖ CLK ‖

ASSER), σ3〉, where σ3 = {clk = grant 7→ false, request 7→ true, clkc 7→ ⊥, t 7→
⊥, time 7→ 4}.

5. Using Rules 12 together with 19, 17, 10 and 8, we get:

〈(G; R0 ‖ ∆1; clkc, clk := clk ,¬clk ‖ ASSER); ∗(ARB ‖ CLK ‖ ASSER), σ3〉
1

7−→
τ
−→ 〈(∆3; grant := true; R0 ‖ clkc, clk := clk ,¬clk ‖ASSER); ∗(ARB ‖CLK ‖

ASSER), σ4〉, where σ4 = {clk = grant 7→ false, request 7→ true, clkc 7→ ⊥, t 7→
⊥, time 7→ 5}.

6. Similarly, applying Rules 11, 15 and 7, we obtain:

〈(∆3; grant := true; R0 ‖ clkc, clk := clk , ¬clk ‖ ASSER); ∗(ARB ‖ CLK ‖
ASSER), σ4〉

a
7−→ 〈(∆3; grant := true; R0 ‖ASSER); ∗(ARB ‖CLK ‖ASSER), σ5

〉, where σ5 = {grant 7→ false, clk 7→ true, request 7→ true, clkc 7→ false, t 7→ ⊥,
time 7→ 5}.

7. By Rules 12, 19, 17, 10 and 9, we achieve:

〈(∆3; grant := true; R0 ‖ ASSER); ∗(ARB ‖ CLK ‖ ASSER), σ5〉
3

7−→
τ
−→ 〈(grant

:= true; R0 ‖ ASSER); ∗(ARB ‖ CLK ‖ ASSER), σ6〉 ,where σ6 = {grant 7→
false, clk 7→ true, request 7→ false, clkc 7→ false, t 7→ ⊥, time 7→ 8}.

8. Again, using Rules 11, 17, 10 and 7, we obtain:

〈(grant := true; R0 ‖ASSER) ; ∗(ARB ‖CLK ‖ASSER), σ6〉
a
−→ 〈(R0 ‖ASSER);

∗(ARB ‖ CLK ‖ ASSER), σ7〉, where σ7 = {grant 7→ true, clk 7→ true, request 7→
false, clkc 7→ false, t 7→ ⊥, time 7→ 8}.

9. At this stage, the guard ¬clkc
− ∧ clk− ∧ grant− ∧ request− in the process term

ASSER holds. So, by means of applying Rules 11, 16, 13 and 7, we have:

〈(R0 ‖ ASSER); ∗(ARB ‖ CLK ‖ ASSER), σ7〉
a
−→ 〈R0 ; ∗(ARB ‖ CLK ‖ ASSER),

σ8 〉, where σ8 = {grant 7→ true, clk = true, request 7→ true, clkc 7→ false, t 7→
8, time 7→ 8}.

10. Following the same fashion, more transition traces can be performed according
to the deduction rules.
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5.5 Achievement

In σ8, the variable t is mapped to the value of the current time (when the property
is checked). This also means that the property holds, i.e. the arbiter worked as
expected at least for “one time”.

5.6 Hardware Description of the Arbiter

For those who are familiar with hardware description languages, the formal χ specifi-
cation of the arbiter presented in Subsection 5.3 can be regarded as the mathematical
model of the below hardware description of the arbiter in Verilog.

module assert();

reg clk, grant, request;

time current_time;

initial begin

clk = 0;

grant = 0;

request = 0;

#4 request = 1;

#4 grant = 1;

#4 request = 0;

#4 $finish;

end

always #5 clk = ~ clk;

always @ (posedge clk)

begin

if (grant == 1 && request == 1) begin

current_time = $time;

$display {‘‘working as expected’’);

end

end

endmodule

6 OTHER ANALYSIS TECHNIQUES FOR χ

Using the deduction rules and properties of χ to analyze χ specifications may not
be intuitive to those who have not a strong computer science background, because
rewriting of the specifications (based on the properties) and formal reasoning (based
on the deduction rules) have to be made. Nevertheless, this analysis approach (by
means of deduction rules and properties) is one of many analysis possibilities offered
by χ.

Hence, in this section, we survey various approaches that can be effectively used
for the analysis of hardware systems described in χ (for different analysis purposes).
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• In process algebras, linearization is a transformation of a recursive specification
into a linear representation, i.e., a kind of normal form that is convenient for
many forms of analysis. Note that these linear representations are expressed
as recursive specifications as well, but they use only a small subset of the full
process algebra. In general, such linear representations can also be considered
very compact representations of a possibly infinite state space. The original
recursive specification and its transformation are required to be bisimilar, which
ensures that the relevant specification properties are preserved. Some algorithms
for linearization of hybrid Chi have already been developed (see [25, 26] for
details). These algorithms can be reasonably easily adopted for χ.

• We can use χ tools for simulation and verification of χ specifications. Below is
a summary for χ tools:

χ simulator: a simulator for χ specifications was built (based on the formal
semantics of χ).

χ translators: automatic translation tools, which convert χ specifications to
the corresponding models/specifications in mCRL (their AUT formats can
be verified by CADP), PROMELA (the input language of SPIN) and timed
automata (the input language of UPPAAL). In addition:

1. The correctness proof of the translations from (a subset of) χ to PROME-
LA and from χ to timed automata were given in [5] and [8] respectively.
It is proved that any transition of a χ specification can be mimicked by
a transition in the corresponding PROMELA model and timed automa-
ton model, which indicates that translations as defined are correct. These
also mean that relevant properties of χ specifications are preserved in the
translations.

2. Due to the translation from a χ to the PROMELA is correct, property
(e.g. safety and liveness) expressed in temporal logic LTL (which is the
type of temporal logic used for verification in SPIN) can be verified in
the translated χ specification in PROMELA using SPIN. If the property
holds, this also implies/relating back that such a property (regardless of
the form of representation) should hold in the original χ specification
because of the preservativity of the translation.

3. Similar approach can be applied to verify properties expressed in
TLTL [37] in a χ specification via the formal translation from χ to timed
automata using UPPAAL.

Availability: simulator, translation tools and manuals of χ can be found in [38].

7 CONCLUSIONS

χ can be reasonably and effectively used to give formal specifications of hardware
systems and possibly to analyze them as indicated in this paper.
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In our opinion, with respect to common hardware description languages (e.g.
VHDL and Verilog), χ can precisely describe the behavior of hardware systems in
a complete mathematical way. Prior to χ, from literature, several process algebra
based formalisms (e.g. CHP [24]) were used to give formal specifications of hardware
systems. In addition to those formalisms, χ enhances strength for formal specifica-
tion, because χ has a comprehensive set of operators that enables process re-use,
encapsulation, hierarchical and/or modular composition of processes, etc.

Furthermore, χ has a rich set of support tools. Referring to the χ specifications
provided in Section 4, we can simulate the dynamic behavior of the MUX and D
flip-flop using the χ simulator. For the asynchronous arbiter, we can translate such
a χ specification to the corresponding PROMELA model using the χ automatic
translation tool and then apply the model checker SPIN to verify some safety prop-
erties (e.g. whether the mutual exclusion is valid) on the translated χ specification in
PROMELA. A complete mathematical proof for the assertion of the simple arbiter
was already given in Subsection 5.4.

Recently, several other timed process algebras have been developed (e.g.
SystemCFL [42, 43] and PAFSV [45]) that can also be used for formal specifica-
tion and analysis of hardware systems. Our future work will focus on a comparative
study between χ and such other timed process algebras.

8 AVAILABILITY

For research purposes, we would be pleased to receive interesting case studies on
formal specification and analysis of hardware systems from anyone working in this
area.

For more information, please send mail to pafesd@gmail.com or visit PAFESD
website http://digilander.libero.it/pafesd/.
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