
Computing and Informatics, Vol. 29, 2010, 467–487

PARALLEL IMPLEMENTATION OF RELATIONAL
ALGEBRA OPERATIONS ON A MULTI-COMPARAND
ASSOCIATIVE MACHINE

Anna Shmilevna Nepomniaschaya

Institute of Computational Mathematics and Mathematical Geophysics

Siberian Division of the Russian Academy of Sciences

pr. Lavrentieva 6

630090 Novosibirsk, Russia

e-mail: anep@ssd.sscc.ru

Manuscript received 4 October 2008; revised 8 December 2009

Communicated by Ivan Plander

Abstract. In this paper, we propose a new multi-comparand associative machine

(MCA-machine) and its application to relational algebra operations. We first offer
a new efficient associative algorithm for the multi-comparand parallel search. It ge-
neralizes the Falkoff associative algorithm that performs a parallel search in a matrix
based on the exact match with a given pattern. Then we apply the new associa-
tive algorithm to implement one group of the relational algebra operations on the
MCA-machine. Then, we propose efficient associative algorithms for implementing
another group of the relational algebra operations. The proposed algorithms are
represented as corresponding procedures for the MCA-machine. We prove their
correctness and evaluate their time complexity.

Keywords: SIMD architecture, data parallelism, operation of the exact match, as-
sociative parallel processor, bit-serial processing, bit-parallel processing, associative
parallel algorithm

Mathematics Subject Classification 2000: 68-XX, 68U99

468 A. S. Nepomniaschaya

1 INTRODUCTION

Associative (content addressable) parallel processors of the SIMD type with simple
processing elements are ideally suited for performing fast parallel search operations
being used in different applications such as graph theory, computational geometry,
relational database processing, image processing, and genome matching. In [19],
the search and data selection algorithms for both bit-serial and fully parallel as-
sociative processors were described. In [5], the depth search machines and their
applications to computational geometry, relational databases, and expert systems
were investigated. In [6, 7], an experimental implementation of a multi-comparand
multi-search associative processor and some parallel algorithms for search problems
in computational geometry were considered. In [11], a formal model of associative
parallel processors called the associative graph machine (AG-machine) and its possi-
ble hardware implementation were proposed. It performs bit-serial and fully parallel
associative processing of matrices representing graphs as well as some basic set ope-
rations on matrices (sets of columns). The AG-machine differs from that in [7] due
to the presence of built-in operations designed for associative graph algorithms.

In [2, 9, 12, 18], the relational database processing on conventional associative
processors and specialized parallel processors were discussed. In [8], an experimental
architecture, called the optical content addressable parallel processor for the rela-
tional database processing, was devised. It supports the parallel relational database
processing by fully exploiting the parallelism of optics. In [4], different optical and
optoelectronic architectures for image processing and relational database processing
were reviewed.

In this paper, we propose a new multi-comparand associative machine (MCA-
machine) and show how this model can efficiently support classical operations in
relational databases. We first propose a new associative algorithm for the multi-
comparand search and its implementation on the MCA-machine. It generalizes the
Falkoff associative algorithm [1] that simultaneously selects those rows in a given
matrix that coincide with a given pattern. Then we consider applications of this
algorithm to representing one group of the relational algebra operations whose re-
sulting relation is a subset of the corresponding argument relations. After that we
propose efficient associative algorithms for implementing another group of the re-
lational algebra operations, where every operation assembles a new relation. The
proposed algorithms are given as corresponding procedures for the MCA-machine.
We prove their correctness and evaluate their time complexity.

2 A MODEL OF A MULTI-COMPARAND ASSOCIATIVE MACHINE

In this section, we first explain, why the new model is introduced.
By means of the STAR-machine [10], we have represented both the associative

versions of some classical graph algorithms (for example, [14–16]) and classical ope-
rations in relational databases [13]. The proposed associative algorithms utilize the
following properties of associative systems with vertical processing: data parallelism,

Parallel Implementation of Relational Algebra Operations 469

bit-serial processing, and access data by contents. To improve the time complexity
of associative graph algorithms, the AG-machine was proposed in [11]. It allows one
to use both the bit-serial and the bit-parallel processing. Due to the bit-parallel
processing, some parts of a given associative graph algorithm can be performed in
parallel [17]. To improve the time complexity of performing the relational algebra
operations, we have considered in [12] a modified version of the STAR-machine joined
with two hardware supports: the set intersection processor and the λ-processor.
The MCA-machine allows to implement the classical relational algebra operations
with the same time complexity as in the case of a modified version of the STAR-
machine [12].

We define the model as an abstract MCA-machine of the SIMD type with simple
single-bit processing elements (PEs). To simulate the access data by contents, the
MCA-machine uses both the typical operations for associative systems first presented
in Staran [3] and a group of new operations to perform the bit-parallel processing.

The model consists of the following components:

• a sequential common control unit (CU), where programs and scalar constants
are stored;

• an associative processing unit forming a two-dimensional array of single-bit PEs;

• a matrix memory for the associative processing unit.

The CU passes each instruction to all PEs in one unit of time. All active PEs
execute it simultaneously, while inactive PEs do not. Activation of a PE depends
on the data employed.

Input binary data are given in the form of two-dimensional tables, where each
datum occupies an individual row to be updated by a dedicated row of PEs. In any
table, rows are numbered from top to bottom and columns - from left to right.

The associative processing unit is represented as a matrix of single-bit PEs that
corresponds to the matrix of input binary data. Each column in the matrix of PEs
can be regarded as vertical register that maintains the entire column of a table.

To simulate data processing in the associative processing unit, we use the data
types slice and word for the bit column access and the bit row access, respectively,
and the type table for defining and updating matrices. We assume any variable of
the type slice to consist of n components. For simplicity, let us call slice any variable
of the type slice.

To perform bit-serial (vertical) processing, the MCA-machine employs the same
operations for slices as the STAR-machine [10] along with new operations FRST(Y)
and CONVERT(Y).

For the sake of completeness, we recall some elementary operations for slices
being used in this paper.

• SET(Y) simultaneously sets all components of the slice Y to ′1′;

• CLR(Y) simultaneously sets all components of Y to ′0′;

• FND(Y) returns the ordinal number of the first component ′1′ of Y ;

470 A. S. Nepomniaschaya

• STEP(Y) returns the same result as FND(Y), then resets the first found ′1′

to ′0′. For example, let Y = ′0100101′ and the statement k :=STEP(Y) be
performed. Then we obtain k = 2 and Y = ′0000101′;

• FRST(Y) saves the first (the uppermost) component ′1′ in the slice Y and sets
to ′0′ its other components. For example, let Y = ′0100101′ and the operation
FRST(Y) be performed. Then we obtain Y = ′0100000′;

• NUMB(Y) returns the number of components ′1′ in the slice Y ;

• MASK(Y, i, j) sets components ′1′ from the ith through the jth positions, inclu-
sively, and components ′0′ in other positions of the slice Y (1 ≤ i < j ≤ n);

• SHIFT(Y, down, k) moves the contents of Y by k positions down, placing each
component from the position i to the position i+ k (n− k ≥ i ≥ 1) and setting
components ′0′ from the first through the kth positions, inclusive;

• CONVERT(Y) returns a row whose every ith component (bit) coincides with
Y (i). It is applied when a column of one matrix is used as a comparand for
another matrix.

In the usual way, we introduce the predicates ZERO(Y) and SOME(Y) and the
bitwise Boolean operations: X and Y , X or Y , not Y , X xor Y .

The above-mentioned predicates and operations for slices, except SHIFT, are
also used for variables of the type word.

For a variable T of the type table, we use the following two operations:

• ROW(i, T) returns the ith row of the matrix T ;

• COL(i, T) returns the ith column of T .

To perform the bit-parallel processing, the MCA-machine uses two groups of new
elementary operations for variables of the type table. One group of such operations
is applied to a single binary matrix, while the other one is used for two binary
matrices of the same size. In any binary matrix, its rows can be masked by means
of a variable of the type slice, while its columns can be masked by means of a variable
of the type word.

Now we present the first group of elementary operations for matrices.
The operation SCOPY(T,X, v) simultaneously writes the given slice X into

the matrix T columns, which are marked with bit ′1′ in the comparand v.
The operation RCOPY(T, v,X) simultaneously writes the given word v into

the matrix T rows, which are marked with bit ′1′ in the slice X (Figure 1).
The operation FRST(row, T) simultaneously performs FRST(v) for every row v

of the matrix T and writes the result into T (Figure 2).
The operation FRST(col, T) simultaneously performs FRST(Y) for every co-

lumn Y of the matrix T and writes the result into T (Figure 2).
The operation SHIFT(T, down, k) simultaneously performs SHIFT(Y, down, k)

for all columns of the given matrix T .
Now, we present a group of logical operations for binary matrices. Every logical

operation will be used as the right part of the assignment statement.

Parallel Implementation of Relational Algebra Operations 471

T X
1 0 1 0 1
0 0 1 1 0
1 0 1 1 1
1 0 1 1 0
1 0 1 1 1
1 1 1 0 1

v 1 0 1 0

SCOPY(T,X,v)
1 0 1 0
0 0 0 1
1 0 1 1
0 0 0 1
1 0 1 1
1 1 1 0

v 1 0 1 0

RCOPY(T,v,X)
1 0 1 0
0 0 1 1
1 0 1 0
1 0 1 1
1 0 1 0
1 0 1 0

v 1 0 1 0

Fig. 1. The use of SCOPY(T,X, v) and RCOPY(T, v,X)

T FRST(row,T) FRST(col,T)
1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
1 1 1 0 1 0 0 0 0 0 1 0
0 0 1 1 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0

Fig. 2. The use of FRST(row, T) and FRST(col, T)

The operation not (T, v) simultaneously replaces the columns of the given ma-
trix T , marked with ′1′ in the comparand v, with their negation.

The operation or (row, T) simultaneously performs the disjunction in every row
of the matrix T . It returns a slice whose every ith component is equal to ′0′ if and
only if ROW(i, T) consists of zeros.

The operation and (row, T) simultaneously performs the conjunction in every
row of the matrix T . It returns a slice whose every ith component is equal to ′1′ if
and only if ROW(i, T) consists of ones.

The operation or (col, T) simultaneously performs the disjunction in every co-
lumn of the matrix T . It returns a row whose every ith bit is equal to ′0′ if and only
if COL(i, T) consists of zeros.

Now, we present the second group of elementary operations for matrices.

The operation SMERGE(T, F, v) simultaneously writes the columns of the given
matrix F that are marked with ′1′ in the comparand v in the corresponding columns
of the resulting matrix T . If the comparand v consists of ones, the operation
SMERGE copies the matrix F into the matrix T (Figure 3).

The operation op (T, F, v), where op ∈ {or, and, xor}, is simultaneously per-
formed between those columns of the given matrices T and F that are marked with
′1′ in the given comparand v. This operation is used as the right part of the assign-

472 A. S. Nepomniaschaya

ment statement. For example, let a binary matrix R be a result of the operation
or (T, F, v). Then we write this as R := or (T, F, v).

T F SMERGE
1 0 1 0 1 0 0 1 1 0 0 1
0 1 0 1 1 0 0 0 1 1 0 0
1 1 1 1 0 0 0 1 0 1 0 1
0 0 1 1 0 0 1 0 0 0 1 0
0 0 0 0 0 1 1 1 0 0 1 1
0 0 0 1 1 0 1 0 1 0 1 0

v 1 0 1 1 v 1 0 1 1

Fig. 3. The use of SMERGE(T, F, v)

Remark 1. Statements of the MCA-machine are defined in the same manner as
for Pascal. We will use them later for presenting our procedures.

Following Foster [3], the time complexity of an algorithm is measured by counting
all elementary operations of the MCA-machine (its microsteps) performed in the
worst case. It is assumed that each elementary operation for variables of the types
slice, word, and table takes one unit of time.

3 IMPLEMENTING THE FIRST GROUP OF RELATIONAL

ALGEBRA OPERATIONS ON THE MCA-MACHINE

A relational database is defined as in [20]. Let Di be a domain, i = 1, 2, . . . , k.
Let R denote a relation. It is determined as a subset of the Cartesian product
D1 ×D2 × . . .×Dk. An element of the relation R is called tuple and has the form
v = (v1, v2, . . . , vk), where vi ∈ Di. Let Ai be the name of the domain Di, which is
called attribute. Let R(A1, A2, . . . , Ak) denote a scheme of the relation R.

On the MCA-machine, any relation is represented as a matrix and each its tuple
is allocated to one memory row. Obviously, any relation consists of different tuples.
We will assume the entire relation to fit in the hardware matrix of the associative
processing unit.

The relational algebra operations are divided into two groups. The first group

consists of the following operations: Intersection, Difference, Semi-join, Projection,
and Division. The resulting relation for these operations is a subset of the argument
relations T and F . The second group consists of operations Product, Join, and
Union. These operations assemble a new relation.

To represent the first group of relational algebra operations on the MCA-machi-
ne, we first propose a new efficient associative algorithm for the multi-comparand
parallel search.

Parallel Implementation of Relational Algebra Operations 473

3.1 Performing the Multi-Comparand Search in Parallel

In [1], Falkoff proposed an associative algorithm for selecting rows in a given matrix
T that coincide with a given pattern w. This algorithm runs as follows: at every
ith step of computation, it saves the matrix T rows whose first i bits are the initial
part of the pattern w.

In [15], we presented an implementation of this algorithm on the STAR-machine
as procedure MATCH(T,X, w, Z). It determines positions of the matrix T rows that
coincide with the given pattern w. By means of the slice X, we mark with ′1′ the
matrix T rows that are used for comparison with w. The procedure returns the
slice Z, where Z(i) = ′1′ if and only if ROW(i, T) = w and X(i) = ′1′ (Figure 4).
On the STAR-machine, the procedure MATCH requires O(k) time [15], where k is
the number of columns in the matrix T .

v 1 0 1 1

T X Z
1 0 1 0 1 0
0 0 1 1 0 0
1 0 1 1 1 1
1 0 1 1 0 0
1 0 1 1 1 1
1 0 1 0 1 0

Fig. 4. Testing v ∈ T

Let us explain its implementation on the STAR-machine that performs the bit-
serial processing. The procedure MATCH uses an auxiliary slice, say Y . Initially,
the resulting slice Z coincides with the given slice X, that is, the rows of T , marked
with ′1′ in the slice X, are candidates for analysis. At every ith step of computation
(i ≥ 1), we first write the ith column of the matrix T into the slice Y . Then we
examine the ith bit of the pattern w. If w(i) = ′1′, we perform the statement
Z := ZandY . Otherwise, to save positions of rows whose ith bit is ′0′, we fulfil the
statement Z := Zand(notY).

Now we consider implementation of the procedure MATCH(T,X, w, Z) on the
MCA-machine. It makes use of the following idea. For every 1 ≤ i ≤ |w|, the ith bit
of every row of the matrix T is simultaneously compared to the ith bit of the given
pattern w.

procedure MATCH(T:table; X: slice(T); w: word;

var Z: slice(T));

var A,B: table;

u,v: word(T);

1. Begin SET(u); v:= not w;

474 A. S. Nepomniaschaya

/* Positions of the bit ′0′ in the pattern w are marked
with ′1′ in the row v. */

2. SCOPY(A,X,u);

/* Every column of the matrix A saves with ′1′ positions
of the matrix T rows being used for comparison with w. */

3. B:= not(T,v);

/* We write the negation of every column of the matrix T
that corresponds to ′0′ into the given string w. */

4. A:=and(A,B,u);

Here, u is a mask for columns of matrices A and B. */

5. Z:= and (row,A);

/* We obtain that Z(i) = ′1′ if ROW(i, A) consists of ones. */

6. End;

Proposition 1. Let T be a matrix, X be a slice, where positions of the matrix T
rows being analyzed, are marked with ′1′, and w be a pattern. Then the procedure
MATCH(T,X, w, Z) returns the slice Z, where Z(i) = ′1′ if and only if ROW(i, T) =
w and X(i) = ′1′.

Proof. We will prove this by contradiction. Assume that ROW(j, T) = w, X(j) =
′1′ but Z(j) = ′0′. Let us analyze the execution of the procedure MATCH. After
performing lines 1–2, ROW(j, A) consists of ones because X(j) = ′1′. After per-
forming line 3, ROW(j, B) also consists of ones because we write the negation of
every bit of ROW(j, T) that corresponds to ′0′ in the given string w. Therefore after
performing lines 4–5, ROW(j, A) consists of ones and Z(j) = ′1′. This contradicts
our assumption. 2

Obviously, on the MCA-machine, the procedure MATCH takes O(1) time.
Here we generalize the Falkoff algorithm. Let T be a given matrix consisting of

n rows and k columns and F be a given matrix of patterns or comparands consisting
of m rows and k columns, where m ≤ n. We will select in parallel the matrix T rows
that coincide with a given set of m patterns. Our algorithm uses the following idea:
at every ith step of computation, by means of ones, we store in parallel m groups of
the matrix T rows such that each group stores positions of those rows whose first
i bits match the initial part of a concrete pattern.

Now we propose the MultiMatch procedure. It uses the number of bit columns
k in the given matrix T and two auxiliary matrices A and B. Note that the number
of columns in A and B is equal to the number of patterns m in F .

procedure MultiMatch(T:table; X: slice(T); F: table;

k: integer; var A: table);

/* Every ith column of the matrix A saves with ′1′ positions
of those rows of T that coincide with the ith pattern of F . */

var B: table;

u,w1,w2:word(A);

Parallel Implementation of Relational Algebra Operations 475

Y: slice(T);

Z: slice(F);

1. Begin SET(w1); SCOPY(A,X,w1);

2. for i:=1 to k do

3. begin Y:=COL(i,T);

4. SCOPY(B,Y,w1);

5. Z:=COL(i,F);

6. w2:=CONVERT(Z);

7. u:= not w2; B:= not (B,u);

/* The columns of the matrix B marked with ′1′ in the row u
are replaced with their negation. */

8. A:= and (A,B,w1);

9. end;

10. End;

Proposition 2. Let T be a matrix consisting of n rows and k columns and F be
a matrix of patterns consisting of m rows and k columns, where m ≤ n. Let the
selected rows of the matrix T be marked with ′1′ in the given slice X. Then the
procedure MultiMatch(T,X, F, k, A) returns a matrix A consisting of n rows and
m columns whose every ith column stores positions of those matrix T rows that
coincide with the pattern written in the ith row of the matrix F .

Proof. [Sketch.] We prove this by induction in terms of the number of columns k
in the matrix T .

Basis is checked for k = 1. Then maximum two patterns ′0′ and ′1′ belong to F and
m = 2. After performing line 2, the given slice X is written into both columns
of the matrix A. After fulfilling lines 3–7, we first write the single column of the
matrix T into the slice Y . Then we store this slice in both columns of the matrix
B. Further, the column of B, that corresponds to the pattern ′0′, is replaced
by not Y . Therefore after performing line 8, one column of the matrix A stores
positions of the matrix T rows that coincide with the pattern ′1′ and its another
column saves positions of rows that coincide with the pattern ′0′.

Step of induction. Let the assertion be true for k ≥ 1. We will prove it for k+1.
To this end, we represent the matrices T and F as T = T1T2, F = F1F2, where
T1 consists of the first k columns of T and T2 is its (k + 1)th column. In the same
manner, we determine F1 and F2. After performing line 2, the given slice X will
be written into k + 1 columns of the matrix A. By the inductive assumption,
the assertion is true for T1 and F1, that is, after updating the first k columns of
T , every lth column of the matrix A (1 ≤ l ≤ m) saves with ′1′ the positions of
the matrix T rows whose first k bits match the initial part of the lth pattern.
Now, we perform the (k + 1)th iteration. Here, we reason by analogy with the
basis. Hence, after performing this iteration, every lth column of the resulting

476 A. S. Nepomniaschaya

matrix A saves with ′1′ the positions of the matrix T rows which coincide with
the lth pattern of the matrix F .

2

On the MCA-machine, the MultiMatch procedure takes O(k) time, where k is
the number of columns in the matrix T . On the STAR-machine, such an algo-
rithm can be implemented by fulfilling the procedure MATCH for every pattern.
Since on the STAR-machine the procedure MATCH takes O(k) time, the procedure
MultiMatch requires O(km) time.

Now, we enumerate two properties of the matrix A to be used below.

Property 1. The ith row of the matrix A (1 ≤ i ≤ n) consists of zeros if and only
if the ith row of T does not belong to F .

Property 2. The jth column of the matrix A (1 ≤ j ≤ m) consists of zeros if and
only if the jth pattern from F does not belong to T .

3.2 Applications of the Multi-Comparand Search

to the First Group of Relational Algebra Operations

We will consider applications of the multi-comparand search to the following rela-
tional algebra operations: Intersection, Difference, Semi-join, Projection, and Divi-
sion. The resulting relation of these operations is a subset of the argument rela-
tions T and F . The corresponding procedures will use a global slice X to select
with ′1′ positions of tuples in the relation T .

The operation Intersection has two argument relations T and F that are drawn
from the same domain. The resulting relation of this operation consists of those
tuples that belong to T and F .

On the MCA-machine, this operation is implemented as follows.

procedure Intersection(T:table; X: slice(T); F: table; k: integer;

var Y: slice(T));

var A: table;

1. Begin MultiMatch(T,X,F,k,A);

2. Y:= or (row,A);

3. Y:= Y and X;

4. End;

The correctness of this procedure is checked as follows. Since T and F are
relations, there is at most a single bit ′1′ both in every column and in every row of
the matrix A (line 1). Therefore, after performing lines 2–3, Y (i) = ′1′ if and only
if the ith row of T is a tuple of the relation F .

Consider the operation Difference of relations T and F . The resulting relation
consists of those tuples of T that do not belong to F .

Parallel Implementation of Relational Algebra Operations 477

procedure Difference(T:table; X: slice(T); F: table; k: integer;

var Y: slice(T));

var Z: slice(T);

Begin Intersection(T,X,F,k,Z);

Y:= X and (not Z);

End;

Consider the operation Semi-join of relations T (T1, T2) and F . We assume that
the attribute T2 of the relation T and the relation F are drawn from the same
domain. The resulting relation of the operation Semi-join consists of those tuples
ROW(i, T), for which there exists such j that ROW(i, T2) = ROW(j, F). Positions
of the resulting tuples are marked with ′1′ in the slice Y .

procedure Semi-join(T(T1,T2):table; X: slice(T); F: table;

k: integer; var Y: slice(T));

/* Here, k is the number of columns in the relation F . */

Begin Intersection(T2,X,F,k,Y);

End;

It should be noted that the attribute T2 is not a relation. Therefore a tuple of F
may coincide with a few rows of T2. However, the resulting tuples form a relation
as a subset of T .

The correctness of the procedures Difference and Semi-join is evident.
Let the relation T have two attributes T1 and T2. Consider the operation

Projection2. The resulting relation of this operation consists of the tuples from the
relation T that have only different values of the second attribute. The operation
Projection1 is determined in the same manner.

procedure Projection2(T(T1,T2):table; X: slice(T); k: integer;

var Y: slice(T));

/* Here, k is the number of columns in the attribute T2. */

var A: table;

1. Begin MultiMatch(T2,X,T2,k,A);

2. FRST(col,A);

3. Y:= or (row,A);

4. End;

Let us justify the correctness of this procedure. After performing line 1, every
ith column of the matrix A (1 ≤ i ≤ k) stores with ′1′ positions of rows of T2
that coincide with the pattern ROW(i, T2). Note that T2 is not a relation in the
general case. However, after performing line 2, in every ith column of A, a single
representative is saved. Notice that after performing line 2 the matrixAmay include
some identical columns. Nevertheless, after performing line 3, the slice Y saves the
positions of tuples from the relation T having different values of the attribute T2.

Now, we consider the operation Division. Let the relation T = (T1, T2) and
the relation F be given. Let the relation T be a divident and the relation F be

478 A. S. Nepomniaschaya

a divisor. Let the values of T2 and F be drawn from the same domain. Then
T ÷ F = {u ∈ T1 / ∀v ∈ F, uv ∈ T}.

The implementation of the operation Division is complicated [18]. However, for
the considered model, we can propose a clear implementation of this operation.

We first explain the main idea of implementing the operation Division on the
MCA-machine. Let F = {v1, v2, . . . , vk}. The procedure Division constructs the
following sequence of embedded sets:

E1 = {α ∈ T1 / αv1 ∈ T};

E2 = {β ∈ E1 / βv2 ∈ T};

...

Ek = {δ ∈ Ek−1 / δvk ∈ T}.

It can be easily seen that Ek = T ÷ F by construction.

On the MCA-machine, the procedure Division returns a slice Z, where the po-
sitions of rows from the attribute T1 belonging to the result are marked with ′1′.

procedure Division(T(T1,T2):table; X: slice(T); F: table;

Y: slice(F); k: integer; var Z: slice(T));

/* Here, k is the number of columns in the attribute T1. */

var M,Q: slice(T);

P: slice(F);

w: word(F);

v1,v2:word(T1);

C: table;

i: integer;

1. Begin P:= Y; M:= X;

2. SET(v1); CLR(v2);

3. SMERGE(T1,C,v1);

/* The matrix C is a copy of the attribute T1. */

4. RCOPY(C,v2,notX);

/* We write v2 into the rows of C marked with ′0′ in the slice X. */

5. while SOME(P) do

6. begin i:= STEP(P); w:= ROW(i,F);

7. MATCH(T2,M,w,Q);

8. Intersection(T1,Q,C,k,M);

9. RCOPY(C,v2,notM);

/* We write v2 into the rows of C marked with ′0′ in the slice M . */

10. end;

11. Z:= M;

12. End;

Parallel Implementation of Relational Algebra Operations 479

Remark 2. The procedure Intersection does not use a slice for the second relation.
To obtain a sequence of the embedded sets, we perform line 9 after every application
of the procedure Intersection.

The correctness of the procedure Division is checked by induction in terms of
the number of tuples in the relation F .

Let us evaluate the time complexity of the considered procedures. On the MCA-
machine, procedures Intersection, Difference, Semi-join, and Projection2 take O(k)
time each, where k is the number of columns in the corresponding relation. On the
STAR-machine, these procedures take O(kn) time each [13], where n is the number
of tuples in the relation T and k is the number of columns in T or in F .

On the MCA-machine, the procedure Division takes O(km) time, where m is
the number of tuples in the relation F and k is the number of columns in the
attribute T1. On the STAR-machine, this procedure takes O(kmn) time [13],
where n is the number of tuples in the relation T and the parameters m and k
were determined above.

It should be noted that the implementation of every operation from the first
group on the MCA-machine and on a modified version of the STAR-machine joined
with the hardware support called the set intersection processor [12] takes the same
time.

4 IMPLEMENTING THE SECOND GROUP OF RELATIONAL

ALGEBRA OPERATIONS ON THE MCA-MACHINE

In this section, we consider the implementation of the operations Product, Join, and
Union. We first propose a new associative algorithm for implementing the operation
Product. Then we consider the implementation of the operation Join that is based
on the operation Product. Finally, we consider the implementation of the operation
Union.

4.1 Implementing the Operation Product

The operation Product is defined as follows. Let T and F be argument relations for
the operation Product. The resulting relation R(R1, R2) is obtained as concatena-
tion of all combinations of the relations T and F .

Let us explain the main idea of implementing the operation Product on the
MCA-machine. Let the relation T consist of p tuples and the relation F consist of
s tuples. We first build the attribute R1, where s copies of every tuple from T are
written. We do this with the use of the operations MASK, RCOPY, and SHIFT.
To build the attribute R2, we first mark with ′1′ in a slice, say Z2, the positions of
rows in R2, where p copies of the first tuple from F are written. Then by means
of the operations RCOPY and SHIFT, we write the tuples from the relation F into
the corresponding rows of R2.

480 A. S. Nepomniaschaya

procedure Product(T:table; F: table; var X: slice(T);

var Y: slice(F); var R(R1,R2):table);

/* The rows of T are marked with ′1′ in the slice X,
and the rows of F are marked with ′1′ in the slice Y . */

var i,j,p,s:integer;

Z1,Z2,Z:slice(R);

v: word(T);

v1: word(F);

1. Begin p:=NUMB(X); s:=NUMB(Y);

2. MASK(Z,1,s);

/* We set ′1′ in the first s bits of the slice Z. */
3. while SOME(X) do

4. begin i:=STEP(X); v:=ROW(i,T);

5. RCOPY(R1,v,Z);

/* We copy the string v in the rows of R1 marked
with ′1′ in the slice Z. */

6. SHIFT(Z,down,s);

7. end;

8. CLR(Z1); Z1(1):=’1’;

9. CLR(Z2); Z2(1):=’1’;

10. for j:=1 to p-1 do

11. begin SHIFT(Z1,down,s);

12. Z2:=Z2 or Z1;

13. end;

/* We mark with ′1′ in Z2 positions of the matrix R2 rows
where p copies of its first string are written.*/

14. while SOME(Y) do

15. begin i:=STEP(Y);

16. v1:=ROW(i,F);

17. RCOPY(R2,v1,Z2);

/* We write the string v1 in the rows of R2 marked with ′1′ in Z2. */

18. SHIFT(Z2,down,1);

19. end;

20. End;

Proposition 3. Let a relation T have p tuples whose positions are marked with ′1′

in the slice X. Let a relation F have s tuples whose positions are marked with ′1′

in the slice Y . Then the procedure Product returns the relation R(R1, R2), where
s copies of any tuple of T are created in the attribute R1, and p copies of the relation
F tuples are created in the attribute R2.

Proof. [Sketch.] We prove this by contradiction. Let there be such a tuple v1 in the
relation T and a tuple v2 in the relation F that v1v2 does not belong to the resulting
relation R. We will prove this to contradict execution of the procedure Product.

Parallel Implementation of Relational Algebra Operations 481

Really, after performing lines 1–2, the variables p and s save the number of
tuples in the relations T and F , respectively, and the first s bits of the slice Z are
equal to ′1′. After fulfilling lines 3–6, we select the first tuple in the relation T
and simultaneously write it into the rows of the attribute R1 marked with ′1′ in
the slice Z. After that we shift the contents of the slice Z down by s bits. Hence,
the slice Z will save the positions of rows in R1, where s copies of the next tuple
of T will be written. After execution of the cycle while SOME(X) do (lines 3–7),
s copies of every tuple from T will be written in R1. Hence, s copies of v1 are also
written in the attribute R1. It is easy to check that after performing lines 8–13,
the slice Z2 saves the positions of rows in the attribute R2, where p copies of the
first tuple from F must be written. After execution of the cycle while SOME(Y) do

(lines 14–19), p copies of a group of s tuples from F are written in the attribute R2.
Since the tuple v2 belongs to the relation F , it belongs to every copy of the group
of s tuples in the attribute R2. Let v1 be the kth tuple in T and v2 be the ith

tuple in F . Then the tuple v1v2 has been written in the (i+ (k − 1)s)th row of the
resulting relation R. This cotradicts our assumption. 2

Let us evaluate the time complexity of the procedure Product. Obviously, on
the MCA-machine, it takes O(p+ s) time.

In [12], we proposed an implementation of the operation Product on the STAR-
machine. This implementation uses an auxiliary matrixG obtained by compaction of
the relation F . We have also shown how to implement this operation using a mod-
ified version of the STAR-machine joined with a special hardware support called
λ-processor. This processor allows to execute the matrix compaction by means of
the vertical processing. As shown above, the efficient implementation of the opera-
tion Product on the MCA-machine does not use the compaction of the relation F .
We avoid the compaction of a matrix due to the use of the operations SHIFT and
RCOPY.

4.2 Implementing the Operation Join

There are different versions of the Join operations. We will consider the case of the
operation Join [2], where the result does not contain the joining attributes and is
obtained by concatenating the tuples of two argument relations that satisfy some
specified condition.

Let T (T1, T2) and F (F1, F2) be two argument relations for the operation Join.
Let the attributes T2 and F2 be drawn from the same domain. We assume that
the joining attributes are T2 and F2 and the condition for joining is their equality.
More precisely, the operation Join performs concatenation in every group of the
attributes T1 and F1, for which the corresponding values of the attributes T2 and
F2 are equal.

Let us explain the main idea of implementing the operation Join on the MCA-
machine. Let C(C1, C2) be the resulting relation of the operation Join. Let the
relation T consist of p tuples and the relation F consist of s tuples. Although the

482 A. S. Nepomniaschaya

cardinality of the relation C is a priori unknown, it is not greater than ps, that is,
the cardinality of the resulting relation of the operation Product. Therefore, the
attributes C1 and C2 will consist of ps rows each. Initially, we set zeros in the
attributes C1 and C2. For every current tuple v in the attribute T2, we determine
all its occurrences both in T2 and in F2. If v belongs to F2, we carry out the
procedure Product between the corresponding rows of the attributes T1 and F1
and include the result into the corresponding rows of C1 and C2. Otherwise, we
analyze the next tuple in T2. We do this with the use of basic operations of the
MCA-machine and the procedures MATCH and Product.

procedure Join(T(T1,T2):table; F(F1,F2):table; Y: slice(F);

var X: slice(T); var C(C1,C2):table);

var X1: slice(T);

Y1: slice(F);

Z: slice(C);

v: word(T2);

v1: word(T1);

v2: word(F1);

i,s1,r1,t:integer;

E(E1,E2):table;

1. Begin t:=0; CLR(Z);

2. SET(v1); SET(v2);

3. SCOPY(C1,Z,v1);

4. SCOPY(C2,Z,v2);

/* We set zeros in the attributes C1 and C2. */
5. while SOME(X) do

6. begin i:=FND(X); v:=ROW(i,T2);

7. MATCH(T2,X,v,X1);

/* Positions of the attribute T2 rows that coincide with v
are marked with ′1′ in the slice X1. */

8. X:=X and (not X1);

/* We mark with ′0′ in the slice X the positions of the attribute
T2 rows that coincide with v. */

9. MATCH(F2,Y,v,Y1);

/* We mark with ′1′ in the slice Y 1 the positions
of the attribute F2 rows that coincide with v. */

10. if SOME(Y1) then

11. begin r1:=NUMB(X1); s1:=NUMB(Y1);

12. Product(T1,F1,X1,Y1,E(E1,E2));

13. SHIFT(E1,down,t);

14. SHIFT(E2,down,t);

15. C1:= or (C1,E1,v1);

16. C2:= or (C2,E2,v2);

/* We include the result of shifting the matrix E1

Parallel Implementation of Relational Algebra Operations 483

(respectively, E2) into the attribute C1 (respectively, C2). */
17. t := t+ r1s1;
18. end;

19. end;

20. End;

Proposition 4. Let two argument relations T (T1, T2) and F (F1, F2) be given.
Let a slice X save the positions of tuples that belong to T , and a slice Y save the
positions of tuples that belong to F . Let the attributes T2 and F2 be drawn from
the same domain. Then the procedure Join returns the concatenation of those rows
from the attributes T1 and F1, for which the corresponding values of T2 and F2
are equal.

Proof. [Sketch.] We prove this by induction in terms of the number of different
tuples l that belong to the attributes T2 and F2.

Basis is checked for l = 1, that is, only a single tuple belongs to T2 and F2. After
performing lines 1–4, we set zeros in the attributes C1 and C2. After performing
lines 6–9, we select the first tuple v in the attribute T2. Then by means of the
sliceX1, we save the positions of all occurrences of v in T2 and delete them from
the slice X. Without loss of generality, we assume v to be the single tuple that
belongs to T2 and F2. Therefore after performing lines 9–10, by means of the
slice Y 1, we save the positions of all occurrences of v in the attribute F2. Since
Y 1 6= ∅1, we determine the number of tuples r1 in the attribute T1 and the
number of tuples s1 in the attribute F1 (line 11). Since T is a relation, the rows
in the attribute T1 that correspond to the same tuple v in T2 are different. The
same we have for the relation F . Moreover, the attributes T1 and F1 are drawn
from different domains. Therefore we apply the procedure Product (line 12).
Since initially t = 0, after performing lines 13–16, we obtain the attributes C1
and C2. After that we determine a new value for t (line 17) and terminate the
conditional statement from line 10.

If X 6= ∅, we select with ′1′ the positions of all occurrences of the next tuple
in T2 and delete them from X as shown above. We continue this process while
X 6= ∅. After that we go to the end of the procedure.

Step of induction. Let the assertion be true when l (l ≥ 1) different tuples belong
both to the attribute T2 and the attribute F2. We prove the assertion for
the case when l + 1 different tuples belong to T2 and F2. By the inductive
assumption after selecting the first l different tuples, their positions are selected
with ′1′ in the slice X. After that, these positions are deleted from the slice X
(line 8). Each time when a selected group of the same tuple belongs to F2, we
carry out the procedure Product which is applied to the corresponding attributes
T1 and F1. Since a new value for t is computed after every execution of the

1 The notation Y 1 6= ∅ denotes that there is at least a single component ′1′ in the
slice Y 1.

484 A. S. Nepomniaschaya

procedure Product (line 17), a new result of this procedure is written into the
corresponding rows of the attributes C1 and C2. Further we reason by analogy
with the basis when a single tuple belongs to T2 and F2. As soon as we select the
positions of all occurrences of this tuple (lines 6–10), we perform the procedure
Product for the corresponding rows of the attributes T1 and F1 and write the
result into the matrices E1 and E2. After performing lines 13–16, the result of
shifting the contents of the matrices E1 and E2 are written in the attributes C1
and C2. As soon as the slice X = ∅, we run to the end of the procedure.

2

Let k be the number of different tuples that belong both to T2 and to F2. Let pi
and si denote the number of different occurrences of the ith tuple that belongs to the
attributes T2 and F2, respectively. Then the procedure Join takes O(

∑
k

i=1
(pi+ si))

time.

4.3 Implementing the Operation Union

The operation Union is applied to the argument relations T and F with the same
number of bit columns k. The resulting relation P is assembled from the relation T
and those tuples of the relation F which do not belong to T .

To implement the operation Union on the MCA-machine, we use the procedure
Difference(F, Y, T, k, Y 1). It returns a slice Y 1 that saves the positions of the rela-
tion F tuples not belonging to the relation T . As shown in the previous section, the
procedure Difference takes O(k) time.

Let us explain the main idea of implementing the operation Union on the MCA-
machine. We first copy the relation T into the relation P . Then we perform the
procedure Difference and save the positions of the relation F tuples that do not
belong to the relation T . Further we include into P every tuple w from the relation F
that does not belong to the relation T . Moreover, the position of the tuple w in the
relation P is marked with ′1′ in the slice Z.

procedure Union(T:table; F: table; X: slice(T); Y: slice(F);

k: integer; var P: table; var Z: slice(P));

var Z1: slice(P);

Y1: slice(F);

v,w: word(T);

i,j: integer;

1. Begin SET(v); Z:=X;

2. SMERGE(T,P,v);

/* We copy the relation T into P . */
3. Difference(F,Y,T,k,Y1);

/* The slice Y 1 saves the positions of the relation F rows
that do not belong to T . */

4. while SOME(Y1) do

Parallel Implementation of Relational Algebra Operations 485

5. begin i:=STEP(Y1); w:=ROW(i,F);

6. Z1:= not Z; j:=FND(Z1);

7. ROW(j,P):=w; Z(j):=’1’;

8. end;

9. End;

Proposition 5. Let two argument relations T and F be given. Let a slice X save
the positions of tuples that belong to T , and a slice Y save the positions of tuples
that belong to F . Then the procedure Union returns the relation P that consists of
different tuples from the relations T and F , and a slice Z that saves the positions
of the tuples from P .

The correctness of the procedure Union is proved by induction in terms of the
number of tuples l of the relation F that do not belong to the relation T .

Let l be the number of tuples of the relation F that do not belong to the
relation T . Then the procedure Union takes O(k + l) time because every operation
of the MCA-machine takes one unit of time and the procedure Difference takes
O(k) time. On the STAR-machine, this procedure takes O(kr) time, where r is the
number of tuples in the relation F , because for every tuple from the relation F one
has to check whether it belongs to the relation T .

5 CONCLUSIONS

In this paper, we have proposed a multi-comparand associative machine and its ap-
plication to parallel implementation of classical relational algebra operations. We
first consider an efficient associative algorithm for performing the multi-comparand
search in parallel. On the MCA-machine, this algorithm is implemented as proce-
dure MultiMatch whose correctness is proved. We have shown that this procedure
takes O(k) time, where k is the number of columns in the given matrix. On the
STAR-machine, such an algorithm takes O(km) time, where m is the number of
patterns. We have also proposed applications of the multi-comparand search to
carry out the first group of relational algebra operations: Intersection, Difference,
Semi-join, Projection, and Division. On the MCA-machine, these operations are
represented as corresponding procedures and their correctness is justified. We have
shown that the procedure Division takes O(km) time, where m is the number of tu-
ples in the divisor and k is the number of columns in the attribute T1 of the divident
T (T1, T2). Other procedures take O(k) time each, where k is the number of columns
in the corresponding relation. We have shown that all these estimations are optimal.
We have also proposed efficient associative algorithms for implementing the second
group of relational algebra operations. These algorithms are given as corresponding
procedures for the MCA-machine. We have proved their correctness and evaluated
time complexity. We have obtained clear and simple implementations of the pro-
posed algorithms due to the access data by contents and the use of data parallelism.
We achieve the fastest processing because the structure of input data and applied

486 A. S. Nepomniaschaya

algorithms correspond in the best way to the structure of the model. It might be
well to use the MCA-machine for simulating and specifying different properties of
new associative systems. The efficient non-trivial procedure Multi-Match may be of
advantage when different associative algorithms use the fast parallel search.

We are planning to study some applications of the MCA-machine to the image
processing.

REFERENCES

[1] Falkoff, A.D.: Algorithms for Parallel-Search Memories. J. of the ACM, Vol. 9,
1962, pp. 448–510.

[2] Fernstrom, C.—Kruzela, J.—Svensson, B.: LUCAS Associative Array Pro-
cessor. Design, Programming and Application Studies, Lecture Notes in Computer
Science, Springer-Verlag, Berlin, Vol. 216, 1986.

[3] Foster, C.C.: Content Addressable Parallel Processors. Van Nostrand Reinhold
Company, New York, 1976.

[4] Irakliotis, L. J.–Betzos, G. A.–Mitkas, P.A.: Optical associative processing.
In: A. Krikelis, C. C. Weems (Eds.): Associative Processing and Processors, IEEE
Computer Society, 1997, pp. 155–178.

[5] Kapralski, A.: Sequential and Parallel Processing in Depth Search Machines. World
Scientific, Singapore 1994.

[6] Kokosiński, Z.: An Associative Processor for Multi-Comparand Parallel Searching
and its Selected Applications. In: Proc. Int. Conf. on Parallel and Distributed Process-
ing Techniques and Applications, PDPTA ’97, Las Vegas, USA, 1997, pp. 1434–1442.

[7] Kokosiński, Z.—Sikora, W.: An FPGA Implementation of Multi-Comparand
Multi-Search Associative Processor. In: Proc. 12th Int. Conf. FP L2002, Lect. Notes
in Comp. Sci., Springer-Verlag, Berlin, Vol. 2438, 2002, pp. 826–835.

[8] Louri, A.—Hatch, J.A.: An Optical Associative Parallel Processor for High-Speed
Database Processing. Computer, Vol. 27, 1994, pp. 65–72.

[9] Muraszkiewicz, M.R.: Cellular Array Architecture for Relational Database Im-
plementation. Future Generations Computer Systems, Vol. 4, 1988, pp. 31–38.

[10] Nepomniaschaya, A. S.: Language STAR for Associative and Parallel Computation
with Vertical Data Processing. In: Proc. of the Intern. Conf. on Parallel Computing
Technologies, World Scientiic, Singapore, 1991, pp. 258–265.

[11] Nepomniaschaya, A. S.–Kokosiński, Z.: Associative Graph Processor and its
Properties. In: Proc. of the Intern. Conf. PARELEC ’2004, IEEE Computer Society,
Dresden, Germany, 2004, pp. 297–302.

[12] Nepomniaschaya, A. S.–Fet, Y.L.: Investigation of Some Hardware Accelerators
for Relational Algebra Operations. In: Proc. of the First Aizu Intern. Symp. on Par-
allel Algorithms/Architecture Synthesis, IEEE Computer Society, Aizu-Wakamatsu,
Fukushima, Japan, 1995, pp. 308–314.

Parallel Implementation of Relational Algebra Operations 487

[13] Nepomniaschaya, A. S.: A Language STAR for Associative and Bit-Serial Proces-

sors and Its Application to Relational Algebra. In: Bulletin of the Novosibirsk Com-
puting Center, Series: Computer Science, Issue 1, NCC Publisher, 1993, pp. 23–36.

[14] Nepomniaschaya, A. S.: An Associative Version of the Bellman-Ford Algorithm

for Finding the Shortest Paths in Directed Graphs. In: Proceedings of the 6th Intern.
Conf. PaCT-2001. Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 2001, Vol. 2127,
pp. 285–292.

[15] Nepomniaschaya, A. S.—Dvoskina, M.A.: A Simple Implementation of Dijk-
stra’s Shortest Path Algorithm on Associative Parallel Processors. Fundamenta In-
formaticae, IOS Press, Amsterdam, Vol. 43, 2000, pp. 227–243.

[16] Nepomniaschaya, A. S.: Efficient Implementation of Edmonds’ Algorithm for Find-

ing Optimum Branchings on Associative Parallel Processors. In: Proc. of the Eighth
Intern. Conf. on Parallel and Distributed Systems (ICPADS ’01), IEEE Computer
Society, KyongJu City, Korea, 2001, pp. 3–8.

[17] Nepomniaschaya, A. S.: Efficient Update of Tree Paths on Associative Systems
with Bit-Parallel Processing. In: Bulletin of the Novosibirsk Computing Center, Se-
ries: Computer Science, Issue 23, NCC Publisher, 2005, pp. 71–83.

[18] Ozkarahan, E.: Database Machines and Database Management. Prentice-Hall, Inc.
1986.

[19] Parhami, B.: Search and Data Selection Algorithms for Associative Processors.

In: A. Krikelis, C. C. Weems (Eds.), Associative Processing and Processors, IEEE
Computer Society, 1997, pp. 10–25.

[20] Ullman, J.D.: Principles of Database Systems. Computer Science Press, 1980.

Anna Shmilevna Nepomniashaya graduated from the Cher-
novitsky State University in 1967 and worked in the Novosi-
birsk Institute of Mathematics (Siberian Division of the USSR
Academy of Sciences). In 1981, she received her Ph. D. de-
gree in computer science from the Novosibirsk Computing Cen-
ter (the new name is Institute of Computational Mathematics
and Mathematical Geophysics, Siberian Division of the Russian
Academy of Sciences). Now, she is a Senior Researcher in the
Laboratory of Parallel Algorithms and Structures of the Institute
of Computational Mathematics and Mathematical Geophysics.

She published 108 papers in automata theory, theory of formal grammars and languages,
theory of parallel algorithms and parallel processing. Her current research interests include
associative processing in fine-grained parallel systems for such applications as graph algo-
rithms and relational databases, and techniques for specification and analysis of associative
parallel processors.

