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Abstract. A fundamental problem in computational biology is the construction of

physical maps of chromosomes from the hybridization experiments between unique
probes and clones of chromosome fragments. Double and partial digest problems
are two intractable problems used to construct physical maps of DNA molecules in
bioinformatics. Several approaches, including exponential algorithms and heuris-
tic algorithms, have been proposed to tackle these problems. In this paper we
present two polynomial time molecular algorithms for both problems. For this rea-
son, a molecular model similar to Adleman and Lipton model is presented. The
presented operations are simple and performed in polynomial time. Our algorithms
are computationally simulated.
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1 INTRODUCTION

The field of DNA computing was pioneered by Adleman [1] who showed the poten-
tial of using biomolecules for solving computational problems. He solved an instance
of the NP-complete Hamiltonian path problem in linear time. Later, Lipton demon-
strated that Adleman’s experiment could be used to determine the NP-complete
satisfiability problem [17]. The major goal of subsequent research in DNA comput-
ing area is to develop new techniques to solve NP-complete problems that can not
be solved by current electronic computers in a reasonable amount of time. In this
manner, a large number of DNA algorithms have been proposed for a large class of
NP-complete problems [9, 17, 18, 20, 35].

There are a number of feasible operations in DNA computing. Based on the
employed operations, several DNA based models for computing have been intro-
duced. The first model is used by Adleman and Lipton, called Adleman-Lipton
model which contains the simple DNA operations [1, 2, 7, 17]. The other popular
models are: sticker model [15, 23, 35], surface-based [30], self-assembly [32] and
splicing system [11, 19, 24]. These models are different in molecular operations and
creating the state space of problem.

A human chromosome which is a DNA molecule of about 108 base pairs is too
long to be studied entirely and must be broken into fragments or clones. Depending
on the cloning technology used, the size of the clones may be as small as 3 000 base
pairs or as large as 2 000 000 base pairs. Information is gathered from the individual
clones, and then the DNA is constructed by mathematically determining the posi-
tion of the clones. The process of reconstructing the DNA sequence by the broken
fragments is called Digest Problem. Digest experiment plays an important role in
molecular biology. In such experiments, enzymes are used to cleave DNA molecules
at specific sequence patterns, the restriction sites. The resulting fragments are used
in many different ways to study the structure of DNA molecules. Double Digest
Problem (DDP ) and Partial Digest Problem (PDP ) are two famous combinatorial
problems that no polynomial time algorithm with electronic computer is given for
them until now [31].

In the DDP , we are given the lengths of DNA fragments arising from digestion
experiments with two enzymes, and we want to find a physical map of the DNA, i.e.
the positions of the restriction sites of the enzymes along the DNA sequence. DDP

is known to be NP-Complete [13, 31]. In the PDP , we are given DNA fragment
lengths arising from digestion experiment with only one enzyme, and we again ask
for a physical map of the DNA. Neither a proof of NP-completeness nor a polynomial
time algorithm is known for PDP [6, 21, 22].
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In this paper, we present two molecular algorithms for solving DDP and PDP

problems in polynomial time complexity. The molecular model employed in these
algorithms is similar to Adleman-Lipton model to construct solution space of DNA
strands for these two combinatorial problems.

The paper is organized as follows: In Section 2, two digestion problems (DDP

and PDP ) are defined. Our DNA computational model is given in Section 3. The
DNA encoding and molecular algorithm for DDP problem are presented in Sec-
tion 4. In Section 5, DNA encoding and molecular algorithm for PDP problem are
presented. In Section 6, we present a genetic algorithm for constructing error resis-
tance DNA sequences. The computational simulation of two algorithms are given
in Section 7. Finally, the conclusion is given in Section 8.

2 DIGESTING DNA

A DNA molecule is a large molecule that is composed of smaller molecules, the
nucleotides. There are four nucleotides, namely Adenine (A), Cytosine (C), Gua-
nine (G), and Thymine (T). A nuclease is an enzyme that can cleave DNA molecules
at specific restriction sites. This process is called digestion. If the enzyme is ap-
plied for long enough time, then it cuts all restriction sites in each clone, yielding
fragments between any two adjacent restriction sites. This process is called full or
complete digestion, in contrast to partial digestion, where only very small amount of
enzymes are used, we obtain all fragments between any two restriction sites (that do
not need to be adjacent). Digest experiments can be used to construct physical maps
of DNA molecules. A physical map describes the location of markers along the DNA
molecules. For constructing the physical map, we can either use a single digestion
by applying one enzyme or double digestion by applying two different enzymes.

The fragment length resulting from a single full digestion experiment can not
yield any information about the ordering of the fragments or the positions of the
restriction sites. For this reason, double digestion experiments are performed where
two different enzymes are used as follows. First a set of clones of the DNA molecules
are digested by an enzyme A. Then a second set of clones are digested by an
enzyme B. Finally, the third set of clones are digested by a mix of both enzymes A

and B, which we refer to as C. All digestions are full digestion. This results in
three multisets of DNA fragments, and in three multisets of distance between all
adjacent restriction sites. The objective is to reconstruct the original ordering of
the fragments in the DNA molecules. This is referred to as Double Digest Problem
(DDP ). In the following definition of DDP , sum(S) denotes the sum of the elements
in a multiset S, and dist(P ) is the multiset of all distances between two neighboring
points in a set P of points on a line.

Definition 1 (Double Digest). Given three multisets A, B and C of positive in-
tegers with sum(A) = sum(B) = sum(C), there are three sets PA, PB and PC

of points on a line, such that dist(PA) = A, dist(PB) = B, dist(PC) = C and
PA ∪ PB = PC (0 is the minimal point in each set).
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For example, given multisets A = {1, 2, 3, 5}, B = {2, 2, 3, 4} and C = {1, 1, 1, 2,
2, 2, 2} as an instance of Double Digest. Then PA = {0, 2, 7, 10, 11}, PB = {0, 3, 5,
9, 11} and PC = {0, 2, 3, 5, 7, 9, 10, 11} is a feasible solution which is shown in Fi-
gure 1.

Fig. 1. An instance of DDP

DDP is an NP-complete problem [13, 31] and several approaches including expo-
nential algorithms, heuristic algorithms, and computer assistant interactive strate-
gies have been proposed in order to tackle this problem [3, 5, 14, 33]. In Section 4, we
give a molecular polynomial time algorithm for this problem. The other approach
for finding physical maps of DNA molecules is by partial digestion experiment.

Definition 2 (Partial Digest). Given an integer m and a multiset D = {d1, d2, . . . ,

dk} of k = (m
2

) positive integers, there is a set P = {p1, p2, . . . , pm} of m points on
a line such that {|pi − pj| : i ≤ j ≤ m} = D.

For example, for the distance multiset D = {2, 3, 5, 7, 8, 10}, the point set P =
{0, 2, 7, 10} is a feasible solution which is shown in Figure 2.

Fig. 2. An instance of PDP

The exact computational complexity of PDP is a long standing open prob-
lem. For this problem, neither a polynomial time algorithm nor a proof of NP-
completeness is known [6, 21, 22], but several backtracking algorithm with exponen-
tial time complexity are presented in [28, 34]. In Section 5 we also give a polynomial
time molecular algorithm for this problem.
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3 DNA MODEL OF COMPUTATION

Prior to presentation of the molecular algorithms for our problems, we define the
DNA operations that we apply in our algorithms [25]. Our DNA operations are
similar to operations proposed by Adleman and Lipton [1, 17]. A test tube is a set
of DNA molecules (i.e. a multiset of finite strings over the alphabet {A, C, G, T}).
Given a test tube, we can perform the following operations:

i) Separate(P, P1, P2, s): This operation produces two tubes P1 and P2 where P1

is all of the DNA molecules separated from P which contain the strand s as
a sub-strand and P2 is all of the DNA molecules from P which do not contain
the short strand s as a sub-strand. To implement this operation, the content
of tube P is affinity purified with a biotin-avidin magnetic beads system. This
is accomplished by incubating the single-stranded DNA in tube P with s con-
jugated to magnetic beads. Only those single-stranded DNA molecules that
contain the short DNA strand s can be annealed to the bound s. Now these
strands are separated and poured to P1 and the remaining strands are poured
to P2.

ii) Extract(P, P1, P2, i, s): As the above operation, this operation produces two
tubes P1 and P2, where P1 is all of the DNA strands separated from the tube P

which contain the strand s as a sub-strand in a specific position i. An arbitrary
length ℓ can be used for scaling the position, depending on the algorithm. After
each separation operation, the strands that have the strand s in the ith posi-
tion will be stored in P1, while all the strands that don’t have the strand s in
the ith position will be stored in P2. This is accomplished by incubating the
single-stranded DNA in the test tube P with s conjugated to magnetic beads.
Only those single-stranded DNA molecules that contain the sequence s are an-
nealed to the bound s. In the suitable condition, primer extension occurs in the
test tube. By melting the double-stranded DNA sequences, the strands which
contain s are separated in the test tube P2 and the rest remains in P . Employ-
ing gel-electrophoresis, the strands with length i× ℓ are detected. Later, these
strands are added to tube P1 in order to distinguish the strands which contain
s in position i.

iii) Append(P, s): Molecularly, this operation appends the strand s into the end
of every strand in the tube P . This operation is implemented by pouring the
strands containing the end complementary strands in the tube P (3′-termination
of the strands in P ) and the complement of sequence s (s) to the tube P . With
adding the strand s and the ligase enzyme to the tube P , s is appended to all
the strands in P .

iv) Merge(P, P1, P2): This operation combines the strands in P1 and P2 into one
test tube P , without any change in the individual strands. This operation is
implemented easily by pouring the content of two test tubes P1 and P2 in the
test tube P .
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v) Primer-Extension(P1, P2): By pouring the contents of the test tube P2 in the
tube P1, in the suitable condition, and employing the strands in P2 as probes,
primer extension occurs for each single strand in P1 in the direction 5′ → 3′, i.e.
all the strands in P2 are hybridized to their corresponding complement strands
in P1 and by adding free nucleotides to the solution in the test tube, primer
extension occurs and double strands are constructed.

vi) Amplify(P, P1, P2): This operation produces two new tubes P1 and P2 such
that P1 and P2 are two copies of tube P (which are now identical) and tube P

becomes empty tube. To implement this operation, the content of P is amplified
by polymerase chain reaction (PCR) using primers 5′-terminate and marked
3′-terminate (by magnetic beads ) of the strands in P . The unmarked and
marked sequences are distinguished and assigned to the test tubes P1 and P2,
respectively. The marked sequences in P2 become unmarked later.

vii) Length(P, P1, ℓ): This operation separates all DNA strands of length ℓ from
P , and pours them into P1. Molecularly, the content of P is run in gel-
electrophoresis, and the strands of length ℓ are separated and assigned to the
test tube P1.

viii) Test(P ): This operation produces “true” if P includes at least one DNA strand.
This operation can also be done by amplifying the content of P by polymerase
chain reaction and run on a gel-electrophoresis.

ix) Readout(P ): This operation describes all the stands in the test tube P in a re-
cognizable form.

x) Discard(P1, P2, . . . , Pn): This operation will discard all the tubes P1, P2, . . . ,
Pn.

Note that in all of the above operations, all the DNA strands can be assumed
to be single strands and each operation is performed in O(1) time complexity.

4 THE MOLECULAR ALGORITHM FOR DDP

The molecular algorithm given in this section for DDP problem can be simulated
by DNA operations in a polynomial time. Our simulation has two stages: DNA
encoding and performing DNA operations. As mentioned, in the definition of the
DDP problem we have given three multisets A, B and C of positive integers with
t = sum(A) = sum(B) = sum(C). Now, before the construction of strands cor-
responding to the encoding of the problem, these three sets are encoded as 0-1
sequences and the solution space is constructed with regard to these sequences and
sets.

Each set, such as S = {s1, s2, . . . , sn} of length n (|S| = n), can be encoded as
t-bit binary number where t =

∑n
i=1

si, with exactly n zeros and k =
∑n

i=1
(si − 1)

ones, such that each element of S, say si, is encoded by si − 1 ones followed by one
zero. The sets A and B in the DDP problem in our example can be converted to
the following binary numbers:



Molecular Solutions for DDP and PDP 605

A = [2, 5, 3, 1] =⇒ [10, 11110, 110, 0] =⇒ A′ = [10111101100],

B = [3, 2, 4, 2] =⇒ [110, 10, 1110, 10] =⇒ B′ = [11010111010].

Consequently, the set C ′ can be obtained by performing the binary AND operation
on A′ and B′:

C ′ = A′ And B′ = [10111101100] And [11010111010] = [10010101000].

Therefore, the solution to the DDP problem is to construct all the permuta-
tions of binary representation of the sets A and B. The correct mapping is any
permutation of A and B that the result of AND operation on them is equal to the
binary representation of one of the permutations on C.

For encoding DDP problem the following sets of DNA sequences are con-
structed:

• Two different DNA strands of a fixed length ℓ are constructed for representing
the bit values 0 and 1 which are denoted by 0 and 1, respectively.

• A set containing of |C| different DNA strands of fixed length ℓ are constructed
for representing the bit value 0 which are used as delimiter in the multisets A,
B, and C and denoted by 0i (1 ≤ i ≤ |C|). These strands help us to easily
verify the occurrence of each element of A, B, and C exactly once later in the
algorithm.

• For each element ai in A , we construct a strand of length ℓ× ai denoted by αi

(1 ≤ i ≤ |A|), such that αi is constructed by ai − 1 strands of 1 representing
bit 1 followed by a strand 0i representing bit 0. Clearly, for the elements with
equal values in A, different strands are constructed.

• Strands corresponding to the elements of B are constructed similarly to the
above definition for the elements of A and denoted by βj (1 ≤ j ≤ |B|).

• For each element ci in C, we construct a strand of length ℓ × (ci + 1) denoted
by γi, such that γi is constructed by ci − 1 strands of 1 (the complement of 1)
followed by a strand 0 (the complement of 0) and also followed by a strand 0i

(thecomplement of 0i).

• We construct a set of sequences that contain all permutations of the strands in
A = {a1, a2, . . . , an}. Similar to Adleman’s scheme for encoding the Hamiltonian
path problem [1], this can be done easily by considering a complete graph whose
vertices are the elements of the set A. For each vertex, we consider the strand αai

of length ℓ×ai corresponding to the elements in A and for each edge of the graph
the strand αeij

are constructed such that αeij
= αR

ai
+ αL

aj
(the right half end

of the complement of αai
corresponding to vertex i plus the left half end of the

complement of αaj
corresponding to vertex j). Pouring the edge strands and

vertex strands in a test tube, in a suitable condition, all the paths of this graph
are constructed. The paths with length equal to ℓ ×

∑n
i=1

ai are selected such
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that each zero strand 0i (1 ≤ i ≤ n) occurs exactly once in the sequences.
These selected paths represent the permutations of the strands corresponding
to all the vertices. For example for A = {2, 4, 4} we construct a graph which is
shown in Figure 3. The strands corresponding to all the paths represent all the
permutations of the set A. We call this set of strands ∆A, where |∆A| = |A|!.
The ith sequence in each set is denoted by an index i, for example in the set ∆A,
the ith element is denoted by ∆Ai

. Considering that the bit values 0i(1 ≤ i ≤ n)
for each element ai in A, are encoded with different strands, therefore elements
with equal values in A are also encoded with different sequences. For this reason,
the verification of the occurrence of exactly n zeros is very simple and the paths
with cycle can not be chosen.

1110 1110

10

Fig. 3. Graph corresponding to the multiset A = {2, 4, 4}

• Similar to the above discussion, all the permutations of strands in B are con-
structed and we call this set ∆B.

• Sequences corresponding to all the permutations of C are also constructed si-
milar to A and are called ∆C . As it is defined, each sequence γi (1 ≤ i ≤
|C|) corresponding to the element ci, contains of ci − 1 strands of 1 followed
by the complementary of two zero strands 0 and 0i. Clearly, in construction
of the permutations of the set C, the subsequences 0i are used as delimiter
and this causes the elements with equal values in C are encoded with different
sequences. After the construction of all permutations for C, we can delete
the subsequences 0i and in the algorithm we do not need these subsequences.
By using polymerase and ligase, we obtain double stranded molecules, with
one strand being the original one and the other strand being its complement
except that the subsequence 0i is removed. After denaturing, the strands which
contain 0i are separated and the remaining strands are the strands with 0i

removed in them. This process should be performed for removing each 0i (1 ≤
i ≤ |C|), separately.

It should be noted that, for the convenience in the separation operation, all the
strands in ∆A and ∆B begin with a specific strand αA and βB (tag strands), and all
the strands in ∆C end with the strand γC , respectively, as a marker.

Now, assume that all strands of the sets ∆A, ∆B, and ∆C are in the test tubes
Pα, Pβ , and Pγ , respectively. Note that each strand in ∆A, ∆B, and ∆C is a DNA
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sequence of length ℓ× (t+1), where t =
∑|A|

i=1
ai =

∑|B|
i=1

bi =
∑|C|

i=1
ci. The molecular

algorithm for DDP is given in Algorithm 1.
Now, a brief discussion of the performance of the above algorithm is presented.

After the construction of all the required sequences, the algorithm DDP −MOL

is performed as follows. In phase 1, a set of molecular operations are performed
for the AND operation. This can be done by checking the xth position in both
sequences. Depending on the values, the result of AND operation is appended to
both sequences, i.e. for each strand in ∆A namely ∆Ai

(1 ≤ i ≤ |A|!) and each
strand in ∆B namely ∆Bj

(1 ≤ j ≤ |B|!), we obtain ∆Ai
And ∆Bj

and append
the result of And operation to the end of ∆Ai

and ∆Bj
. Later, all the sequences

corresponding to the elements of A and B are separated in two different test tubes,
Pα and Pβ, respectively.

In phase 2, by employing the operation Primer-Extension on the test tubes Pα

and Pβ separately using the content of test tube Pγ as primer, double strands are
constructed. Finally, the sequences which hold all the strands ∆C are extracted as
a solution of our problem in each test tube.

Theorem 1. The molecular algorithm DDP -MOL is performed in O(n) com-
plexity for any DDP problem given three multisets A, B, and C of positive in-
tegers such that n is a constant proportional to the sum(A) (note that sum(A) =
sum(B) = sum(C)).

Proof. The DDP -MOL has two phases. Phase 1 has a single loop and all the
operations in the loop are performed in O(1). Therefore phase 1 is performed in O(n)
complexity. In phase 2, we have no loop and this is performed in O(1) complexity.
Hence, the total complexity of the algorithm is O(n). 2

5 THE MOLECULAR ALGORITHM FOR PDP

In this section, we present a molecular algorithm for the PDP . The algorithm is
simulated by DNA operations in a polynomial time. The main idea of our simulation
is to first generate solution space of DNA sequences. Then, the biological operations
are used to remove infeasible solutions and to find feasible solutions from the solution
space.

As mentioned in the previous section, PDP problem can be briefed as follows:
Given an integer m and a multiset D = {d1, d2, . . . , dk} of k = (m

2
) positive integers,

is there a set P = {p1, p2, . . . , pm} of m points on a line such that {|pi − pj| : i ≤
j ≤ m} = D.

In order to encode PDP problem as DNA sequences, we construct three different
sets of strands:

• For the multiset D = {d0, d1, d2, . . . , dk}, k + 1 different strands δd0
, δd1

, δd2
,

. . ., δdk
of a constant length ℓ are constructed such that each δdi

corresponds to
a di (0 ≤ i ≤ k). It is noted that for elements with equal values in D, different
strands are constructed. Here we assume that d0 is an element with value 0
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Algorithm 1 Double digest molecular algorithm

Algorithm DDP -MOL

begin
phase 1:

for x = 1 to t do begin
Extract(Pα, P0, P1, x, 1);
Extract(Pβ, P2, P3, x, 1);
Amplify(P0, P4, P5);
Amplify(P1, P6, P7);
Amplify(P2, P8, P9);
Amplify(P3, P10, P11);
if (Test(P4) and Test(P8)) then begin

Merge(P12, P4, P8);
Append(P12, 1);

end if;
if (Test(P5) and Test(P10)) then begin

Merge(P13, P5, P10);
Append(P13, 0);

end if;
if (Test(P6) and Test(P9)) then begin

Merge(P14, P6, P9);
Append(P14, 0);

end if;
if (Test(P7) and Test(P11)) then begin

Merge(P15, P7, P11);
Append(P15, 0);

end if;
Extract(P12, Pα, Pβ , 0, αA);
Extract(P13, Pα, Pβ , 0, αA);
Extract(P14, Pα, Pβ , 0, αA);
Extract(P15, Pα, Pβ , 0, αA);
Discard(P0, P1, . . . , P15);

end for;
phase 2:

Primer-Extension(Pα, Pγ);
Primer-Extension(Pβ, Pγ);
Extract(Pα, P0, P1, 2t + 2, γC);
Extract(Pβ, P2, P3, 2t + 2, γC);
if Test(Pα) and Test(Pβ) then begin

Readout(Pα);
Readout(Pβ);

end if;
end.
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and without loss of generality, it is included in the set D. We call this set of
strands Γ.

• Two different DNA strands of fixed length ℓ are constructed for representing the
bit values 0 and 1. We show these strands by 0 and 1, respectively.

• A set of strands of length (k + 1)× ℓ corresponding to all 0-1 combinations of
binary numbers of length k + 1 are provided by employing the 0 and 1 strands.
This set is constructed similarly to Lipton’s scheme for encoding the satisfiability
problem. We call this set ∆. Indeed, each strand of length (k +1)× ℓ in this set
corresponds to a binary number of length k + 1. Therefore, the set ∆ contains
the strands corresponding to all (k + 1)-bits binary numbers.

After construction of the above strands, and assuming that the strands of the
set ∆ are in to the tube P0, the molecular algorithm for PDP is presented in
Algorithm 2.

A brief discussion of this algorithm is presented here. In phase 1, all the se-
quences corresponding to the values in the set D are appended to the sequences in
the initial test tube P0. This process is performed as follows. Consider one of these
binary numbers be x = x1x2 . . . xk. If xi and xj both have value 1 and |di − dj |
belongs to the multiset D, then the sequence δ|di−dj | from the set Γ is appended to
the strands corresponding to this numbers and the value |di − dj | is removed from
the multiset D. Because of this removal, different strands are appended for equal
values in D.

In phase 2, all the strands in P1 corresponding to the binary numbers with
exactly m-bits value 1 that have appended values with length greater or less than
2k+1 are discarded. Later, the sequences with the appended strands corresponding
to all the values in D are selected. The selected strands are the solution for PDP

problem.
It should be noted that this algorithm obtains all the feasible solutions, but at

least we have two complement solutions because of changing the direction of the
original sequence.

Theorem 2. The molecular algorithm PDP -MOL is performed in O(k2) time com-
plexity for any PDP problem given as integer m and a multiset D = {d0, d1, d2, . . . ,

dk} of k distances.

Proof. As we can see, the algorithm has two phases. Phase 1 has two nested loops.
Since all the molecular operations employed in this paper are performed in O(1),
therefore phase 1 is performed in O(k2). In phase 2 we have two separated loops.
With regards to the complexity of the operations, phase 2 is also performed in O(k).
So the total complexity of the algorithm is O(k2). 2

6 ERROR RESISTANCE DNA SEQUENCE GENERATION

At the time when DNA computing was introduced, a question was raised about how
errors may affect the computing results. Although mature biological operations
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Algorithm 2 Partial digest molecular algorithm.

Algorithm PDP -MOL

begin
phase 1:

for i = 0 to k − 1 do begin
for j = i + 1 to k do begin

Extract(P0, P1, P2, i, 1);
Extract(P1, P3, P4, j, 1);
if |di − dj | ∈ D then begin

D = D\{|di − dj |}
Append(P3, δ|di−dj |)
Merge(P0, P2, P3);
Merge(P0, P0, P4);

end if;
end for;

end for;
phase 2:

Length(P0, P1, 2(k + 1)ℓ);
for i = 1 to k do begin

Separate(P1, P0, P2, δdi
);

P1 ← P0;
end for;
for i = 0 to k do begin

Extract(P1, P2, P3, i, 1);
if T (P2) then begin

print(i);
P1 ← P2;

else
Merge(P1, P2, P3);

end if;
end for;

end.

have very low error rates, errors may still accumulate and thus generate incorrect
answers. As hybridization reactions are essential components in the implementa-
tion protocol and as under certain circumstances such reactions are prone to errors
that would cause false positive and negative results, care must be taken to avoid
the errors. Errors arise commonly when sequences that generate or tolerate hair-
pins and internal loops, mismatch hybridization, shifted mismatches, and 3′-end
hybridization are used. Application of appropriate sequence considerations, such as
base composition and melting temperature (Tm) of hybrids have proven to be very
effective in other experimental contexts where mis-hybridization was a critical con-
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sideration [10]. Similarly, as ligation reactions are included in the implementation
protocol, care must be taken to avoid mis-ligations. The use of an appropriate lig-
ase under stringent conditions will prevent mis-ligations [10, 26]. In order to avoid
these errors we should prevent mis-hybridization and undesired secondary structure
and also keep uniform chemical characteristics [8, 29]. Such unintended interactions
among DNA strands can be minimized by careful sequence design. Random se-
quence generation does not satisfy the above properties. Several heuristic methods
for constructing DNA strands set that are robust with respect to the hybridization
errors have been proposed [4, 10, 16, 26].

DNA sequence design can be considered as an optimization problem. Therefore,
DNA sequences corresponding to any encoding can be generated by a genetic algo-
rithm that minimizes the potential of errors in DNA sequences for reliable molecular
operations and produces reliable sequences. Based on ideas given in Shin et al. [27],
we discuss a genetic algorithm for constructing DNA sequences with regard to the
above errors for our model. This algorithm is summarized below:

i) Generate sequences of four alphabets {A, C, G, T} randomly with length 2d.

ii) Set counter = 1.

iii) While (counter <= max count) do

a) Evaluate the fitness of each sequence.

b) Select the sequences with best fitness.

c) Apply genetic operators (crossover and mutation) to produce a new popula-
tion.

d) counter = counter + 1.

iv) Let the best codes be the fittest encodings.

In this algorithm, we use the conventional genetic operations such as roulette

wheel selection, one-cut-point crossover, and single-point mutation [12]. In roulette
wheel selection, offsprings with a higher fitness value have a higher probability of
contributing in the next population. Crossover and mutation are applied with prob-
ability pc and pm, respectively, in offsprings that are selected by roulette wheel
selection process. In this algorithm, we have employed a multiobjective fitness func-
tion with similar criteria given in Tanaka et al. [29]. Three measures, H-Measure,
Similarity, and Completely complementary at 3′-end, are considered for avoiding
mis-hybridization error. To prevent an undesired secondary structure two measures
Self-Complementary and Continuity are considered. To keep a uniform chemical
characteristics, two other measures, GC-Content and Temperature (Tm), are used.
In our algorithm, a unique fitness function is designed for each of these measures, and
the multiobjective fitness function is the summation of the above fitness functions.
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7 COMPUTATIONAL SIMULATION

We developed a tool for simulating our two molecular algorithms for DDP and
PDP . Our tool first provides the required DNA sequences for these problems
using the genetic algorithm discussed in the previous section and later performs
the simulated molecular operations on them. The first simulated example that we
present here is a DDP for a given three multisets A = {2, 4, 4}, B = {2, 3, 5}, and
C = {1, 2, 2, 2, 3}. The generated sequences for this example by our genetic algo-
rithm are also of length ℓ = 6. The strands corresponding to 0, 1, and 0i(1 ≤ i ≤ 3)
are constructed and shown in Table 1. The elements in the multisets A, B and C are
encoded to 0-1 digits, with respect to the encoding which is defined in Section 5, and
their corresponding DNA sequences are constructed by the strands corresponding
to 0 and 1 as shown in Table 2.

Bit Symbol Corresponding DNA sequences Complement DNA sequences

0 0 GCCATT CGGTAA

1 1 CATGAC GTACTG

01 01 AGTCAC TCAGTG

02 02 CGTACA GCATGT

03 03 ATCTCG TAGAGC

04 04 TAGAGG ATCTCC

05 05 TGAGTC ACTCAG

Table 1. 0-1 bits and their corresponding DNA sequences

Multiset i Encoded Symbol Corresponding DNA sequences

2 101 α1 CATGAC-AGTCAC

A 4 11102 α2 CATGAC-CATGAC-CATGAC-CGTACA

4 11103 α3 CATGAC-CATGAC-CATGAC-ATCTCG

2 101 β1 CATGAC-AGTCAC

B 3 1102 β2 CATGAC-CATGAC-CGTACA

5 111103 β3 CATGAC-CATGAC-CATGAC-
CATGAC-ATCTCG

1 001 γ1 GCCATT -TCAGTG

2 1002 γ2 GTACTG-GCCATT -GCATGT

C 2 1003 γ3 GTACTG-GCCATT -TAGAGC

2 1004 γ4 GTACTG-GCCATT -ATCTCC

3 11005 γ5 GTACTG-GTACTG-GCCATT -ACTCAG

Table 2. Elements of A, B, and C and their corresponding strands

The three sets ∆A, ∆B, and ∆C are all sequences corresponding to the permu-
tations of the elements in A, B, and C, which are generated and shown in Tables 3
and 4. It should be noted that, for summarizing, in Tables 3 and 4 the DNA se-
quences are presented by their corresponding symbols denoted in Table 2. As men-
tioned previously, for performing the Primer-Extention operation in the algorithm,
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the set ∆C is constructed by using the Watson-Crick complementary sequences. So,
for constructing all permutation for the multiset C we use the complement strand
of γi as shown in Table 4.

Set Permutation Corresponding DNA sequence

101 − 11102 − 11103 αA − α1 − α2 − α3

101 − 11103 − 11102 αA − α1 − α3 − α2

∆A 11102 − 101 − 11103 αA − α2 − α1 − α3

11102 − 11103 − 101 αA − α2 − α3 − α1

11103 − 101 − 11102 αA − α3 − α1 − α2

11103 − 11102 − 101 αA − α3 − α2 − α1

101 − 1102 − 111103 βB − β1 − β2 − β3

101 − 111103 − 1102 βB − β1 − β3 − β2

∆B 1102 − 101 − 111103 βB − β2 − β1 − β3

1102 − 111103 − 101 βB − β2 − β3 − β1

111103 − 101 − 1102 βB − β3 − β1 − β2

111103 − 1102 − 101 βB − β3 − β2 − β1

Table 3. The permutations of the elements in A and B appended by tag strand αA and βB ,
respectively

Set Permutation Corresponding DNA sequence

0− 10− 10− 10− 110 γ1 − γ2 − γ3 − γ4 − γ5 − γC

0− 10− 10− 110− 10 γ1 − γ2 − γ3 − γ5 − γ4 − γC

0− 10− 110− 10− 10 γ1 − γ2 − γ5 − γ3 − γ4 − γC

0− 110− 10− 10− 10 γ1 − γ5 − γ2 − γ3 − γ4 − γC

10− 0− 10− 10− 110 γ2 − γ1 − γ3 − γ4 − γ5 − γC

10− 0− 10− 110− 10 γ2 − γ1 − γ3 − γ5 − γ4 − γC

10− 0− 110− 10− 10 γ2 − γ1 − γ5 − γ3 − γ4 − γC

10− 10− 0− 10− 110 γ2 − γ3 − γ1 − γ4 − γ5 − γC

10− 10− 0− 110− 10 γ2 − γ3 − γ1 − γ5 − γ4 − γC

∆C 10− 10− 10− 0− 110 γ2 − γ3 − γ4 − γ1 − γ5 − γC

10− 10− 10− 110− 0 γ2 − γ3 − γ4 − γ5 − γ1 − γC

10− 10− 110− 10− 0 γ2 − γ3 − γ5 − γ4 − γ1 − γC

10− 10− 110− 0− 10 γ2 − γ3 − γ5 − γ1 − γ4 − γC

10− 110− 10− 10− 0 γ2 − γ5 − γ3 − γ4 − γ1 − γC

10− 110− 10− 0− 10 γ2 − γ5 − γ3 − γ1 − γ4 − γC

10− 110− 0− 10− 10 γ2 − γ5 − γ1 − γ3 − γ4 − γC

110− 10− 10− 10− 0 γ5 − γ2 − γ3 − γ4 − γ1 − γC

110− 10− 10− 0− 10 γ5 − γ2 − γ3 − γ1 − γ4 − γC

110− 10− 0− 10− 10 γ5 − γ2 − γ1 − γ3 − γ4 − γC

110− 0− 10− 10− 10 γ5 − γ1 − γ2 − γ3 − γ4 − γC

Table 4. The distinct permutations of the elements in C appended by tag strand γC
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After the construction of all the required sequences, the algorithm DDP -MOL is
simulated as follows. With respect to the algorithm in phase 1, the molecular opera-
tions required for the AND operation are computationally simulated and performed
on the sequences of the sets ∆A and ∆B in the test tubes Pα and Pβ , respectively.
In this phase, the result of AND operation is appended to the all sequences and
separated in two different test tubes, Pα and Pβ , with respect to the tag strands
called αA and βB. In phase 2, by pouring the strands of the set ∆C which are in the
test tube Pγ into each tube and allowing the occurrence of primer extension, double
strands are constructed. Finally, the sequences which hold all the strand γC are the
solution in each test tube. Therefore, the solutions for this example are shown in
Table 5. As we can see, both solutions in Table 5 are correct for this problem.

The second simulated example that we present here is an example of PDP for
a given multiset D = {0, 2, 3, 5, 7, 8, 10} where k = 6 and m = 4. Our genetic
algorithm provides DNA sequences of length ℓ = 6 for this example. We consider
that the strands corresponding to 0 and 1 are similar to the 0 and 1 strands generated
in the previous example. Similarly, the strands corresponding to the elements of the
multiset D are also constructed and shown in Table 6. Also, the 27 binary numbers
of length 7 and corresponding sequences of length 7× 6 are constructed which are
shown in Table 7.

Solution Number Container set Corresponding DNA sequences

1 A αA − α1 − α2 − α3 − γ2 − γ1 − γ5 − γ3 − γ4 − γC

B βB − β2 − β3 − β1 − γ2 − γ1 − γ5 − γ3 − γ4 − γC

2 A αA − α2 − α3 − α1 − γ2 − γ3 − γ5 − γ1 − γ4 − γC

B βB − β1 − β3 − β2 − γ2 − γ3 − γ5 − γ1 − γ4 − γC

Table 5. The solutions for the given example

di δdi

0 TAGCGA
2 TGTACC
3 GCTGAA
5 TCCATC
7 CAATCC
8 TGACGA
10 CGTGTT

Table 6. Strands corresponding to the elements of D

By performing the algorithm and employing simulated molecular operations, in
phase 1, for any position i and j with value 1, the sequences corresponding to the
value |di−dj | that belong to the multiset D, δ|di−dj | are appended to these sequences.
In phase 2, the sequences with length 2(k + 1)ℓ which in this example is equal to 82
are separated and illustrated in Table 8. Among these sequences, the sequences
whose appended subsequences are corresponding to the values in the multiset D are
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selected as a solution. The bolded sequences in Table 8 show the solution of this
problem. One of the solutions is 1−1−0−0−1−0−1− δ2− δ7− δ10− δ5− δ8− δ3,
which represents the points 0, 2, 7 and 10, therefore the solution is {0, 2, 7, 10}.

0-1 combinations corresponding strand

0000000 TAGAGG-TAGAGG-TAGAGG-TAGAGG-TAGAGG-
TAGAGG-TAGAGG

0000001 TAGAGG-TAGAGG-TAGAGG-TAGAGG-TAGAGG-

TAGAGG-CATGAC

0000010 TAGAGG-TAGAGG-TAGAGG-TAGAGG-TAGAGG-
CATGAC-TAGAGG

0000011 TAGAGG-TAGAGG-TAGAGG-TAGAGG-TAGAGG-
CATGAC-CATGAC

0000100 TAGAGG-TAGAGG-TAGAGG-TAGAGG-CATGAC-
TAGAGG-TAGAGG

...
...

1111011 CATGAC-CATGAC-CATGAC-CATGAC-TAGAGG-
CATGAC-CATGAC

1111100 CATGAC-CATGAC-CATGAC-CATGAC-CATGAC-
TAGAGG-TAGAGG

1111101 CATGAC-CATGAC-CATGAC-CATGAC-CATGAC-
TAGAGG-CATGAC

1111110 CATGAC-CATGAC-CATGAC-CATGAC-CATGAC-
CATGAC-TAGAGG

1111111 CATGAC-CATGAC-CATGAC-CATGAC-CATGAC-
CATGAC-CATGAC

Table 7. Strands corresponding to the binary numbers of length 7

Constructed DNA strands

0− 2− 3− 5− 7− 8− 10

1− 0− 0− 1− 0− 1− 1− δ5 − δ8 − δ10 − δ3 − δ5 − δ2

1− 0− 0− 1− 1− 0− 1− δ5 − δ5 − δ2 − δ7 − δ3 − δ5

1− 0− 1− 0− 0− 1− 1− δ3 − δ8 − δ10 − δ5 − δ7 − δ2 ← solution1
1− 0− 1− 1− 0− 0− 1− δ3 − δ5 − δ10 − δ2 − δ7 − δ5

1− 1− 0− 0− 1− 0− 1− δ2 − δ7 − δ10 − δ5 − δ8 − δ3 ← solution2
1− 1− 0− 1− 0− 0− 1− δ2 − δ5 − δ10 − δ3 − δ8 − δ5

Table 8. Produced strands by performing the algorithm

8 CONCLUSION

Two DNA-based algorithms are presented for the solution of PDP and DDP . Our
molecular computational model is similar to Adleman-Lipton model. The algorithms
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are proved to have polynomial time complexity. Both algorithms are computation-
ally simulated for two different examples. The DNA sequences corresponding to the
encoding of these problems are generated by a genetic algorithm that minimizes the
potential of errors in DNA sequences for reliable molecular operations and produces
reliable sequences.
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