
Computing and Informatics, Vol. 28, 2009, 861–893

TEXT CATEGORIZATION AND SORTING OF WEB
SEARCH RESULTS

Miloš Radovanović, Mirjana Ivanović, Zoran Budimac

Department of Mathematics and Informatics

Faculty of Science, University of Novi Sad

Trg D. Obradovića 4, 21000 Novi Sad, Serbia

e-mail: {radacha, mira, zjb}@dmi.uns.ac.rs

Manuscript received 15 February 2007; revised 16 June 2008

Communicated by Peter Vojtáš

Abstract. With the Internet facing the growing problem of information overload,
the large volumes, weak structure and noisiness of Web data make it amenable to the
application of machine learning techniques. After providing an overview of several
topics in text categorization, including document representation, feature selection,
and a choice of classifiers, the paper presents experimental results concerning the
performance and effects of different transformations of the bag-of-words document
representation and feature selection, on texts extracted from the dmoz Open Di-
rectory of Web pages. Finally, the paper describes the primary motivation for the
experiments: a new meta-search engine CatS which utilizes text categorization to
enhance the presentation of search results obtained from a major Web search engine.

Keywords: Machine learning, text categorization, document representation, fea-
ture selection, meta-search engines

Mathematics Subject Classification 2000: 68T50, 62H30, 68T30, 94A17

1 INTRODUCTION

The Internet, with its current structure, the services it provides, and the ways it is
being used, is facing the ever growing problem of information overload. Together
with the sheer increase of available content, more and more domains of human
activity are exploiting the benefits of the Web. Further difficulty lies in the fact

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics, SAS, Bratislava)

https://core.ac.uk/display/267941026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

862 M. Radovanović, M. Ivanović, Z. Budimac

that the Web was initially conceived for human consumption. The core of the Web
was built around text-based services and protocols, with no facilities to support
machine processing of available information. As a result, new standards designed
on top of the old ones did little to change the basic ways the Web was being used
from the beginning. The human user was (and still is) sitting in front of a computer
and handling information by means of a computer program which, no matter how
sophisticated, has little or no knowledge about the true nature and meaning of the
content being processed.

At the time of writing, the situation on the Web is somewhat chaotic. Great
volumes of information are available in unstructured (plain text) or semi-structured
form (HTML). In addition, even more information resides as “dark matter”, oc-
cupying databases based on which Web-pages and other visible content may be
dynamically generated. Beside weak structuring and limited availability, Web data
is inherently noisy, bursting with false information (either intentional or not), ir-
relevant content (like spam e-mail or, from an individual user’s point of view, all
Web-pages not suiting his/her interests), grammatical errors, specific abbreviations,
and data which may be plainly offensive and/or illegal (e.g. pornography, piracy).
Thus, the logical ambition to computerize more human activities connected with
the Web is facing serious difficulties.

The above-mentioned properties of Web data – large volumes, weak structure,
and noisiness – make it amenable to application of machine learning (ML) tech-
niques. ML provides many useful methods for discovering patterns and inferring
knowledge from raw or shallowly processed data, such as (hyper)text commonly
found on the Web. Machine learning has the means to perform such tasks automat-

ically, bringing the goal of computerization of many human activities on the Web
one step closer to realization.

This paper will present an angle on the application of machine learning tech-
niques on the Web, motivated by the construction of a meta-search engine powered
by text categorization techniques. After an introduction to text categorization in
Section 2 and a discussion of related work in Section 3, two rounds of experiments
carried out in order to determine the parameters for the implementation of the
meta-search system will be described in Sections 4 and 5. The constructed system
is outlined in Section 6, and the final section gives concluding remarks and guidelines
for future work.

2 TEXT CATEGORIZATION

Text categorization (TC) is the task of automatically sorting a set of documents
into categories (or classes, or topics) from a predefined set [29]. Applications of TC
include text filtering (e.g. protection from spam e-mail), word sense disambiguation,
and categorization of Web pages.

TC techniques require text to be transformed to an adequate representation,
which is the subject of Section 2.1. Section 2.2 focuses on feature selection, while

Text Categorization and Sorting of Web Search Results 863

Section 2.3 turns to classification methods themselves – their evaluation and prin-
ciples of functioning.

2.1 Document Representation

General-purpose ML techniques are usually designed for examples which have a fixed
set of symbolic or numeric features. A dataset is then merely a table where the
columns represent features (attributes), and the rows are individual examples. Free-
flowing or semi-structured text thus needs to be transformed in order to apply an
ML algorithm. The most widely used approach is the bag-of-words representation.

The bag-of-words representation. In the bag-of-words (BOW) representation
word order is discarded from a document and single words are treated as features.
Actually, other things can be used as features (e.g. phrases) hence textual features
are referred to as terms instead of words. Let W be the dictionary – the set of
all words (terms) that occur at least once in the set of documents D. The BOW
representation of document dj is a vector of weightswj = (w1j, . . . , w|W |j). There are
many variations of the BOW representation, depending on the weight values. For
the simplest binary representation, wij ∈ {0, 1}; the weight wij = 1 if the ith word is
present in document dj , otherwisewij = 0. In the term frequency representation (tf),
wij = tfij, the frequency of the ith term in the jth document.

Many transformations of term frequencies are used in practice. Normaliza-

tion (norm) can be employed to scale the term frequencies, accounting for differences
in the lengths of documents. The logtf transformation may also be applied to term
frequencies, resulting in the representation:

logtf(dj) = (log(1 + w1j), . . . , log(1 + w|W |j)).

The inverse document frequency (idf) transformation yields the representation:

idf(dj) = (w1j log(|D|/docfreq(D, 1)), . . . , w|W |j log(|D|/docfreq(D, |W |))),

where docfreq(D, i) is the number of documents from D the ith term occurs in. It
can be used by itself (with binary weights wij), or with term frequencies to form the
popular tfidf representation.

Similarity measures. With the knowledge that documents in the BOW repre-
sentation are vectors, one would be tempted to use the Euclidean distance measure
to express the similarity between two documents. However, the Euclidean measure
(along with the whole Minkowski family of metrics) are generally not suitable to
problems involving documents in the BOW representation. Therefore, the cosine

similarity measure is usually employed:

sim(di, dj) =

∑|W |
k=1

wki · wkj
√

∑|W |
k=1

w2
ki ·

√

∑|W |
k=1

w2
kj

.

864 M. Radovanović, M. Ivanović, Z. Budimac

2.2 Dimensionality Reduction by Feature Selection

It is clear that even for small document collections the BOW document vector will
have a high dimension. This may hinder the application of ML techniques not only
by causing space and time inefficiency, but by degrading the performance of learning
algorithms which cannot scale to such high dimensions.

The usual steps in preprocessing textual data are elimination of digits and special
characters, and removal of words which appear too infrequently and too frequently
in the document set with respect to some predefined thresholds. The removal of
too frequent words is also often done with regards to a list of stopwords – words
like “I”, “the”, “with”, etc. Such words may inhibit ML algorithms because they
do not add any useful information to the BOW model (for a majority of applica-
tions).

Stemming can be viewed as another technique for dimensionality reduction,
transforming all forms of a word to the same stem. Therefore, not only does it
reduce the number of features, but it also captures correlations between words by
fusing them, that way possibly improving the performance of machine learning.
The problem of algorithmically determining the stem of an arbitrary English word
is satisfactorily solved for most ML applications, one of the widely used algorithms
being the Porter Stemmer. However, for many languages in which words inflect
more than in English such solutions are not possible, and this problem may itself be
tackled by ML techniques.

It is often necessary to further reduce the number of features. For classifica-
tion, there are two distinct approaches to this problem: feature selection, where the
resulting set of features is a subset of the old one, and feature extraction, which
derives a completely different (but smaller) set of features. One of the most no-
table feature extraction methods used on text is latent semantic indexing (LSI),
which employs the singular value decomposition (SVD) linear algebra technique to
decompose the term-document matrix and transform document vectors to a lower
dimensional space. At the same time, the method preserves (and makes explicit)
the correlations between features. In this paper, however, we will focus on issues
regarding feature selection.

The question which feature selection (FS) tries to answer is this: for a given set
of n features representing documents, which of its 2n subsets to choose such that
classification performance is optimal?

2.2.1 The Wrapper Approach

The approach where a classifier is used to evaluate feature subsets is called the
wrapper approach. Unfortunately, since it requires repeated classifier training the
approach is prohibitively slow in textual domains due to the high dimensionality of
data and is therefore seldom used.

Text Categorization and Sorting of Web Search Results 865

2.2.2 The Filter Approach

The filter approach attempts to determine the importance of a feature based on some
measure which is relatively simple to compute. In essence, a feature is considered
more “important” if it correlates with the class feature (it is relevant), at the same
time not correlating with other features (it is not redundant). There are many ways
to formalize this notion, including term frequency, information gain, gain ratio,
symmetrical uncertainty, chi square and relief.

Term frequency. The number of documents a feature (term) occurs in, called
term frequency (which we shall denote TFDR to differentiate term frequency as a di-
mensionality reduction method from term frequency as a feature weighing method
in the BOW representation), is a surprisingly effective way to rank features for se-
lection. A variation of this measure is to count all occurrences of a term in the whole
document set. Note that the removal of stopwords is an important preprocessing
step to take before using TFDR, otherwise many useless features will be retained
(unless stopwords are important in the particular application of the classifier).

Information theoretic measures. Several useful feature ranking measures origi-
nate from information theory. The number of bits needed to express event xi which
occurs with probability P(xi) is called information, expressed as I(xi) = − log2 P(xi).
The expected value of I for a random variable containing events xi is entropy:

H(X) =
∑

i

P(xi) I(xi) = −
∑

i

P(xi) log2 P(xi),

and the conditional entropy of X after observing Y :

H(X|Y) = −
∑

j

P(yj)
∑

i

P(xi|yj) log2 P(xi|yj).

The reduction in entropy of X before and after observing Y, i.e. the average amount
of information about X contained in Y, is referred to as expected cross entropy [19]:

CH(X, Y) = H(X)− H(X|Y).

If we consider features as random variables, then the expected cross entropy of
a fixed class attribute C and attribute A is known as the information gain of A:

IGC(A) = CH(C,A) = H(C)− H(C|A).

The probabilities are calculated from a given dataset, thus entropy becomes
a measure of (im)purity of the dataset relative to the classification we wish to
achieve [18, p. 55]. The usual approach is to rank every feature with regards to
the class using the IG criterion and choose the best features.

866 M. Radovanović, M. Ivanović, Z. Budimac

A possible problem of IG is its bias towards features with more values. This
may be fixed by normalizing IG with the entropy of A, yielding gain ratio:

GRC(A) = IGC(A)/H(A).

Another approach is used in the symmetrical uncertainty measure:

SUC(A) = 2IGC(A)/(H(C) + H(A)).

More details on these measures can be found in [9] and [19] (p. 42).

Chi square. The χ2 measure from statistics can also be used for estimating the
correlation between features and the class feature. If n is the size of the dataset,
for the simplest binary version of BOW, where attribute A ∈ {a0, a1}, and binary
classification (C ∈ {c0, c1}), the χ2 metric is

CHIC(A) =
n[P(a0, c0) P(a1, c1)− P(a0, c1) P(a1, c0)]

2

P(a0) P(a1) P(c0) P(c1)
.

Relief. A different approach to feature ranking is used by the relief measure first
introduced by Kira and Rendell [13]. Relief takes a random example from the dataset
and locates two of its nearest neighbors (with regards to some vector distance met-
ric), one from the positive and one from the negative class and uses the values of
their features to update the relevance of each feature. The procedure is repeated
a specified number of times, the more the better (sampling every example if possi-
ble). Relief was later extended to ReliefF (RF), with added support for multi-class
and noisy datasets [15].

2.3 Classification

The process of training a classifier can be viewed as algorithmically building a math-
ematical model for separating examples of different classes, from the evidence given
in a dataset. There are many different ways of doing this, which resulted in the de-
velopment of many kinds of classifiers with different properties. Some classification
algorithms can only discern between two different classes, making them two-class

(or binary) classifiers, others are naturally multi-class.
This section attempts to present classification algorithms from the viewpoint of

their application on text. First, evaluation of classifiers is discussed, introducing
several ways to use datasets, followed by an overview of text-specific evaluation
measures and a description of several key algorithms.

2.3.1 Classifier Evaluation

There are three different aspects of classifier performance [29]: training efficiency,
classification efficiency, and correctness of classification. Training and classification

Text Categorization and Sorting of Web Search Results 867

efficiency are measured in terms of execution speed and memory consumption, and
present very important factors in practical applications of classification. Never-
theless, the attention of the research community is dominated by the correctness
aspect, which applies to this paper as well. “Classification performance” mentioned
in previous sections was mostly referring to correctness, and will continue in the
same manner.

The dataset used for classification is usually divided into the training set, used
to train the classifier, and the test set for evaluating classifier performance. The
ratio between the training and test sets (the split) may depend on the amount of
available data, the particular application and many other factors. The usual splits
include 2/1, 3/1, 4/1 and 9/1, and sometimes test sets bigger than the training sets
are used.

The cross-validation technique is often used to evaluate classifiers. The dataset
is split into n subsets, with one used as the test set, and the remaining n−1 subsets
comprising the training set. This allows for n different measurements, and the whole
process can be repeated k times, resulting in k runs of n-fold cross-validation. To
preserve class distribution, stratification may be employed to keep the ratio of the
number of examples of each class the same in the training and test sets.

Having multiple measurements means that a statistical test, like the t-test, can
be used to determine whether the performance of two classifiers is significantly dif-
ferent. Furthermore, in a setting where multiple classifiers are being compared over
multiple datasets, the number of statistically significant wins and losses can be
counted and the subtracted value of wins–losses used to rank the classifiers.

Evaluation measures. Accuracy – the percentage of correctly classified examples
is a good measure for evaluating classifiers in a wide variety of applications. However,
consider a binary classification problem with imbalanced class distribution, where
examples from the negative class constitute 95% of the dataset. Then, the trivial

rejector (i.e. the classifier which assigns all examples to the negative class) has
an accuracy of 95%, but is totally unusable in practice if the positive class is of
any importance.

Predicted class
yes no

Actual yes True Positive (TP) False Negative (FN)
class no False Positive (FP) True Negative (TN)

Table 1. Outcomes of binary classification

Evaluation measures which originated from information retrieval (IR) are com-
monly used to evaluate text classifiers. Precision is defined as the ratio of the
number of relevant documents that were retrieved and the total number of retrieved
documents. In terms of outcomes of binary classification summarized in Table 1,

precision = TP /(TP+FP).

868 M. Radovanović, M. Ivanović, Z. Budimac

Recall is the ratio between the number of relevant documents retrieved, and the
total number of relevant documents:

recall = TP /(TP+FN).

For comparison,

accuracy = (TP+TN)/(TP+TN+FP+FN).

It can be said that precision and recall are on the opposite sides of the spectrum.
The trivial acceptor has 100% recall and very low precision, while a classifier which
makes only one positive classification (and it happens to be correct) has 100%
precision and very low recall. Therefore, the two measures are often combined to
form the F-measure:

Fβ =
(β2 + 1) · precision · recall

β2 · precision+ recall
.

When β = 1, F-measure represents the harmonic mean of precision and recall. For
0 ≤ β < 1 precision is given more importance ending with F0 = precision, while
β > 1 means recall gets the upper hand with the other extreme at F∞ = recall.
Besides β = 1, the usual values of β that are used are β = 0.5 when precision is
considered more important, and β = 2 when recall is preferred [19].

2.3.2 Algorithms

Practically every existing classifier has been tried on text to date [29], making TC
quite a popular benchmark for old and new classification algorithms. It would be
infeasible to review them all, therefore a selection of algorithms was made. Hopefully,
they do well to illustrate the principles, the diversity of approaches, and the state-
of-the-art in the field.

Perceptrons. The perceptron is a binary classifier which uses the value of the
inner product of vectors v · x to classify an instance x according to the previously
learned vector of weights v. If the inner product is greater than or equal to some
threshold t, the instance is assigned to the positive class and vice versa. More
precisely, for binary class c ∈ {−1, 1}, c = sg(v · x − t), where sg(x) = 1 if x ≥ 0,
and sg(x) = 0 otherwise. This means that v and t define a hyperplane which linearly
separates the vector space.

Learning the vector v starts by assigning it a 0 vector (or a vector of small
positive weights) and continues by examining each training instance x one at a time
and classifying it using the currently learned v. If the classification is incorrect the
vector is updated: v← v±ηx, where addition (subtraction) is used when x belongs
to the positive (negative) class and η is a small positive number – the learning rate.
The effect of the update is to shift the weights of v towards the correct classification
of x. The algorithm iterates multiple times over instances in the training set until
some stoppage criterion is met.

Text Categorization and Sorting of Web Search Results 869

The perceptron showed solid performance on text [28], despite its simplicity.
There are numerous extensions, one of them being the voted-perceptron by Freund
and Schapire [7].

In the voted-perceptron algorithm, all vectors v calculated during training are
retained together with the number of training instances they “survive” without
being modified. Then, for a list of such weighed perceptrons (v1, c1), . . . , (vk, ck),
the classification is calculated as the sign of the weighed sum of the classifications of
each saved perceptron: c = sg

(

∑k
i=1

cisg(vi · x)
)

, assuming all thresholds are zero.
The voted-perceptron was shown to be effective on high-dimensional data, at the
same time being simple to implement and having a low training time [7].

Support vector machines. One of the most sophisticated and best performing
classifiers applied on text [29] is the support vector machine (SVM) classifier. It
is a binary classifier, and its main idea lies in using a kernel function whose main
effect is to transform the input vector space. The new vector space usually has
a higher number of dimensions, with the transformed data being linearly separable.
Quadratic programming methods are applied to find a maximum margin hyperplane,
i.e. the optimal linear separation in the new space, whose inverse transformation
should yield an excellent classifier in the original space.

Although the foundations for SVMs were laid out by Vapnik in the 1970s [30],
the computational complexity of various solutions to the quadratic programming
problem restricted the use of SVMs in practice. Only relatively recently were ap-
proximate solutions derived which enabled feasible and, compared with some other
classifiers, superior training times. One solution was by Osuna et al. [22], improved
by Joachims [11] and implemented in his SVM light package. An alternative is Platt’s
sequential minimal optimization (SMO) algorithm [23] available, for instance, as part
of the WEKA workbench [31].

Support vector machines can handle very high dimensions, making them suitable
for application on text data without dimensionality reduction [17].

Näıve Bayes. The probabilistic approach to modeling data yielded several ma-
chine learning techniques which can be applied on text. One of the most well known
and widely used is the näıve Bayes classifier. Let random variable C denote the
class feature, and A1, A2, . . . , An the components of the attribute vector. Then, the
class of document vector 〈a1, a2, . . . , an〉 is c = argmaxcj∈C P(cj|a1, a2, . . . , an) (in
the case that one class maximizes the expression). The Bayes theorem gives

c = argmax
cj∈C

P(a1, a2, . . . , an|cj) P(cj)

P(a1, a2, . . . , an)
= argmax

cj∈C
P(a1, a2, . . . , an|cj) P(cj)

= argmax
cj∈C

P(cj)
n
∏

i=1

P(ai|cj) .

The last derivation used the assumption that attributes are mutually independent,
which obviously does not hold in reality, hence the prefix “näıve”. Nevertheless, the

870 M. Radovanović, M. Ivanović, Z. Budimac

approximation has been shown to work in practice. Training involves approximating
the values P(cj) and P(ai|cj) from data. Several approaches exist, depending on the
assumed data distribution. The approach most often used on text involves the multi-
nomial model, and was recently subjected to several enhancements [27, 12]. In the
classification phase, if multiple classes maximize the expression P(cj)

∏n
i=1 P(ai|cj)

different strategies may be employed to resolve the ambiguity, e.g. choosing the class
with the highest prior probability P(cj), or simply choosing one of the maximizing
classes randomly.

Nearest neighbor classifiers. The training phase of nearest neighbor classifiers
is practically trivial and consists of storing all examples in a data structure suit-
able for their later retrieval. Unlike other classifiers, all computation concerning
classification of an unseen example is deferred until the classification phase. Then,
k instances most similar to the example in question – its k nearest neighbors – are
retrieved and the class is computed from the classes of the neighbors. Determin-
ing the class can consist of just choosing the majority class of all the neighbors, or
distance weighing may be used to reduce the influence of faraway neighbors on the
classification decision. The similarity function for textual documents is usually the
cosine of the angle between vectors.

Decision trees. A decision tree (DT) is a tree whose internal nodes represent
features, where arcs are labeled with outcomes of tests on the value of the feature
from which they originate, and leaves denote categories. Classifying a new instance
using a decision tree involves starting from the root node and following the branches
labeled with the test outcomes which are true for the appropriate feature values of
the instance, until a leaf with a class value is reached. One of the widely used
decision tree learning algorithms is Quinlan’s C4.5 [24]. Learning a DT with C4.5
involves choosing the most informative feature using a combination of the IG and
GR criteria, determining how best to split its values using tests, and repeating the
process recursively for each branch/test. Recursion stops when the tree perfectly
fits the data, or when all feature values have been used up. Pruning is performed
on the tree to avoid overfitting.

Decision trees are especially useful when the decision of the classifier needs to be
interpreted by humans. As for text, DTs may be unsuitable for many applications
since they are known not to efficiently handle great numbers of features; but some-
times they do prove superior, for instance on datasets which contain a few highly
discriminative features [8].

3 RELATED WORK

Issues with document representation and feature selection. Although the
majority of research in TC employs the bag-of-words approach to document rep-
resentation [8], studies of the impact of its variations on classification started ap-

Text Categorization and Sorting of Web Search Results 871

pearing relatively recently. Leopold and Kindermann [17] experimented with the
SVM classifier with different kernels, term frequency transformations and lemmati-
zation of German. They found that lemmatization usually degraded classification
performance, and had the additional downside of great computational complexity,
making SVMs capable of avoiding it altogether. A study on the impact of document
representation on one-class SVM [32] showed that, with a careful choice of rep-
resentation, classification performance can reach 95% of the performance of SVM
trained on both positive and negative examples. Kibriya et al. [12] compared the
performance of SVM and a variant of the näıve Bayes classifier, emphasizing the
importance of tf and idf transformations for näıve Bayes. Authoritative experi-
mental studies of the impacts of feature selection on text classification include [6]
and [34].

Meta-search engines. Generally, meta-search engines aim to improve certain
aspects of general-purpose search engines including Web coverage, search result
relevance, and presentation. As for general-purpose search engines, information
available on meta-search engines is rather sparse, but research has been gaining
momentum in recent years. SnakeT is a recent implementation of a meta-search
engine which sorts results by clustering Web-page snippets,1 and also provides Web
interfaces for books, news and blog domains [5]. Carrot2 is an open-source “re-
search framework for experimenting with automated querying of various data sources
(such as search engines), processing search results and their visualization,” which
also relies on clustering [21]. Formal concept analysis (FCA) was employed for
organizing search results by systems CREDO [3] and, more recently, FooCA [14].
CiiRarchies is a hierarchical clustering engine forWeb search results described in [16],
while Highlight provides the option to sort results at the outermost level using clas-
sification, before resorting to clustering for deeper levels of the topic hierarchy [33].
All these systems provide Web interfaces and published results, unlike leading com-
mercial clustering engines (e.g. Vivisimo, KartOO) which keep the details about the
employed algorithms in hiding. According to [5], no meta-search engine, research
or commercial, has outperformed Vivisimo with regards to the quality of generated
clusters, and the majority of engines with known internal workings are rather slow,
which limits their usefulness in practice.

A pure classification approach to sorting search results was described in [2],
where a closed study involving Internet users of different profiles showed that their
category style of presentation was generally preferred over the list model. The
authors chose to break up the list of results between categories right at the initial
displaying of results, showing only several examples from each category, based on
which the user could choose to “expand” a particular topic.

Another way to utilize classification in sorting search results is by means of
focused, or vertical search: the user is first asked to navigate and fix a particular
category of interest, and then post a query [28]. The results would not only be

1A Web-page snippet consists of the page’s title, link and excerpt.

872 M. Radovanović, M. Ivanović, Z. Budimac

restricted to the chosen (and related) categories, but also ranked in accordance with
that particular line of search, instead of using global link graph analysis.

4 CLASSIFICATION EXPERIMENTS: ROUND ONE

The initial motivation for the experimental work presented in this paper lies in the
development a meta-search engine which uses TC to enhance the presentation of
search results, described in Section 6. From the context of this system, we intended
to answer the three questions posed in [20]:

1. what representation to use in documents,

2. how to deal with the high number of features, and

3. which learning algorithm to use.

In order to keep the number of variables manageable, the experiments were organized
in two rounds. The first round focuses on question 1. and its interaction with
question 3., trying (but not completely succeeding) to avoid question 2. The second
round of experiments, presented in the next section, examines in more detail the
issues surrounding feature selection and classification algorithms.

This section provides an outline of the experimental study which examines BOW
document representations and their impact on the performance of five classifiers.
Using wins–losses for evaluation, which was seldom done in TC, enabled the mea-
surement of the effects of different BOW document transformations on each classi-
fier.

Section 4.1 introduces the experimental setup – the datasets, the considered
document representations and feature selection methods, and the classifiers. Sec-
tion 4.2 outlines the most notable results – which representations were found best,
and the effects of different transformations: normalization, logtf and idf on differ-
ent classifiers.

4.1 The Experimental Setup

All experiments described in this paper were performed using the WEKA machine
learning toolkit [31]. The data (documents) are concatenated Web-page titles and
descriptions from the dmoz Open Directory.2 Five classical measures were recorded:
accuracy, precision, recall, F1 and F2. The F2 measure, which gives emphasis to
recall over precision, is included for reasons similar to those in [19, p. 48] where
false positives are preferred to false negatives. What this means for categorization
of search results is that it is preferred to overpopulate categories to a certain extent
over leaving results unclassified in category Other.

2www.dmoz.org/, with the data available in downloadable form at rdf.dmoz.org/.

Text Categorization and Sorting of Web Search Results 873

Datasets. For this round of experiments 11 two-class datasets were extracted
from dmoz : Arts, Business, Computers, Games, Health, Home, Recreation, Science,
Shopping, Society and Sports. Positive examples in each dataset are taken from the
corresponding category, while negative examples are extracted in a stratified fashion
from the other 10 categories. Stopwords were eliminated. The number of features
in the datasets ranges from 3 800 to 4 700, and the number of documents between
620 and 770.

Document representation and feature selection. The bag-of-words repre-
sentation was used, together with all its transformations described in Section 2.1.
For notational convenience, the abbreviations denoting each transformation were
appended to the names of datasets, so, for instance, Arts-norm-tf refers to the nor-
malized term frequency representation of the Arts dataset. All meaningful combi-
nations of the transformations, together with stemming (m), amount to 20 different
variations summarized in Table 2. Furthermore, experiences with the idf trans-
formation described in Section 4.2 made us consider at least one dimensionality
reduction method. We chose a simple method based on term frequencies (denoted
TFDR) which eliminates least frequent terms, keeping the total number of features
around 1 000. Thus, two variants of datasets were generated – with and without
TFDR. All this accounts for a total of 11 · 20 · 2 = 440 datasets for this round of
experiments.

Not stemmed Stemmed

Not normalized Normalized Not normalized Normalized

01 m-01

idf m-idf

tf norm-tf m-tf m-norm-tf

logtf norm-logtf m-logtf m-norm-logtf

tfidf norm-tfidf m-tfidf m-norm-tfidf

logtfidf norm-logtfidf m-logtfidf m-norm-logtfidf

Table 2. Document representations

Classifiers. The WEKA implementations of classifiers used in this round of ex-
periments are: ComplementNaiveBayes (CNB) – an improved multinomial model
näıve Bayes [27, 12], SMO [23], VotedPerceptron (VP) [7], IBk (a variant of k-
Nearest Neighbor) [1], and J48 (a variation of C4.5) [24].

It should be noted that we used IBk with k = 1 and the Euclidean distance
metric. Only in the late phases of experimentation we realized that the Euclidean
metric was not suitable to BOW data. In addition, TFDR broke the performance
of IBk completely, therefore only results without TFDR are reported for IBk.

Separate experiments were run for each of the five classifiers and each of the
11 categories with the 20 datasets corresponding to document representations. The

874 M. Radovanović, M. Ivanović, Z. Budimac

reported evaluation measures are averages over five runs of 4-fold cross-validation.
For comparison of measures WEKA’s corrected resampled t-test was used (α =
0.05), and the wins and losses of each document representation summed up over the
11 categories for every classifier.

4.2 Outline of the Results

Based on the observed measures of classifier performance and wins–losses summed-
up over the datasets, a best representation was identified for each classifier. Table 3
summarizes the performance of classifiers on the Home dataset (which best illus-
trates average classifier behavior over all datasets).

CNB SMO VP IBk J48

m-norm-tf m-norm-logtf m-logtf m-norm-logtf m-logtf

Accuracy 82.56 (5.26) 83.19 (1.67) 78.38 (5.12) 74.93 (21.96) 71.77 (3.64)
Precision 81.24 (8.66) 85.67 (3.86) 80.45 (7.85) 71.32 (14.32) 90.24 (1.60)

Recall 83.91 (1.81) 78.93 (3.80) 74.06 (0.96) 81.66 (45.20) 47.59 (10.59)
F1 82.48 (3.64) 82.07 (2.17) 77.02 (4.23) 76.07 (33.90) 62.12 (9.09)
F2 83.31 (2.19) 80.14 (3.30) 75.20 (2.16) 79.31 (39.72) 52.48 (10.41)

Table 3. Performance of classification (in %) using the best document representations on
the Home dataset, without dimensionality reduction, together with improvements
over the worst representations (statistically significant ones are in boldface)

The effects of a particular BOW transformation (i.e. stemming, normalization,
logtf and idf) on classification performance were measured by summing-up the wins–
losses for datasets with the transformation applied, and again for datasets without
the transformation, and examining their difference. These differences may con-
veniently be depicted on a bar-chart for every classifier and evaluation measure.
What follows is a discussion of such results for the norm, logtf and idf transforma-
tions.

Effects of normalization. The chart in Figure 1 a) suggests that, without TFDR,
normalization enhances the performance of CNB and SMO by all measures except
recall (and consequently F2). Biggest improvement was on IBk, virtually no effect
was apparent for VP, while the performance of J48 was degraded. The improving
effect on SMO can be attributed to the known fact that SMO performs well with
small numeric attributes (we disallowed the SMO classifier to employ own data
normalization). As for IBk, normalization helped considerably with the comparison
of vectors using the Euclidean metric. The worsening of the performance of J48 can
be explained by the increased difficulty of finding good numeric intervals within the
normalized weights in order to branch the decision tree. After TFDR (Figure 1 b)),
CNB joined VP in its insensitivity, while SMO witnessed a big boost of performance
when data was normalized.

Text Categorization and Sorting of Web Search Results 875

CNB SMO VP IBk J48
-600

-400

-200

0

200

400

600

800

1000

1200

1400

1600

Accuracy Precision Recall F1 F2

CNB SMO VP J48
-600

-400

-200

0

200

400

600

800

1000

1200

1400

1600

Accuracy Precision Recall F1 F2

a) b)

Fig. 1. Effects of normalization a) before and b) after TFDR

Effects of logtf. The effects of the logtf transformation are somewhat different
to those of normalization, as can be seen in Figure 2. The effects are mostly those
of mild improvement of classification performance. The stronger improvement of
SMO in Figure 2 b) can again be attributed to SMO’s preference for small numeric
values, along with the smoothing effect of logtf on the elimination of small weights
by TFDR.

CNB SMO VP IBk J48
-50

0

50

100

150

200

Accuracy Precision Recall F1 F2

CNB SMO VP J48
-50

0

50

100

150

200

Accuracy Precision Recall F1 F2

a) b)

Fig. 2. Effects of the logtf transformation a) before and b) after TFDR

Effects of idf. The idf transformation proved to be most interesting regarding the
range of effects it had on the classifiers. Without TFDR, all classifiers except SMO
are negatively effected by it, as suggested by Figure 3 a). We conjectured that this
is due to our data containing many terms which are found only in a small number
of documents, that way making idf assign them unrealistically high weights. We
therefore introduced TFDR, expecting idf to improve classification performance
on data with infrequent features eliminated. The expected effect did occur, as
demonstrated by Figure 3 b), for all classifiers except SMO, whose performance
drastically degraded! This behavior seemed to be worth investigating further, and
was the motivation for the study presented in Section 5.

More details on this round of experiments are given in [26].

876 M. Radovanović, M. Ivanović, Z. Budimac

CNB SMO VP IBk J48
-500

-400

-300

-200

-100

0

100

200

300

Accuracy Precision Recall F1 F2

CNB SMO VP J48
-500

-400

-300

-200

-100

0

100

200

300

Accuracy Precision Recall F1 F2

a) b)

Fig. 3. Effects of idf applied to tf a) before and b) after TFDR

5 CLASSIFICATION EXPERIMENTS: ROUND TWO

The idf transformation, as depicted in Figure 3, had completely opposite effects
on the CNB and SMO classifiers. Without dimensionality reduction (TFDR) the
performance of CNB was degraded, while SMO witnessed improvement. With di-
mensionality reduction, however, the effect was completely reversed. At first glance,
this behavior went against our intuition. The idf transformation assigns a high
score to infrequent terms, and these are roughly the terms which are eliminated by
TFDR. Thus, if the less frequent terms are not discriminative (which depends on
the data) then the performance of a classifier before dimensionality reduction should
be degraded by idf, while after dimensionality reduction it is more likely to be im-
proved since TFDR eliminates the features to which idf gives an unrealistically high
weight. On the other hand, if the infrequent terms are good discriminators between
classes, before TFDR idf should improve classifier performance, and after TFDR it
is more likely to have a degrading effect. But, the two classifiers in question exhi-
bited totally opposing behavior with regards to the above distinction. This raised
an interesting question whether the two classifiers are so dissimilar that they were
able to model totally different patterns of feature weights and their correspondence
to the class.

Together with rankings of feature selection methods and reduction rates, which
will be used as a guideline for the implementation of the meta-search system de-
scribed in Section 6, this section will present a study motivated by the above ques-
tion. Besides idf, we will also examine normalization and logtf transformations,
i.e. their effect on several commonly used feature selection methods, considering
a wide array of reduction rates instead of only two.

Section 5.1 introduces the datasets, document representations, feature selection
methods and classifiers used in this round of experiments. Section 5.2 presents
the results: the rankings of feature selection methods and reduction rates, and
the findings concerning their interactions with the considered document representa-
tion transformations.

Text Categorization and Sorting of Web Search Results 877

5.1 The Experimental Setup

Datasets. The subset of dmoz corresponding to the 11 top level categories, as
described in Section 4, was the basis for the generation of datasets for this study.
This time, six larger two-class datasets were extracted, corresponding to top-level
topics Arts, Computers and Sports, and second-level topics Music, Roleplaying and
Physics. For each dataset, positive examples are taken for the corresponding topic,
and negative examples are extracted from all other topics at the same level of the
hierarchy within a common parent topic, in a stratified fashion. That is, for the first-
level topics, negative examples are taken from the 11-category subset of dmoz, while
for the second-level categories (Music, Roleplaying and Physics) negative examples
are restricted to their first-level parents (Arts, Games and Science, respectively).
Stopwords were eliminated, and the Porter Stemmer was applied to every dataset
since the best document representations determined in Section 4 all included stem-
ming. The number of terms in the datasets ranges from 10 000 to 15 000, and the
number of documents between 5 000 and 9 000.

Document representations. For every dataset, the variations of the BOW rep-
resentation which were considered best for at least one classifier were generated: m-

norm-tf, m-norm-logtf and m-logtf. In order to study the interaction between BOW
transformations and feature selection, m-tf and m-norm-tfidf were also included.

Feature selection. The examined feature selection methods are chi-square, in-
formation gain, gain ratio, ReliefF and symmetrical uncertainty. Classification per-
formance was measured on datasets consisting of top 100, 500, 1 000, 3 000, 5 000,
7 000 and 10 000 features selected by each method, and on datasets with all features.
The feature selection method which discards least frequent features from Section 4
(TFDR) was not used, since it was not possible to achieve the same reduction rates
without randomly discarding features with identical frequencies of appearance.

Classifiers. The same classifiers implemented in WEKA that were used in Sec-
tion 4 were employed in this study: ComplementNaiveBayes (CNB), SMO, Voted-
Perceptron (VP), IBk and J48.

Experiments were carried out on each dataset with a particular document rep-
resentation, FS method and number of features, and classifier. As in Section 4, five
runs of 4-fold cross-validation were used, and WEKA’s corrected resampled t-test
(α = 0.05) employed to compare the values of evaluation measures.

5.2 Results

5.2.1 Rankings of Feature Selection Methods and Reduction Rates

Table 4 shows the top five combinations of feature selection methods and reduction
rates measured by accuracy, precision, recall, F1 and F2, respectively. The wins–

878 M. Radovanović, M. Ivanović, Z. Budimac

losses (WL) values are summed-up over all datasets, while the actual values of
performance measures are averaged.

CNB SMO VP IBk J48
m-norm-tf m-norm-logtf m-logtf m-norm-logtf m-logtf

FS WL acc. FS WL acc. FS WL acc. FS WL acc. FS WL acc.

all 133 89.4 chi1000 169 90.1 chi1000 144 88.6 gr500 203 84.4 chi500 34 83.3
chi10000 113 89.2 ig1000 168 90.1 su1000 140 88.6 su100 172 80.5 su500 33 83.4
ig10000 113 89.1 su1000 167 90.1 ig1000 134 88.5 gr100 171 81.2 ig500 33 83.3
gr10000 112 89.1 gr1000 161 90.0 su500 117 88.2 ig100 166 79.8 ig1000 31 83.3
ig3000 93 88.9 gr3000 129 89.6 su3000 116 88.2 chi100 153 79.1 su1000 31 83.3

FS WL pr. FS WL pr. FS WL pr. FS WL pr. FS WL pr.

ig7000 158 88.9 ig1000 122 92.2 gr500 203 93.6 ig7000 146 94.2 gr500 50 87.7
su7000 158 88.9 su1000 120 92.2 gr1000 179 91.1 su7000 146 94.2 gr1000 48 89.0
chi7000 158 88.9 gr1000 120 92.2 gr100 130 89.9 gr7000 146 94.2 gr100 47 87.8
gr7000 157 88.9 chi1000 118 92.2 chi1000 70 89.4 chi7000 146 94.2 su100 7 87.1
ig5000 148 88.7 gr500 90 90.4 ig1000 68 89.4 gr100 93 89.4 ig100 2 86.9

FS WL re. FS WL re. FS WL re. FS WL re. FS WL re.

gr100 209 98.2 all 167 88.0 su1000 98 87.4 gr500 191 80.9 su500 33 78.8
gr500 187 95.9 chi1000 133 87.3 chi1000 97 87.4 su100 155 74.4 ig1000 32 78.8
all 134 92.7 ig1000 131 87.3 ig1000 92 87.3 ig100 153 74.1 su1000 32 78.8
gr1000 117 92.6 gr1000 131 87.2 su3000 86 87.0 chi100 138 73.6 chi500 32 78.8
su1000 117 92.6 su1000 130 87.3 ig3000 86 86.9 su500 126 72.9 ig500 31 78.8

FS WL F1 FS WL F1 FS WL F1 FS WL F1 FS WL F1

all 162 89.6 chi1000 169 89.7 su1000 145 88.4 gr500 204 83.6 su500 38 82.4
chi10000 121 89.2 gr1000 166 89.6 chi1000 144 88.4 su100 175 79.1 ig500 37 82.4
gr10000 121 89.2 ig1000 164 89.7 ig1000 135 88.3 ig100 168 78.7 chi500 35 82.4
ig10000 120 89.2 su1000 163 89.7 su500 117 88.0 gr100 163 79.0 su1000 35 82.3
su10000 120 89.2 gr3000 129 89.2 su3000 114 88.0 chi100 156 78.3 ig1000 34 82.3

FS WL F2 FS WL F2 FS WL F2 FS WL F2 FS WL F2

all 171 91.4 chi1000 153 88.2 chi1000 138 87.8 gr500 194 81.9 su500 35 80.2
gr1000 157 91.2 all 147 88.2 su1000 122 87.8 su100 162 76.2 ig500 34 80.2
su1000 148 91.1 ig1000 143 88.2 ig1000 120 87.7 ig100 154 75.9 chi500 34 80.2
ig1000 148 91.1 su1000 143 88.2 su500 95 87.3 chi100 140 75.4 ig1000 33 80.2
chi1000 148 91.1 gr1000 141 88.2 su3000 93 87.4 su500 131 74.6 su1000 33 80.2

Table 4. Top five feature selection methods, by accuracy, precision, recall, F1 and F2 wins–
losses (WL), for each classifier with its “best” document representation

It can be seen from the table that different classifiers are best performers when
different measures are considered. CNB and SMO are best at accuracy and the
F1 measure, VP and IBk are ahead of the field in precision, and CNB alone is the
clear winner at F2, and especially recall, with the staggering 98.2% for GR at 100
selected features.

Considering feature selection methods, the tables indicate that CHI, IG and SU
tend to “stick together,” with similar performance at same reduction rates, while GR
sometimes “breaks away” from the pack, although it is based on the same theoretical
grounds as IG and SU. RF proved to be a complete failure, in all probability not
because of any shortcoming as a feature selection algorithm, or unsuitability for
use in textual domains. It was a consequence of WEKA’s implementation using
the Euclidean measure when calculating document vector distances for determining
nearest neighbors.

Text Categorization and Sorting of Web Search Results 879

In summary, considering its good all-round performance, dominance at recall
and F2, the lack of need for feature selection, and blazing speed, we can safely
conclude that the CNB classifier, out of those considered, is best suited for the task
of classifying search results. SMO can be regarded a close second, because of its
inferior performance at F2, and longer training times.

5.2.2 Interaction Between BOW Transformations and Feature Selection

This section will investigate how does the addition of normalization, logtf and idf

transformations to a baseline BOW document representation affect classification
performance, from the viewpoint of several feature selection methods. We will con-
centrate on two best-performing classifiers from Section 4: CNB and SMO. The
baseline representation for normalization will be m-tf since stemming was beneficial
to classification in all our previous experiments, while the baseline for logtf and idf

will be the m-norm-tf representation because normalization is included in the deter-
mined best representations for the two classifiers. Since idf provided the motivation
for this investigation, transformations will be presented in reverse order compared
to Section 4: idf, logtf, and then norm.

The idf transformation. Standard-style charts which show the F1 measure of
performance of CNB for feature selection algorithms and reduction rates are given
in Figure 4. The measurements are averaged over the six datasets, and the used
representations are m-norm-tf in Figure 4 a), and m-norm-tfidf in Figure 4 b). It
can be seen, more clearly than in Section 5.2.1, that CHI, IG and SU feature selec-
tion methods exhibit almost identical behavior. GR follows the three down to the
smaller numbers of features (500 and 100), where its performance decays. Since the
described trends in the performance of FS methods were consistent over all evalu-
ation measures with both classifiers, the following comments will generally refer to
the CHI–IG–SU trio, unless stated otherwise.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

100 500 1000 3000 5000 7000 10000 ALL

Number of features

F
1

CHI GR IG RF SU

0.65

0.7

0.75

0.8

0.85

0.9

0.95

100 500 1000 3000 5000 7000 10000 ALL

Number of features

F
1

CHI GR IG RF SU

a) b)

Fig. 4. Performance of CNB measured by F1, with a) tf and b) tfidf representation

880 M. Radovanović, M. Ivanović, Z. Budimac

Besides CNB performance with m-norm-tfidf being several percent worse overall
than with m-norm-tf, the only other noticeable difference between the two charts
is the more pronounced dent between 3 000 and 10 000 features for m-norm-tfidf.
However, when looking at the less used type of chart depicting summed-up statisti-
cally significant wins–losses in Figure 5, the differences become more obvious. These
charts express how feature selection methods and reduction rates compare to one
another in the context of the particular classifier (CNB) and representation, achiev-
ing independence from absolute measurements of performance. The peaks and dents
are more clearly distinguishable than in Figure 4.

-250

-200

-150

-100

-50

0

50

100

150

200

100 500 1000 3000 5000 7000 10000 ALL

Number of features

F
1

w
in

s-
lo

ss
es

CHI GR IG RF SU

-250

-200

-150

-100

-50

0

50

100

150

200

100 500 1000 3000 5000 7000 10000 ALL

Number of features

F
1

w
in

s-
lo

ss
es

CHI GR IG RF SU

a) b)

Fig. 5. Summed up wins–losses for F1 and CNB, with a) tf and b) tfidf representation

-150

-100

-50

0

50

100

150

100 500 1000 3000 5000 7000 10000 ALL

Number of features

F
1

w
in

s-
lo

ss
es

 id
f d

iff
er

en
ce

CHI GR IG RF SU

-150

-100

-50

0

50

100

150

100 500 1000 3000 5000 7000 10000 ALL

Number of features

F
1

w
in

s-
lo

ss
es

 id
f d

iff
er

en
ce

CHI GR IG RF SU

a) b)

Fig. 6. Effect of idf on F1 wins–losses for a) CNB and b) SMO

Subtracting the wins–losses of the baseline m-norm-tf representation from the
wins–losses of m-norm-tfidf, we obtained the chart in Figure 6 a). Effectively, it
expresses the impact of the idf transformation on the performance of the CNB
classifier (as measured by F1) throughout the range of feature selection methods
and reduction rates. According to the chart, idf improves CNB between 100 and
3 000 chosen features, while degrading it for higher feature counts. It should be

Text Categorization and Sorting of Web Search Results 881

made clear that the improvement or degradation is only relative in nature, since
using wins–losses limited the comparisons to the boundaries of the same document
representation and classifier. Using wins–losses instead of actual performance mea-
surements permitted the subtraction of values by avoiding the issue of scale when
comparing the measurements on different document representations. Information
about absolute performance was sacrificed in order to express the relationship be-
tween the idf transformation and feature selection. Therefore, the 100–3 000 range
in Figure 6 a) can only be viewed as the place to expect improvement when intro-
ducing the idf transformation to the document representation. Whether there will
be actual improvement is determined by the properties of classifiers and data. Our
experience showed that tfidf representations are usually inferior for text categoriza-
tion, which is certainly not a general rule [12, 17].

The corresponding chart of wins–losses differences for idf with SMO is shown in
Figure 6 b). Two ranges with possible improvement of performance can be discerned:
one approximately below 800 features, and another above 8 000. This demonstrates
that the idf transformation has a different effect the two classifiers, and provides
an explanation for the observed discrepancy. With no feature selection idf degrades
CNB and improves SMO, while at 2 000–3 000 selected features the effect is opposite.
(The 2 000–3 000 range roughly corresponds to 1 000 features from the previous batch
of experiments since those datasets had a lower number of features.) What makes
the analogy with the study from Section 4 even more remarkable is the fact that
different datasets, and even feature selection methods were used.

The general shape of the graphs for CNB and SMO in Figure 6 (regarding the
CHI–IG–SU trio) is quite similar, except for the drop of the CNB graph below 500
features. A corresponding drop for SMO may exist at a lower number of features
which was not measured. This indicates that the CNB and SMO do not behave
in such opposing fashion with regards to the idf transformation as was suggested,
since the graphs are not totally contrary to one another.

However, observing the charts of wins–losses differences introduced by the idf

transformation with CNB (Figure 7 a)) and SMO (Figure 7 b)) using precision

as the evaluation measure reveals quite different effects of idf on the two classi-
fiers.

Since precision is one of the building blocks of the F1 measure together with
recall, this may suggest that the above correspondence may have been accidental,
especially when additionally taking into consideration the charts for recall (Figure 8).
But, we argue that the correspondence is not coincidental, since the wins–losses
differences charts for accuracy, shown in Figure 9, are almost identical to those of
F1 (Figure 6).

The logtf transformation. The effects of the logtf transformation when mea-
sured by F1, shown in Figure 10, are almost a complete contrast to those of idf.
Generally, in the ranges where idf caused improvement of performance, logtf causes
degradation, and vice versa. However, judging by the scale, logtf has a much milder

882 M. Radovanović, M. Ivanović, Z. Budimac

-150

-100

-50

0

50

100

150

100 500 1000 3000 5000 7000 10000 ALL

Number of features

P
re

ci
si

o
n

 w
in

s-
lo

ss
es

 id
f d

iff
.

CHI GR IG RF SU

-200

-150

-100

-50

0

50

100

150

100 500 1000 3000 5000 7000 10000 ALL

Number of features

P
re

ci
si

o
n

 w
in

s-
lo

ss
es

 id
f d

iff
.

CHI GR IG RF SU

a) b)

Fig. 7. Effect of idf on precision wins–losses for a) CNB and b) SMO

-150

-100

-50

0

50

100

150

100 500 1000 3000 5000 7000 10000 ALL

Number of features

R
ec

al
l w

in
s-

lo
ss

es
 id

f d
iff

.

CHI GR IG RF SU

-100

-50

0

50

100

150

100 500 1000 3000 5000 7000 10000 ALL

Number of features

R
ec

al
l w

in
s-

lo
ss

es
 id

f d
iff

.

CHI GR IG RF SU

a) b)

Fig. 8. Effect of idf on recall wins–losses for a) CNB and b) SMO

impact than idf, especially on the CNB classifier. Again as with idf, the graphs for
the two classifiers exhibit a certain degree of similarity.

Looking at the charts showing the wins–losses differences with the precision
measure it can be seen that logtf has a more clearly pronounced degrading effect on
SMO in the feature range below 1 000, which accounts for the sharper drop in the
same area on the F1 chart. The scale in Figure 11 indicates that the effect of logtf
on CNB is quite weak.

When observing recall in Figure 12, no notable differences between the effects
of logtf on CNB and SMO are visible, except the generally weaker impact on CNB.
Unlike idf, the logtf transformation provided no surprises and differences between
its effects on different classifiers. The stronger impact on SMO, similar to the one
already observed in Section 4, can be interpreted by the logarithm’s smoothing effect
on feature weights, and the scaling down to small numeric values. We find the logtf
transformation more predictable and safer to use in the text categorization setting.

Text Categorization and Sorting of Web Search Results 883

-150

-100

-50

0

50

100

150

100 500 1000 3000 5000 7000 10000 ALL

Number of features

A
cc

u
ra

cy
 w

in
s-

lo
ss

es
 id

f d
iff

.

CHI GR IG RF SU

-150

-100

-50

0

50

100

150

100 500 1000 3000 5000 7000 10000 ALL

Number of features

A
cc

u
ra

cy
 w

in
s-

lo
ss

es
 id

f d
iff

.

CHI GR IG RF SU

a) b)

Fig. 9. Effect of idf on accuracy wins–losses for a) CNB and b) SMO

-40

-30

-20

-10

0

10

20

30

100 500 1000 3000 5000 7000 10000 ALL

Number of features

F
1

w
in

s-
lo

ss
es

 lo
g

tf
 d

iff
er

en
ce

CHI GR IG RF SU

-60
-50
-40
-30
-20
-10

0
10
20
30
40
50

100 500 1000 3000 5000 7000 10000 ALL

Number of features

F
1

w
in

s-
lo

ss
es

 lo
g

tf
 d

iff
er

en
ce

CHI GR IG RF SU

a) b)

Fig. 10. Effect of logtf on F1 wins–losses for a) CNB and b) SMO

-15

-10

-5

0

5

10

100 500 1000 3000 5000 7000 10000 ALL

Number of features

P
re

ci
si

o
n

 w
in

s-
lo

ss
es

 lo
g

tf
 d

iff
.

CHI GR IG RF SU

-40

-30

-20

-10

0

10

20

30

100 500 1000 3000 5000 7000 10000 ALL

Number of features

P
re

ci
si

o
n

 w
in

s-
lo

ss
es

 lo
g

tf
 d

iff
.

CHI GR IG RF SU

a) b)

Fig. 11. Effect of logtf on precision wins–losses for a) CNB and b) SMO

884 M. Radovanović, M. Ivanović, Z. Budimac

-15

-10

-5

0

5

10

15

100 500 1000 3000 5000 7000 10000 ALL

Number of features

R
ec

al
l w

in
s-

lo
ss

es
 lo

g
tf

 d
iff

.

CHI GR IG RF SU

-80

-60

-40

-20

0

20

40

60

100 500 1000 3000 5000 7000 10000 ALL

Number of features

R
ec

al
l w

in
s-

lo
ss

es
 lo

g
tf

 d
iff

.

CHI GR IG RF SU

a) b)

Fig. 12. Effect of logtf on recall wins–losses for a) CNB and b) SMO

The norm transformation. Figure 13 depicts the impact of normalization in
the context of CNB and SMO classifiers. Somewhat counterintuitively, the shapes
of the graphs are more similar to those of idf (Figure 6) than logtf (Figure 10).
Compared to idf, the effects of normalization are much milder. Also, the behavior
of the graphs for CNB and SMO classifiers in Figure 13 is quite similar. What is
especially notable in the charts is the radical departure of the GR feature selection
method from the behavior of CHI, IG and SU on feature counts below 3 000, in
a similar fashion for both classifiers. However, the charts in Figures 14 and 15
reveal that the improving effect of GR measured by F1 with the CNB classifier
is caused by improvement of precision, while with SMO the main cause is recall.
Overall, the gain ratio feature selection exhibited erratic behavior at lower feature
counts with all investigated transformations.

6 CATS: A CLASSIFICATION-POWERED META-SEARCH ENGINE

Traditionally, meta-search engines had been conceived in order to address different
issues concerning general-purpose search engines. The issues include coverage of
the Web, search result relevance, and their presentation to the user. A common
approach to alternative presentation of results is by sorting them into (a hierarchy
of) clusters which may then be displayed to the user in a variety of ways, e.g. as
a separate expandable tree (Vivisimo.com) or arcs which connect Web pages within
graphically rendered “maps” (KartOO.com). This section will discuss a new meta-
search engine CatS (stribog.pmf.uns.ac.rs/cats/) the functionality of which is
centered around sorting search results into a hierarchy of topics using text catego-

rization instead of the more commonly employed clustering techniques.

The primary motivation for building CatS was to help the user resolve query

ambiguity in a quick and convenient fashion. By query ambiguity we refer to the
possibility of mismatch between the user’s actual information need and the inter-
pretation of query keywords by a search engine. One cause for ambiguity may be

Text Categorization and Sorting of Web Search Results 885

-100

-50

0

50

100

150

100 500 1000 3000 5000 7000 10000 ALL

Number of features

F
1

w
in

s-
lo

ss
es

 n
o

rm
 d

iff
er

en
ce

CHI GR IG RF SU

-150

-100

-50

0

50

100

150

200

100 500 1000 3000 5000 7000 10000 ALL

Number of features

F
1

w
in

s-
lo

ss
es

 n
o

rm
 d

iff
er

en
ce

CHI GR IG RF SU

a) b)

Fig. 13. Effect of norm on F1 wins–losses for a) CNB and b) SMO

-150

-100

-50

0

50

100

150

100 500 1000 3000 5000 7000 10000 ALL

Number of features

P
re

ci
si

o
n

 w
in

s-
lo

ss
es

 n
o

rm
 d

iff
.

CHI GR IG RF SU

-80

-60

-40

-20

0

20

40

60

100 500 1000 3000 5000 7000 10000 ALL

Number of features

P
re

ci
si

o
n

 w
in

s-
lo

ss
es

 n
o

rm
 d

iff
.

CHI GR IG RF SU

a) b)

Fig. 14. Effect of norm on precision wins–losses for a) CNB and b) SMO

-80

-60

-40

-20

0

20

40

60

80

100 500 1000 3000 5000 7000 10000 ALL

Number of features

R
ec

al
l w

in
s-

lo
ss

es
 n

o
rm

 d
iff

.

CHI GR IG RF SU

-150

-100

-50

0

50

100

150

200

250

100 500 1000 3000 5000 7000 10000 ALL

Number of features

R
ec

al
l w

in
s-

lo
ss

es
 n

o
rm

 d
iff

.

CHI GR IG RF SU

a) b)

Fig. 15. Effect of norm on recall wins–losses for a) CNB and b) SMO

886 M. Radovanović, M. Ivanović, Z. Budimac

different meanings of query keywords, in which case an unintended but more com-
mon meaning of a keyword may dominate the process of retrieval. Other causes
of ambiguity may not have such intuitive explanations, and are in effect a result
of the algorithms employed by search engines and their interaction with the con-
tent and structure of the Web. For example, the use of inverse document frequen-

cies may cause a search engine to rank a document containing a rare keyword too
high, as can “fancy hits,” e.g. keywords appearing in Web page titles or as parts
of e-mail addresses [10]. Most modern search engines rely on link-based algorithms
like PageRank to determine authority and significance of Web pages, which can
cause an irrelevant but extensively cited page to be ranked high in the search result
list.

Nowadays, clustering is the dominant technique used by meta-search engines for
alternative presentation of search results. However, the generated topic lists/hierar-
chies may not prove satisfactory for every query, and the “silver bullet” method has
not yet been found. On the other hand, classification was considered for this task
more than once ([19, p. 100], [28]), but was seldom actually tried.

6.1 The CatS System

CatS forwards a user’s query to a major search engine, and augments the results
with a browseable tree of topics. Figure 16 shows the subset of the 100 results
for query ‘animals england’ sorted into category Arts → Music. Every category
from the root (All) to the leaves can be clicked on, with the effect that the results
belonging to the category are shown in the right frame of the displayed page.

The language chosen for the implementation of the system is Java. CatS exe-
cutes as a servlet on an Apache Tomcat server which runs on a commodity PC
under the FreeBSD operating system. The outline of CatS functionality is rather
straightforward: A simple HTML form lets the user post a query and choose the
major search engine to be used. The servlet forwards the query to the search engine
in unmodified form and retrieves the HTML page of results. It then extracts the
titles, hyperlinks and excerpts of all results, classifies the results based on their
titles and excerpts, and shows the results together with the category tree to the
user.

The categories employed by CatS were extracted and engineered from the dmoz

Open Directory. Taking into account feasibility of implementation as well as prac-
tical usability of the system, two levels of categories were considered. From the top
level a total of 11 categories were selected. The second level proved to be more of
a challenge since some first-level topics contained, in our view, too many subtopics
to be useful for search result classification. We therefore resorted to merging topics
which appeared to be very related (e.g. Artificial Intelligence and Robotics) or overly
specific (e.g. Volleyball, Handball, etc. were all merged into Ball Sports). Further-
more, some topics which contained a small number of examples were either merged
with a related topic or discarded altogether. Table 5 summarizes all topics currently
employed by CatS – the 11 top-level, and 146 second-level ones.

Text Categorization and Sorting of Web Search Results 887

Fig. 16. Results for query ‘animals england’ classified into Arts → Music

Web-page titles and descriptions from dmoz were used to train binary classifiers
for each chosen category. Experiences with the experiments described in Sections 4
and 5 provided strong guidelines for the choice of document representation, feature
selection method and classification algorithm. Namely, we chose the normalized
term frequency representation with stemming (m-norm-tf), no feature selection,
and the ComplementNaiveBayes classifier.

At classification time, the binary classifier for each top-level category is executed
on every search result. If more than n results populate a category (currently, n is
fixed at 10), classification is continued at the second level for that top-level category.
If a result does not classify as positive for any category (first or second level), it is
sorted into category Other which is implicit at both levels. For more details about
CatS, see [25].

7 CONCLUSION

The research that was presented in this paper can be divided into two strands: the
experiments in text categorization (Sections 4 and 5) and the implementation of the
meta-search engine CatS (Section 6).

888 M. Radovanović, M. Ivanović, Z. Budimac

Arts
Animation, Architecture, Art History, Bodyart, Comics, Crafts, Education, Literature
and Writing, Movies, Music, Performing Arts, Radio, Television, Visual Arts

Business

Accounting and Financial Services, Agriculture and Environment, Arts and Entertain-
ment, Automotive, Chemicals, Construction and Real Estate, Consumer Goods and
Services, E-Commerce, Education and Training, Electronics and Electrical, Employ-
ment and Opportunities, Food and Related Products, Healthcare, Hospitality, Human
Resources, IT and Telecommunications, Industrial Goods and Services, Management,
Marketing and Advertising, Mining and Drilling, Publishing and Printing, Small Busi-
ness, Textiles and Nonwovens, Trade, Transportation and Defence

Computers
Artificial Intelligence and Robotics, CAD and CAM, Computer Science, Data Formats,
Education and E-Books, Graphics, Hardware, Internet, Multimedia, Open Source, Pro-
gramming, Security and Hacking, Software, Systems

Games
Board Games, Card Games, Gambling, Miniatures, Online, Puzzles, Roleplaying, Video
Games

Health
Adult Health, Alternative, Animal, Child and Teen Health, Conditions and Diseases,
Fitness, Medicine, Mental Health, Nursing, Pharmacy, Professional, Public Health and
Safety, Reproductive Health, Senior Health and Aging

Home Consumer Information, Cooking, Family, Gardening, Homemaking, Personal Finance

Recreation Animals, Collecting, Food, Humor, Models, Outdoors, Radio, Travel, Vehicles

Science
Agriculture, Astronomy, Biology, Chemistry, Earth and Environment Sciences, Educa-
tional Resources, Instruments and Supplies, Math, Philosophy, Physics, Social Sciences,
Technology

Shopping
Antiques and Collectibles, Children, Clothing, Consumer Electronics, Entertainment,
Food, General Merchandise, Gifts, Health, Home and Garden, Jewelry, Music, Pets,
Publications, Sports and Recreation, Toys and Games, Vehicles, Visual Arts

Society
Activism, Crime, Death, Disabled, Ethnicity, Folklore, History, Holidays, Law, Paranor-
mal, Philanthropy, Politics and Government, Relationships, Religion and Spirituality,
Sexuality, Subcultures

Sports
Ball Sports, Equestrian, Fighting Sports, Gymnastics, Racing Sports, Strength Sports,
Track and Field, Water Sports, Winter Sports

Table 5. All topics used by CatS

Section 4 experimentally demonstrated that there may be statistically significant
differences in classification performance of five major classifiers when using different
transformations of the bag-of-words document representation. The section also gave
a description of the effects of individual transformations on five commonly used per-
formance evaluation measures, indicating that the effects on different measures can
be quite opposite. This was achieved by using wins–losses instead of absolute per-
formance measure values, permitting manipulation such as addition and subtraction
which would not otherwise have been possible. Furthermore, it was demonstrated
that the effects and relationships can be significantly altered by the simple dimen-
sionality reduction method that was used.

Section 5 built on the conclusions from Section 4 by considering a wider ar-
ray of feature selection methods and reduction rates, but using only the document
representations that were found most suitable for each classifier. Also, attention
was focused on idf, the transformation that exhibited greatest variation of behavior
with regards to feature selection in the previous section, within the context of two

Text Categorization and Sorting of Web Search Results 889

best performing classifiers. The intuition that there may be significant interactions
between the idf transformation and feature selection has been verified, and this
interaction was quantified using charts of wins–losses and their differences. Similar
treatment was given to two other transformations, logtf and norm, also revealing
interesting effects, but less radical and erratic than those of idf. Together, the two
experimental sections helped determine the best combination of document repre-
sentation, feature selection method and classifier for use in the CatS meta-search
engine, presented in detail in Section 6.

Experience with CatS and other available meta-search engines has shown that
using classification for sorting search results has both its advantages and disadvan-
tages. Categories are chosen by humans, rather than constructed by some clustering
algorithm, so it is clear what their meanings are, and the user will most probably
find browsing comfortable and intuitive. But, this clarity makes classification errors
obvious, possibly reducing the user’s faith in the system. This effect was emphasized
for CatS by the choice to prefer overpopulating categories over leaving results un-
classified. Furthermore, a fixed set of topics may not suit every query: for example,
CatS sorts almost all results for ‘java servlets’ under Computers → Programming,
which is unlikely to be particularly useful if computer programming is precisely what
the user is interested in. Clustering approaches to sorting search results tackle this
issue by dynamically generating topics from the list of results for every individual
query. But, while for some queries the identified topics look natural and helpful, for
others they may seem somewhat ambiguous.

Further work on the issues raised in the paper can mostly be carried out in an
independent fashion within the described research paths.

Within the experimental strand, identical experiments can be performed on
more commonly used corpora, in order to draw parallels with existing research and
make sure that the conclusions are not relevant only to our datasets. Giving more
transformations besides idf, logtf and norm the treatment of Section 5.2.2 may also
reveal interesting relationships, especially for transformations based on supervised
learning [4]. Finally, the proposed methods can be used in the context of more ad-
vanced document representation schemes, which may include n-grams (as sequences
of n words), hyperlink information, and elements of document structure.

From the point of view of CatS, the possibilities of further work are numerous:
systematic engineering of categories, adding more topic levels, aggregating results
from several search engines, trying out different user interfaces, and, most notably,
investigating a mixture of classification and clustering techniques for sorting results
in order to achieve a marriage of the clarity and familiarity of human-engineered
topics with the dynamic nature and adaptability of automatically generated clus-
ters. In an ideal scenario, classification technology could be integrated into Web-
page collections like the ones maintained by general-purpose search engines. Then,
classification performance would be enhanced not only by the availability of full
Web-page texts, but also by consulting link data used to calculate page rankings.
Furthermore, in the spirit of vertical search, results could be re-ranked depending
on the category being viewed.

890 M. Radovanović, M. Ivanović, Z. Budimac

To summarize, the work presented in this paper gave a particular angle on the
application of machine learning techniques on the Web, initially motivated by the
intention of building the CatS meta-search engine. Experiments were carried out
in order to determine the needed parameters for the implementation of CatS. But,
both the experiments and CatS outgrew their initial rationales, reaching conclusions
and raising issues that were not initially anticipated.

Acknowledgments

The authors would like to thank the handling editor and anonymous reviewers for
helping to greatly improve the paper. The work was supported by the project
“Abstract Methods and Applications in Computer Science” (No. 144017A), of the
Serbian Ministry of Science and Technological Development.

REFERENCES

[1] Aha, D.—Kibler, D.—Albert, M.K.: Instance-Based Learning Algorithms. Ma-
chine Learning, Vol. 6, 1991, No. 1, pp. 37–66.

[2] Chen, H.—Dumais, S. T.: Bringing Order to the Web: Automatically Categorizing
Search Results. In: Proc. Human Factors in Computing Systems, CHI ’00, 2000,
pp. 145–152.

[3] Carpineto, C.—Romano, G.: Exploiting the Potential of Concept Lattices for
Information Retrieval with CREDO. Journal of Universal Computer Science, Vol. 10,

2004, No. 8, pp. 985–1013. CREDO is accessible at credo.fub.it/.

[4] Debole, F.—Sebastiani, F.: Supervised Term Weighting for Automated Text
Categorization. In: S. Sirmakessis (Ed.): Text Mining and its Applications, Studies
in Fuzziness and Soft Computing, Vol. 138, Physica-Verlag, Heidelberg, Germany,
2004, pp. 81–98.

[5] Ferragina, P.—Gulli, A.: A Personalized Search Engine Based on Web-Snippet
Hierarchical Clustering. In: Proc. 14th International World Wide Web Conference,
WWW’05, Chiba, Japan, 2005, pp. 801–810.
SnakeT is accessible at snaket.di.unipi.it/.

[6] Forman, G.: An Extensive Empirical Study of Feature Selection Metrics for Text
Classification. Journal of Machine Learning Research, Vol. 3, 2003, pp. 1289–1305.

[7] Freund, Y.—Schapire, R.E.: Large Margin Classification Using the Perceptron
Algorithm. Machine Learning, Vol. 37, 1999, No. 3, pp. 277–296.

[8] Gabrilovich, E.—Markovitch, S.: Text Categorization with Many Redundant
Features: Using Aggressive Feature Selection to Make SVMs Competitive with C4.5.
In: Proc. 21st International Conference on Machine Learning, ICML ’04, Banff,
Canada, 2004, pp. 41–48.

[9] Hall, M.A.—Smith, L.A.: Practical Feature Subset Selection for Machine Learn-
ing. In: Proc. 21st Australasian Computer Science Conference, Perth, Australia, 1998,
pp. 181–191.

Text Categorization and Sorting of Web Search Results 891

[10] Jackson, P.—Moulinier, I.: Natural Language Processing for Online Applica-

tions: Text Retrieval, Extraction and Categorization. John Benjamins, 2002.

[11] Joachims, T.: Making Large-Scale SVM Learning Practical. In: B. Scholkopf,
C. Burges and A. Smola (Eds.): Advances in Kernel Methods – Support Vector

Learning, MIT Press, 1999, pp. 169–184.

[12] Kibriya, A.M.—Frank, E.—Pfahringer, B.—Holmes, G.: Multinomial Naive

Bayes for Text Categorization Revisited. In: Proc. 17th Australian Joint Conference
on Artificial Intelligence, AI ’04, Cairns, Australia, 2004, Lecture Notes in Artificial
Intelligence, Vol. 3339, pp. 488–499.

[13] Kira, K.—Rendell, L.: A Practical Approach to Feature Selection. In: Proc.
9th International Workshop on Machine Learning, Aberdeen, Scotland, 1992,
pp. 249–256.

[14] Koester, B.: Conceptual Knowledge Retrieval with FooCA: Improving Web
Search Engine Results with Contexts and Concept Hierarchies. In: Proc. 6th In-
dustrial Conference on Data Mining, ICDM ’06, Leipzig, Germany, 2006, Lecture
Notes in Artificial Intelligence, Vol. 4065, pp. 176–190. FooCA is accessible at
fooca.webstrategy.de/.

[15] Kononenko, I.: Estimating Attributes: Analysis and Extensions of RELIEF. In:
Proc. European Conference on Machine Learning, ECML9́4, Catania, Italy, 1994,
Lecture Notes in Computer Science, Vol. 784, pp. 171–182.

[16] Lawrie, D.—Croft, W.B.: Generating Hierarchical Summaries for Web Searches.
In: Proc. 26th ACM International Conference on Research and Development in In-
formation Retrieval, SIGIR ’03, Toronto, Canada, 2003, pp. 457–458. CiiRarchies is
accessible at www.cs.loyola.edu/~lawrie/hierarchies/.

[17] Leopold, E.—Kindermann, J.: Text Categorization with Support Vector Ma-
chines. How to Represent Texts in Input Space? Machine Learning, Vol. 46, 2002,
pp. 423–444.

[18] Mitchell, T.M.: Machine Learning. McGraw-Hill, 1997.

[19] Mladenić, D.: Machine Learning on Non-Homogenous, Distributed Text Data.
Ph.D. thesis, University of Ljubljana, Slovenia, 1998.

[20] Mladenić, D.: Text-Learning and Related Intelligent Agents. IEEE Intelligent Sys-
tems, Vol. 14, 1999, No. 4, pp. 44–54.

[21] Osiński, S.—Weiss, D.: A Concept-Driven Algorithm for Clustering Search Re-
sults. IEEE Intelligent Systems, Vol. 20, 2005, No. 3, pp. 48–54. Carrot2 is accessible
at www.carrot2.org/.

[22] Osuna, E.—Freund, R.—Girosi, F.: An Improved Training Algorithm for Sup-
port Vector Machines. In: Proc. 7th IEEE Neural Networks for Signal Processing
Workshop, Pisctaway, NJ, 1997, pp. 276–285.

[23] Platt, J.: Fast Training of Support Vector Machines Using Sequential Minimal
Optimization. In: B. Scholkopf, C. Burges and A. Smola (Eds.): Advances in Kernel
Methods – Support Vector Learning, MIT Press, 1999, pp. 185–208.

[24] Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[25] Radovanović, M.—Ivanović, M.: CatS: A Classification-Powered Meta-Search
Engine. In: M. Last et al. (Eds.): Advances in Web Intelligence and Data Mining,

892 M. Radovanović, M. Ivanović, Z. Budimac

Studies in Computational Intelligence, Vol. 23, Springer-Verlag, 2006, pp. 191–200.

CatS is accessible at stribog.pmf.uns.ac.rs/cats/.

[26] Radovanović, M.—Ivanović, M.: Document Representations for Classification
of Short Web-page Descriptions. In: Proc. 8th International Conference on Data

Warehousing and Knowledge Discovery, DaWaK ’06, Krakow, Poland, 2006, Lecture
Notes in Computer Science, Vol. 4081, pp. 544–553.

[27] Rennie, J.D.M.—Shih, L.—Teevan, J.—Karger, D.R.: Tackling the Poor

Assumptions of Naive Bayes Text Classifiers. In: Proc. 20th International Conference
on Machine Learning, ICML ’03, 2003, pp. 616–623.

[28] Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Com-
puting Surveys, Vol. 34, 2002, No. 1, pp. 1–47.

[29] Sebastiani, F.: Text Categorization. In: A. Zanasi (Ed.): Text Mining and its
Applications, WIT Press, Southampton, UK, 2005, pp. 109–129.

[30] Vapnik, V.—Chervonenkis, A.: Theory of Pattern Recognition (in Russian).
Nauka, 1974.

[31] Witten, I. H.—Frank, E.: Data Mining: Practical Machine Learning Tools and
Techniques. Second Edition, Morgan Kaufmann, 2005.

[32] Wu, X.—Srihari, R.—Zheng, Z.: Document Representation for One-Class SVM.
In: Proc. 15th European Conference on Machine Learning, ECML ’04, Pisa, Italy,
2004, Lecture Notes in Artificial Intelligence, Vol. 3201, pp. 489–500.

[33] Wu Y.-F.—Chen, X.: Extracting Features from Web Search Returned Hits for
Hierarchical Classification. In: Proc. International Conference on Information and
Knowledge Engineering, IKE ’03, Las Vegas, Nevada, USA, 2003, pp. 103–108. High-
light is accessible at highlight.njit.edu/.

[34] Yang, Y.—Pedersen, J.O.: A Comparative Study on Feature Selection in
Text Categorization. In: Proc. 14th International Conference on Machine Learning,
ICML ’97, Nashville, US, 1997, pp. 412–420.

Miloš Radovanovi� is a Teaching Assistant at the Faculty of
Science, Department of Mathematics and Informatics, Univer-

sity of Novi Sad, where he graduated in 2001 and received his
master’s degree in informatics in 2006. Currently, the fields of his
research interest are data mining, web mining, and text catego-
rization. He published more than 20 research papers in refereed
proceedings and journals, one university textbook and two text-
book chapters. He is presently pursuing a doctor’s degree at the
Department of Mathematics and Informatics.

Text Categorization and Sorting of Web Search Results 893

Mirjana Ivanovi� is a Professor at the Faculty of Science, De-

partment of Mathematics and Informatics, University of Novi
Sad. She graduated in 1983 (informatics), received master’s de-
gree (discrete mathematics and programming) in 1988 and doc-
tor’s degree (computer science) in 1992. Her research interests
include: multi-agent systems, e-learning and web-based learning,
data mining, case-based reasoning, programming languages and
tools. She actively participates in more than 10 international
and several national projects. She published over 120 scientific
papers in proceedings of international conferences and journals,

and wrote more than 10 university textbooks in the field of informatics and information
and communication technologies. She is the head of the computer science chair at the
Department of Mathematics and Informatics.

Zoran Budima is a Professor at the Faculty of Science, De-
partment of Mathematics and Informatics, University of Novi
Sad. He graduated in 1983 (informatics), received master’s de-
gree (computer science) in 1991 and doctor’s degree (computer
science) in 1994. His research interests include: mobile agents,
e-learning, software engineering, case-based reasoning, imple-
mentation of programming languages. He has been project lead-
er for several international and several national projects. He
published over 130 scientific papers in proceedings of interna-
tional conferences and journals, and wrote more than 10 univer-

sity textbooks in different fields of informatics.

