
Computing and Informatics, Vol. 28, 2009, 581–597

INCORPORATING STRUCTURED TEXT RETRIEVAL
INTO THE EXTENDED BOOLEAN MODEL

Mathys C. du Plessis, Gideon de V. de Kock

Department of Computer Science and Information Systems

P.O. Box 77000

Nelson Mandela Metropolitan University

Port Elizabeth 6013

South Africa

e-mail: mc.duplessis@nmmu.ac.za

Manuscript received 21 July 2006; revised 30 November 2006

Communicated by Ján Paralič

Abstract. Conventional information retrieval models are inappropriate for use in
databases containing semi-structured biographical data. A hybrid algorithm that
effectively addresses many of the problems in searching biographical databases is
presented in this article.

An overview of applicable structured text retrieval algorithms is given, with focus
specifically on the tree matching model. Small adaptations to the Extended Boolean
Model, to make it more applicable to biographical databases, are described. The
adaptation of tree matching models to the hierarchical nature of data in a per-
son record is described and a distance function between query and record is de-
fined. A hybrid model between the Extended Boolean Model and the adapted Tree
Matching Model is then presented. A fast ranking algorithm appropriate for gene-
ral searches and a more effective (but more resource intensive) algorithm for more
advanced searches is given. It is shown how dates can be incorporated in the hybrid
model to create a more powerful search algorithm.

The hybrid algorithm can be used to rank records in descending order of relevance
to a user’s query.

Keywords: Hybrid search algorithms, biographical database, structured text re-
trieval, extended Boolean model, searches on dates

582 M.C. du Plessis, G. de V. de Kock

1 INTRODUCTION

Traditional information retrieval (IR) models do not accommodate the searching of
relational databases where fields contain semi-structured text. In general, informa-
tion retrieval models focus on retrieving text documents relevant to a user’s query
from a document set. Structured information is normally stored in a relational
database and retrieved through means of primary or compound primary keys. This
method can not be used in situations where no unique primary key exists, primary
keys are unknown to users, or fields can contain general text. Work has been done on
IR in XML documents. This article describes a search algorithm on structured and
unstructured data in a large biographical database, but could, of course, be extended
to any semi-structured document store with a non-changing structure. Specifically,
the algorithm focuses on databases that store information on individuals and their
relatives. Examples of biographical databases include genealogical databases, burial
or cemetery records, military records, voters rolls, databases storing information
relating to hereditary diseases and pedigrees of livestock, and hospital records.

To a certain extent the records considered are structured in fields as one would
expect in a relational database. This structure, however, is not always useful for
retrieval purposes, because of inaccuracies in the data and the limited amount of
information available to the user when searching for an individual. For example,
the user may know that an individual was baptized in the town Queenstown. If,
for any reason, the stored record of the individual contains Queenstown as the
individual’s birth place but contains no information on the individual’s baptism
place, a search considering only the baptism place field would not retrieve the desired
record. Furthermore, many of the fields contain natural language text and can thus
not be seen as a field in the same sense as a field in the relational model. By taking
into account the structure of the records and the relationships between fields, the
above problems may be overcome.

Given a biographical database as described above, the problem addressed in
this article is as follows: It is required to search for an individual’s record using
information on any of the database fields, supplied by the user. The retrieved
records should be ranked in order of most relevant to the user’s query. The search
data in the query and the retrieved records need not be correct or complete. The
algorithm should also take into account uncertainties in dates.

The case study used in this study is the Port Elizabeth Genealogical Information
System (PEGIS) which contains the details of a large number of individuals (cur-
rently almost 600 000). The following sections contain an outline of the models used
in the hybrid search algorithm, a discussion on how these models were integrated
and how searches on dates can be provided.

2 BIOGRAPHICAL DATA STRUCTURES

It is assumed that all information relevant to an individual is stored using the
following data structures:

Incorporating Structured Text Retrieval into the Extended Boolean Model 583

Person: Surname, first names, father, mother, gender, nicknames, general infor-

mation.

Event: Event type, place, start date, end date, details. Provision is made for the
following events: Birth, Baptism, Death, Burial, Residence, Will and Estate,

Adoption, Military, Medical, Education, Occupation and Other.

Relationship: Man, Woman, Relationship type, place, start date, end date, details.
Provision is made for the following types of relationships: Marriage, Common

Law, Engagement and Extramarital.

Zero or more Events and Relationships are associated with each person. Most of
the fields contain general information, Place and Details usually contain general tex-
tual information, for example, the field Birth place could contain the string Martjie

Venter Hospital, Hopetown or The farm Doornkloof, district Cradock.
Fields may be left empty for any given individual.

3 STRUCTURED TEXT RETRIEVAL MODELS

Normally the field of information retrieval is concerned with retrieving textual
records. These records are not structured in the same way as records in a rela-
tional database would be, where information is already formatted and is meant to
be retrieved by means of a key attribute [1]. Some structure can, however, be found
in a textual database, for example: chapters, sections, titles, etc. The user may
find it useful to be able to specify information on the structure of the record to be
retrieved. Models that allow the partial matching of a query to a record and the
ranking of the result set, are referred to as Structured Text Retrieval Models.

According to Navarro and Baeza-Yates [2], the models proposed are not as ma-
ture as some classical retrieval models like the Boolean or Vector Space models. Seve-
ral structured text retrieval models were compared by Beaza-Yates and Navarro [3],
and it is interesting to note that only three of the compared models have O(n)
efficiency.

Considering several models the Tree Matching Model proposed by Kilpelinen
and Mannila [4] was chosen as it is one of the more versatile models and would be
best suited for searches in biographical databases. This model is similar to (but
more powerful than) the model proposed by Burkowski [5].

The Tree Matching Model makes use of the fact that a document that can be
broken up into sections, paragraphs, sentences and words can be represented by
a tree structure (see Figure 1).

The tree hierarchy makes it possible to formulate queries as trees, where the
sub-nodes for each node are given in brackets, for example:

Paragraph(button, (Sentence(print, paper)))

The model allows the query to be located in the document by taking into ac-
count the structure of the query and the document. This is called Tree Inclusion.

584 M.C. du Plessis, G. de V. de Kock

Paragraph

�
�

�

@
@

@
button Sentence

�
�

�

@
@

@
print paper

Fig. 1. The tree hierarchy of a query

The goal of the model is identifying ancestorship and labels (i.e. leaf nodes) rather
than a direct hierarchial match. The model seeks minimal subtrees of the target.
Formally, T is said to be an included tree of tree T if the nodes in T appear with
similar hierarchial relationships in T . The trees considered here are ordered. We
can say that if the left-to-right order of the nodes in T is the same as in T , the
included tree is an ordered included tree of T . The difference between ordered tree

inclusion and unordered tree inclusion can be seen graphically in Figures 2 and 3.
Note that ordered tree inclusion is a stricter form of inclusion than unordered tree

inclusion.

ma
@
@

�
�ma mc
A
A

�
�

A
Amc ma

A
A

�
�mb mb

md

ma
A
A

�
�mb mc

-

-
PPPPPPPq

Fig. 2. Unordered tree inclusion. From [4].

ma
@
@

�
�ma mc
A
A

�
�

A
Amc ma

A
A

�
�mb mb

md

ma
A
A

�
�mb mc

�������1

��������1

PPPPPPPq

Fig. 3. Ordered tree inclusion. From [4].

Unfortunately, unordered tree inclusion is a NP-complete problem, while tree
inclusion can be calculated in polynomial time [4]. Tree inclusion is thus a very

Incorporating Structured Text Retrieval into the Extended Boolean Model 585

expensive retrieval model. However, by appropriately indexing the database, and
requiring that the database does not contain recursive hierarchies (i.e. no structure
contains itself as a substructure), it has been shown that inclusion queries can be
solved in O(n) time [6].

4 XML RETRIEVAL MODELS

In the last few years, a large body of work has been published on XML retrieval.
XML essentially defines the structure of a document, thus making it very similar
to the records described in this paper. A query language called XIRQL for IR in
XML documents is described by Fuhr and Grosjohann [7]. XIRQL provides many
of the traditional IR features that are missing in structured text retrieval, i.e. term
weighting, relevance-orientated search, data types and vague predicates.

In XML retrieval it is necessary not only to index the terms in the documents,
but also the structure of the document [8]. The structure index is then used to find
documents that match the structure specified in the query. The major difference
between the IR model described in this paper and XML retrieval is that not all do-
cuments in a XML document collection have the same XML tags or fields. Knowing
the set of field in which data can occur simplifies the search algorithm considerably.
Furthermore, XML retrieval models often aim to retrieve only relevant sections of
documents, which would not make sense in a biographical information system where
the focus is always on locating a specific individual.

Although XML retrieval models should not be applied directly to search algo-
rithms in biographical databases, it is important to provide the relevant functionality
found in XML retieval.

5 ADAPTATION OF EXTENDED BOOLEAN MODEL

The Extended Boolean Retrieval Model, developed by Salton et al. [9] is one of
the more versatile retrieval models in that it can be seen as a unification of the
Boolean [10], Vector Space [11] and Fuzzy Set [12] models. This versatility motivated
the use of this model as the basis for a hybrid model that incorporates structured
text retrieval techniques.

The ranking formula of the Extended Boolean Model in its general form is given
by:

sim(dj , q) = p

√

√

√

√

√

√

√

√

√

t
∑

x=1

wp
x,q.(wx,j)

p

t
∑

x=1

wp
x,q

for q = [(w1,q, k1) ∨p ... ∨p (wt,q, kt)] (1)

586 M.C. du Plessis, G. de V. de Kock

sim(dj , q) = 1 − p

√

√

√

√

√

√

√

√

√

t
∑

x=1

wp
x,q.(1 − wx,j)

p

t
∑

x=1

wp
x,q

for q = [(w1,q, k1) ∧p ... ∧p (wt,q, kt)] (2)

where wi,j is a weight associated with term ki in record dj and wi,q is a weight
associated with term ki in the query q. The notation ∧p is used to indicate that
value of p can be varied to simulate different retrieval models.

Salton and Buckley [13] provided several heuristics by which appropriate query
and record term weights can be selected. Since short query vectors can be expected
an appropriate query term weight is:

wi,q = log
N

fi
(3)

where N is the total number of records and fi is the number of records that contain
term ki.

The varied vocabulary and the fact that, in the case study, record vectors are
comparatively short and are of homogeneous length, suggests the following as an
appropriate record term weight:

wi,j =

Fi,j . log
N

fi
√

√

√

√

t
∑

l=1

(

Fl,j. log
N

fl

)2
(4)

where Fi,j is the frequency with which index term ki occurs in record dj . It was
decided not to make use of the normalization term (the denominator in Equation (4))
for the following reasons:

1. Including the term implies an extra pass of all term vectors after the Fi,j com-
ponents of the weights have been calculated. Apart from the computing time
involved in this process, the memory requirements would be significant, espe-
cially for long query vectors.

2. The following sections will describe how the term weight will also be used as
a measure of how well the structure of a target record matches the structure
specified by the user in the query. Normalization with respect to other terms
in the query would be pointless since we are interested in how well the record
matches the structure with respect to other records.

Incorporating Structured Text Retrieval into the Extended Boolean Model 587

For the same reason as point 2 above, it was decided to normalize each term weight
by dividing by the maximum weight found for that term in all records. The weight
of index term ki in record dj is thus:

wi,j =
Fi,j. log

N

fi

maxr

(

Fi,r. log
N

fi

) . (5)

The significance of the normalization term in Equation (5) will only become clear
after the following sections. This is a different approach, but should not negatively
affect the final ranking since terms will still be ranked in the same order relative to
each other.

6 ADAPTATION OF STRUCTURED TEXT RETRIEVAL

The motivation behind the use of structured text retrieval models, discussed in
Section 3, is such that the user’s queries can specify where in a record a certain
term must be found. A possible drawback to taking a strict structured view of
the information is that some terms specified in a query may not appear in the
corresponding field in the database. For example, a query that attempts to locate
a person with the first name John may not return a record where John appears
in the nicknames field. To overcome the problem, the hierarchical nature of the
information should be taken into account.

Person
Mother

Father Spouse Child

Name Event General
Relation-

ship

Surname

First
Name

Nick
Names

Type

Start
Date

End
Date

Info

Place

Start
Date

End
Date

Info Place

�����

(((((((((((((

HHHHH

hhhhhhhhhhhh

�
��

@
@@

@
@

@@

�����
@

@@

���������

�
�

�
��

HHHHHHHHH

A
A
A
AA

Fig. 4. Structure of a Person record

In Figure 4 the information of one Person record is shown structured as a tree.
Note that the conceptual structure of a Person record is depicted and that the struc-

588 M.C. du Plessis, G. de V. de Kock

ture does not necessarily bear any resemblance to how this information is physically
structured and stored in a database. Although Mother, Father, Spouse and Child
records are Person records in their own right, they are depicted in Figure 4 to show
their conceptual relationship to a person.

Queries specify the leaf or subtree where a term is expected. Consider the fol-
lowing 3 queries:

Person(John) AND Person(Hopetown)

Firstname(John) AND Birthplace(Hopetown)

Name(John) AND Event(Hopetown)

The first query retrieves records with the terms John and Hopetown anywhere in
a Person record. The second query retrieves records with the term John specifically
in a first name field and the term Hopetown specifically in a birth place field. The
third query only requires the term John to be in a name subtree (first name, surname
or nicknames) and the term Hopetown to be in an event subtree.

Note that it is not necessary to allow for recursive type queries for a single
person, for example:

Person(Birth(Place(Hopetown)), Name(John))

The following query will suffice:

Birthplace(Hopetown) AND Name(John)

This makes it possible that the Tree Matching models discussed in Section 3 could
be implemented efficiently.

Although tree matching provides powerful searching functionality, a broader
approach is necessary for biographical databases. Consider the following query:

Birthplace(Hopetown)

If a pure Tree Matching algorithm was employed, only records that contain the
term Hopetown in the Birth Place field would be returned. Records where the
term appeared in the Baptism Place field would not be returned. There is a strong
relationship between these two fields. If a child was baptized in a certain town, it is
very likely that that child was also born there. Therefore records containing term
Hopetown in the Baptism field should also be returned to the user, but with a lower
rank depending on the how strongly the fields are related. Of course, it should be
taken into account that the relationship between some fields (e.g. Birth Place and
Death Place) would be very weak.

The following section describes a distance function that can be used to obtain
a measure of how well structure specified in a query is matched in a given document.

Incorporating Structured Text Retrieval into the Extended Boolean Model 589

6.1 Correlation Function

Let H = {H1, H2, . . . , Hn} be the set of all nodes (for example, Surname) and
subtrees (for example, Name) within a Person record. Let L = {HL1

, HL2
, . . . , HLn

}
be the set of all leaf nodes in the tree hierarchy and let N = {HN1

, HN2
, . . . , HNn

}
be the set of all internal nodes (with their respective subtrees) in the tree hierarchy.
Thus H = L ∪ N .

Let � denote the subnode relationship in a tree, i.e. Hj � Hi means that
Hj ∈ H is in the subtree with root Hi ∈ N . We define a correlation function
D : (H ×H) −→ [0, 1] indicating the relevance between any two nodes. Let the first
parameter of D be the node as specified in the query, and the second parameter be
the node where a term was found in a record. Note that D(Hi, Hi) = 1 and that
D(Hi, Hj) = 1 if Hj � Hi. Refer to Figure 4 in the following example:

• D(Surname, Surname) = 1 – The fields are the same.

• D(Name, Surname) = 1 – The second field is a subfield of the first.

• D(FirstName, NickName) = 0.8 – The two fields are related.

D is not symmetric, i.e. in general D(Hi, Hj) 6= D(Hj , Hi). Obviously this is
the case where Hj is a node in the subtree denoted by Hi (i.e. Hj � Hi). If the
user specified that a term should fall within a name node and the term was found
in the surname node, D should return a much higher correlation value than if the
user specified a term should be found in the surname node but it was found in some
other name node. For situations where neither Hj � Hi or Hj � Hi, D is also not
symmetric. For example, if the user specified in a query that a term should be found
in a residence place node, and the term is then found in a baptism place node, it is
likely that that person lived in that place in his or her early years. D should thus
return a reasonably high value. Conversely, if the user specified that a term should
be located in a birth place node, but the term was found in a residence node, it does
not really imply that that person was born there. D should thus return a reasonably
low value.

D makes use of a manually drawn up correlation table, from which the corre-
lation of any two leaf fields can be read. For databases that are sufficiently large
and complete, a program could be written that automatically determines the corre-
lation between any two fields by seeing how often terms appear in both fields in the
database.

Often the only information known about an individual is details of that person’s
parents, spouses, relationships or children. It is thus very useful to allow queries as
follows:

Person(John) AND Mother(Hopetown)

Father(Firstname(John)) AND Mother(Birthplace(Hopetown))

Child(Name(John)) AND Spouse(Event(Hopetown))

590 M.C. du Plessis, G. de V. de Kock

For the sake of efficiency it is necessary to restrict the user to queries within one
generation from the person to be searched for, i.e. not to allow recursive generational
queries, like:

Mother(Father(Surname(John)))

For the same reason we define D(Hi, Hj) = 0 if Hi and Hj are not from the same
person, for example, if a term to be found in a field in a Spouse record is found
in a field in a Child record then there is no correlation between the query and the
record.

Terms can occur several times in a query or a record. We define Hx,y as the set
of nodes {Hx,y1

, Hx,y2
, . . . , Hx,yn

} where term x occurs in record or query y.

7 INCORPORATION OF STRUCTURED TEXT RETRIEVAL

Two approaches to incorporating structured text retrieval into Equations (1) and (2)
will be discussed here. The first approach was designed specifically with an efficient
implementation in mind and will be referred to as the Fast Matching approach.
A second approach, though it may not be as fast as the first, should yield better
retrieval results and will be referred to as the Complete Matching approach.

The major difference between the two ranking approaches is how multiple occur-
rences of terms in the same record are dealt with. Records in which a specific term
only appears once, will be ranked exactly the same by the Fast and the Complete
Matching algorithms.

7.1 Fast Matching

This approach assumes that the ranking depends only on the best structure match
found for the term in the record. To incorporate structured text retrieval into Equa-
tions (1) and (2) we simply multiply the record term weight (given in Equation (5))
by the correlation function

wi,j =
Fi,j. log

N

fi
. max

Hs∈Hi,q ,Hv∈Hi,j

(D(Hs, Hv))

maxr

(

Fi,r. log
N

fi
. max

Hs∈Hi,q ,Hx∈Hi,r

(D(Hs, Hx))

) (6)

where Hi,q is the query specified location of term ki and Hi,j is the field where
term ki was found in record dj .

Thus, if the term specified in the query is found in the correct field in a record,
the correlation function will return 1 and the record will be ranked solely on the
normal Extended Boolean Model formulas. If, however, the term is not found in the
correct field, the correlation function will return a low number and wi,j will thus be
smaller and, ultimately, the record will be ranked lower.

Incorporating Structured Text Retrieval into the Extended Boolean Model 591

7.2 Complete Matching

The drawback to using Equation (6) is that, for situations where a term occurs
several times in a record but few of those times in the desired field, the term will
be assigned a weight as if all its occurrences were in the correct field. For example,
consider two records in which a specified term occurs 5 times. In the first record all 5
occurrences are in the desired field. In the second record only one of the occurrences
is in the desired field. The correlation function will return 1 for both records since
the desired structure did occur. The two records would thus be ranked the same.
Even worse, if the term occurred 6 times in the second but still only once in the
desired location, the second record would actually be ranked higher than the first
by Equation (6).

A more accurate approach would be to look at the value given by the correlation
function for each time the term appears in a different field. Equation (5) is adapted
by replacing the term frequency component, Fi,j , by the sum of the correlation
between the field specified in the query and each occurrence in the record:

wi,j =

∑

Hk∈Hi,q

∑

Hl∈Hi,j

D(Hk, Hl)

 .log
N

fi

maxr

∑

Hk∈Hi,q

∑

Hl∈Hi,r

D(Hk, Hl)

 .log
N

fi

(7)

where Hl ∈ L.

In effect, the Complete Matching approach assigns a weight according to how
the multiple occurring term is distributed in the record with respect to the query.

The role of the denominator in Equations (6) and (7) can now be better ex-
plained. Consider a situation where a query consists of several terms. Assume the
record dj contains only one of the terms, but it occurs several times and in the
desired location. If we were to normalize the weight assigned to that term in dj with
respect to the Euclidean length of the weight vector for dj then record dj would be
ranked too high (i.e. it may outrank records that contain dj the same amount of
times and also in the correct field, merely because the other records contain some
of the other terms as well). The denominator used is an attempt to ensure that no
single term ever dominates the ranking of a multiple term query.

For more information on the actual implementation of the algorithms and more
detail on why the second algorithm can not be implemented as efficiently as the
first, see [14].

7.3 Dates

The search algorithm can be greatly improved by allowing the queries of the following
form:

592 M.C. du Plessis, G. de V. de Kock

Firstname(John) AND Birthdate(1980.01.12)

Name(John) AND Birthdate(1980-1981)

Note that a partial date or even a period can be specified when an exact date is
associated with an event.

Unfortunately, it is impossible to treat dates in the same way as normal index
terms because dates are often merely incorrect estimates or a period between two
dates. Expecting an exact match with a query date is thus unrealistic. An approach
that provides a measure of how well a date in a specified field in the query matches
a date in a record is needed. It is important to note here that searching on a date
alone would not be very useful in locating an individual because of the large number
of people who have dates associated with them in any given period.

The field matching can be achieved using function D defined above. The ge-
neral weight of a date should not be calculated as in Equation (5), rather, weights
applicable to dates should take into account how close the relevant dates are to the
query date. An approach similar to that followed by De Kock [15] will be followed.
The selected approach will be given first and motivated below.

Let a date be represented as the number of days that have passed since 1 January
1 A. D. Define a period p as the tuple (start date, end date). The distance between
two periods p1 = (s1, e1) and p2 = (s2, e2), g(p1, p2) is given by

g(p1, p2) =

999999 : either s1 = 0 or s2 = 0;
| s1 − s2 |: e1 = 0 and e2 = 0;
0.5 : e1 6= 0, e2 = 0 and s2 ∈ [s1, e1];
0.5 : e2 6= 0, e1 = 0 and s1 ∈ [s2, e2];
0 : e1, e2 6= 0 and [s1, e1] ∩ [s2, e2] 6= ∅;
min(| e1 − s2 |, | e2 − s1 |) : otherwise.

(8)

A large distance between two dates is given if either date is zero. A value of 0.5
is given if one is a date and the other is a period and the date lies within the period.
This is to ensure that, when a query only specified a start date, occurrences of single
dates that match the query date exactly will rank very slightly higher than records
that merely contain a period in which the query date falls.

The similarity 0 ≤ s(g(p1, p2)) ≤ 1 between two periods p1 and p2 is calculated
as follows:

s(x) = e−4x2/a2

.

As can be seen from Figure 5, s(x) is a bell shaped curve that decreases to
almost zero for x > a = 3 650. This function ensures that a non-zero relevance will
be given for any two dates (rather than assigning the similarity value to zero for large
differences). Small differences in dates (a few days) will give a value of almost 1,
which will decrease steeply as the differences become greater. The value of 3 650

Incorporating Structured Text Retrieval into the Extended Boolean Model 593

was chosen since it corresponds to about 10 years which is a good approximation of
the period in which a date can be deemed relevant.

0

0.2

0.4

0.6

0.8

1

+a0−a

x
Fig. 5. Similarity function s(x) with a = 3650

Given a query, q, that contains a period, pi, we define the weight of a period
term, pi,j, in record dj as

wi,j = s(g(pi,q, pi,j)). max
Hs∈Hi,q ,Hv∈Hi,j

(D(Hs, Hv)) . (9)

To be consistent with the weights calculated for normal terms, the weight for
each period term is divided by the maximum weight found for the period in all
records:

wi,j =
s(g(pq, pij)). maxHs∈Hi,q ,Hv∈Hi,j

(D(Hs, Hv))

maxr

(

s(g(pq, pir)). maxHs∈Hi,q ,Hx∈Hi,r
(D(Hs, Hx))

) (10)

This weight can be used in Equations (1) and (2) in the same way as the weight for
normal terms, given by Equations (6) or (7), is used.

8 SEARCH PROCESS

Define the set of individuals that can be used in queries to locate a person to be ∆ =
{Person, Mother, Father, Spouse, Child}. Let Λ be the set of all fields that can
be used in a query, for example Birth Place or Surname (see Figure 4). Formally,
queries have the following form:

m
∨

i=1

ni
∧

j=1

δi,j(λi,j(ki,j)) (11)

where δi,j ∈ ∆, λi,j ∈ Λ and ki,j is a term or a period. With the information in the
query, Equations (1) and (2) can be evaluated for each record using Equations (6)
or (7) for general terms and Equation (10) for dates. Note that for searches using

594 M.C. du Plessis, G. de V. de Kock

relatives the weights of the terms must be calculated in the record of the relevant
relative of the current individual’s record.

Once a measure of similarity to the query has been assigned for each record,
these records can be sorted in descending order of similarity and presented to the
user.

9 SPELLING VARIATIONS

Spelling variations (especially of names and place names) are a complex problem
which is compounded if a database contains words from more than one language.
For example, the city Port Elizabeth is referred to as Die Baai in Afrikaans and
iBhayi in Xhosa. De Kock [16] proposed a model where names are grouped into
Equivalence and Similarity classes to allow for names that are alike. Two names
are equivalent if both are equivalent to the same set of names, i.e. the relation is
symmetric and transitive. Two names are similar if the relation is not necessarily
symmetric or transitive, for example, Pieter is similar to Peter ; Peter is similar to
Peet, but Pieter is not similar to Peet.

These ideas were extended to all terms in the database. Equivalence classes
provide a neat way to deal with terms from more than one language. When a search
is performed, the query is automatically extended to include all equivalent and
similar terms. For more details see [14].

10 IMPLEMENTATION AND PERFORMANCE

The algorithms were implemented using the data in PEGIS for the experiment. The
database contains 589814 records and comprises a total of 189MB of data. Efficient
B-tree indexes point to postings containing all information to evaluate Equations (6),
(7) or (10) for any term. These postings (sometimes as many as 80 000) are repacked
on the hard drive after the indexing process to decrease the amount of time it takes
to load into memory and thus lowering the time it takes to do a merge. A correlation
table was manually created. Further indexes were created to facilitate searches for
an individual based on information on relations, for example a child or parents.

Performance experiments were done on a Pentium III computer with 512 MB of
RAM. Queries that return a large number of hits (in excess of 50 000) yield response
times of between 0.5 and 1.6 seconds. For smaller number of hits (less than 15 000)
response times of less than 0.5 seconds can be expected.

Queries that contain dates take considerably longer, mostly about 8 seconds.
The reason why these queries take so much longer than searches that contain only
terms is that Equation (10) is evaluated for all dates in the database. Equations (6)
and (7) are only evaluated for each of the terms in the query. Search times on
dates were originally improved by limiting the search to records that contain the
normal terms only. Even after this improvement the number of date evaluations
in a date search is much more than that of normal terms. For example, the term

Incorporating Structured Text Retrieval into the Extended Boolean Model 595

Farmer with an occurrence frequency of 16 148 is the most frequently occurring word
in the database. If a query consists of the term Farmer and a date, the ±15 000
records that contain the term will contain about 30 000 dates. The real bottleneck
occurs when these dates have to be retrieved from disk and evaluated. A solution
to the problem is to store the date index in memory, or to make sure that it is
cached before a search is done. The same queries that take about 8 seconds take
between 0.5 and 1.5 seconds when cached.

11 CONCLUSIONS

The proposed algorithm makes use of the well established Extended Boolean Model
and incorporates Structured Text Retrieval Models to provide a hybrid approach
to searching for individuals in the biographical database. A correlation function is
used to determine the relevance of fields specified in the query and the fields where
terms are located in each record. The fact that certain restrictions are placed on
the searches ensures the tree matching algorithms can be implemented efficiently.
The structural match of records to queries is integrated in the term weights of
the Extended Boolean Model, hence retaining the advanced search features of the
Extended Boolean Model. Uncertainties in dates are catered for and an elegant
solution is suggested for difficulties that arise from searches on periods between
dates. The provision for searches on dates ensures a powerful final search algorithm.
Since the inaccuracies in the Fast Matching algorithm will infrequently affect the
search results, the Fast Matching algorithm can be used for most searches and the
use of the Complete Matching algorithm can be reserved only for searches where
further refinement on the record ranking is necessary. The algorithm allows for
searches based on information on the relatives of an individual.

Many of the complications of searching biographical databases consisting of both
structured and unstructured data have been successfully addressed.

REFERENCES

[1] Navarro, G.—Baeza-Yates, R.: A Language for Queries on Structure and Con-
tents of Textual Databases. In Proceedings of the 18th Annual International ACM SI-
GIR Conference on Research and Development inIinformation Retrieval, ACM Press
1995, pp. 93–101.

[2] Navarro, G.—Baeza-Yates, R.: Proximal Nodes: a Model to Query Document
Databases by Content and Structure. ACM Transactions on Information Systems
(TOIS), Vol. 15, 1997, No. 4, pp. 400–435.

[3] Baeza-Yates, R.—Navarro, G.: Integrating Contents and Structure in Text Re-
trieval. ACM SIGMOD Record, Vol. 25, 1996, No. 1, pp. 67–79.

[4] Kilpelinen, P.—Mannila, H.: Retrieval from Hierarchical Texts by Partial Pat-
terns. In Proceedings of the 16th Annual International ACM SIGIR Conference on
Research and Development in Iinformation Retrieval, ACM Press, 1993, pp. 214–222.

596 M.C. du Plessis, G. de V. de Kock

[5] Burkowski, F. J.: Retrieval Activities in a Database Consisting of Heterogeneous

Collections of Structured Text. In Proceedings of the 15th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, ACM
Press 1992, pp. 112–125.

[6] Kilpelinen, P.—Mannila, H.: Grammatical Tree Matching. In Proceedings of the
Third Annual Symposiom on Combinatorial Pattern Matching, Springer-Verlag 1992,
pp. 162–174.

[7] Fuhr, N.—Grosjohann, K.: XIRQL: A Query Language for Information Re-
trieval in XML Documents. Research and Development in Information Retrieval,
2001, pp. 172–180.

[8] Kotsakis, E.: Structured Information Retrieval in XML Documents. 17th ACM

Symposium on Applied Computing, 2002, pp. 663–667.

[9] Salton, G.—Fox, E.A.Wu, H.: Extended Boolean Information Retrieval. Com-
munications of the ACM, Vol. 26, 1983, No. 11, pp. 1022–1036.

[10] Ribeiro-Neto, B.—Baetza-Yates, R.: Modern Information Retrieval. 1st edi-
tion, Addison-Wesley 1999.

[11] Salton, G.—Lesk, M.E.: Computer Evaluation of Indexing and Text Processing.
Journal of the ACM (JACM), Vol. 15, 1968, No. 1, pp. 8–36.

[12] Durkin, J.: Expert Systems, Design and Development. 1st edition, Macmillan Pub-
lishing Company 1994.

[13] Salton, G.—Buckley, C.: Term-Weighting Approaches in Automatic Text Re-
trieval. Information Processing and Management, Vol. 24, 1988, No. 5, pp. 513–523.

[14] du Plessis, M.C.: Search Algorithms on Structured and Unstructured Data in
a Large Database. M. Sc. dissertation, University of Port Elizabeth, Port Elizabeth,
December 2004. Supervisor: G. de V. de Kock.

[15] de Kock, G. de V.–de Kock, M.M..: A Search Algorithm for an Archive Database
Using Person and Place Names. In Proceedings of the 2nd International Conferen-
ce on Computer Science and its Applications, US Education Service, LCC, 2004,
pp. 216–223.

[16] de Kock, G. de V.: Searching on Full Name Providing for Spelling Variations.
In Proceedings SAICSIT2002 : Enablement through Technology, Annual Research
Conference of SAICSIT, Abstract, ACM International Conference Proceedings, 2002.

Mathys C. du Plessis received his M. Sc. in computer science
and information systems in 2005 at the Nelson Mandela Metro-
politan University (formerly the University of Port Elizabeth).
He is currently enrolled for a Ph.D. in computer science at the

University of Pretoria and holds a Junior Lectureship at the
Nelson Mandela Metropolitan University.

Incorporating Structured Text Retrieval into the Extended Boolean Model 597

Gideon de V. de Kok studied mathematics at the University

of Stellenbosch and afterwards worked at the Numerical Analysis
Section of the Council for Science and Industrial Research. He
then held teaching positions at the Universities of Stellenbosch,
South Africa, The North and Port Elizabeth, where he was Head
of Department from 1974. He retired at the end of 2004 and
still pursues his interest in genealogical research and genealogical
information systems.

