
Computing and Informatics, Vol. 29, 2008, 1001–1029, V 2009-May-13

A MODEL OF USER PREFERENCE LEARNING
FOR CONTENT-BASED RECOMMENDER SYSTEMS

Tomáš Horváth

Institute of Computer Science
Faculty of Science
Pavol Jozef Šafárik University
Moyzesova 16
041 54 Košice, Slovakia
e-mail: tomas.horvath@upjs.sk

Revised manuscript received 24 February 2009

Abstract. This paper focuses to a formal model of user preference learning for
content-based recommender systems. First, some fundamental and special require-
ments to user preference learning are identified and proposed. Three learning tasks
are introduced as the exact, the order preserving and the iterative user preference
learning tasks. The first two tasks concern the situation where we have the user’s
rating available for a large part of objects. The third task does not require any prior

knowledge about the user’s ratings (i.e. the user’s rating history). Local and global
preferences are distinguished in the presented model. Methods for learning these
preferences are discussed. Finally, experiments and future work will be described.

Keywords: Content-based recommender systems, user preference learning, induc-
tion of fuzzy and annotated logic programs

1 INTRODUCTION

Imagine the problem of finding the appropriate accomodation – for our holiday or
business travel – from the offer of several hotels (objects) with several properties
(attributes). The values of these attributes and their combination have influence on
our choice1. E.g., while a student prefers cheap hotel with internet connection, not

1 Similar to decathlon, where results from several disciplines aggregate the final result.

1002 T. Horváth

necessarily close to the city centre, a professor prefers hotels in the centre of the
city with room service, even if these are a bit expensive. We often meet this type of
classification in our everyday life, e.g. choice of car, tool, job, food, bank and even
the partners, too.

The most important question is: What attributes of objects, what values of
these attributes and in what importance are preferable for a given user or a type of
user? In other words, what are the user’s preferences?

The fact is that users often have just a slight idea about their preferences and/or
they are not able to express them exactly (e.g. by an equation or a set of rules).
Because of the mentioned reasons, it should be better to obtain preferences by some
methods of data mining. We call this process user preference learning, and this is
what our paper is adressed to.

A popular area of research, dealing with user preference learning are recom-
mender systems [7, 40]. These are a specific type of information filtering technique
that attempts to present to the user the objects the user is interested in.

This paper concerns content-based recommender systems [4, 33], in which the
learning of the user’s interests (preferences) is based on the features (attributes) of
objects rated2 by the user.

Hotel name Distance Price Equipment User’s evaluation

Apple 100 99 nothing 1
Danube 1300 120 tv 2
Cherry 500 99 internet 2
Iris 1100 35 internet,tv 3
Lemon 500 149 nothing 1
Linden 1200 60 internet,tv 3
Oak 500 149 internet,tv 2
Pear 500 99 tv 2
Poplar 100 99 internet,tv 2
Rhine 500 99 nothing 1
Rose 500 99 internet,tv 3
Spruce 300 40 internet 2
Themse 100 149 internet,tv 1
Tulip 800 45 internet,tv 3

Table 1. Illustrative example of the input to user preference learning

An input to user preference learning is illustrated in Table 1, where user rates
hotels with grades 1, 2 and 3 (corresponding to levels poor, good and excellent,
respectively). Attributes of hotels are the name, the price for a room per person per
night (in US dollars), the distance from the city center (in meters) and the room
furnishings (internet connection, TV, both, or none of them).

2 Often a Likert scale is used as rating scale, where usually five or seven categories are
distinguished from “strongly acceptable” to “strongly unacceptable”. A comparison of
ranking and rating is presented in [22].

A Model of User Preference Learning for Content-Based Recommender Systems 1003

The user’s preferences (the output of user preference learning) corresponding to
rating of objects in Table 1 are as follows:

• IF Distance ≥ 500 AND Price ≤ 99 AND equipment = {tv, internet} THEN
evaluation ≥ 3

• IF Distance ≥ 500 AND equipment = {tv} THEN evaluation ≥ 2

• IF Price ≤ 99 AND equipment = {internet} THEN evaluation ≥ 2

• In other (resp. all) cases evaluation ≥ 1

The aim of this paper is to propose a flexible model of user preference learning
in the case when user rates objects. The proposed model should be applicable
to arbitrary (type of) user and domain of objects. The structure of the paper
is as follows: In the next section, consideration about needs and circumstances
leading to creation of a new formal model for preference learning are discussed.
At the end of the section, two types of requirements, namely fundamental and
special requirements for user preference learning are set. Then, the proposed formal
model of user preference learning follows which is the main goal of the paper. The
exact, the order preserving and the iterative user preference learning tasks will be
introduced. Following, statistical approaches are present for learning the so-called
local preferences. Then, the method of induction of generalized annotated programs
(IGAP) and the respective ϕ-GAP algorithm will be described for learning the so-
called global preferences. Since this section is a short summary of [26] and [15], we
will not discuss IGAP and ϕ-GAP in details. Finally, some experiments and further
work will be discussed.

2 REQUIREMENTS FOR A FLEXIBLE MODEL

OF USER PREFERENCE LEARNING

Some issues of user preference learning from the point of view of representation and
learning will be discussed in this section.

2.1 Data Model

The first thing we have to consider are data models. We can take three data rep-
resentation models into consideration: object-attribute model (one relation3), multi-
relational model (several relations connected by key attributes) and the RDF model
(triples of type object-attribute-value). Even if these models can be transformed into
one another, each of them has its own particularities. So we have to consider all
of them. The multi-relational model4 is appropriate for representing complex struc-
tures. On the other hand, from the view of computability, it is not very effective

3 As in our illustrative example in Table 1.
4 A multi-relational data model is not usual in recommender systems but a general

formal model for preference learning should consider this model.

1004 T. Horváth

(we have to deal with joins of relations). An example of user preference learning
from multi-relational data is introduced in [26]. This model can be transformed
to object-attribute model by propositionalisation, but the resulting relation is often
large and contains redundant data. It is mainly convenient for statistical approaches.
A flexible model is the RDF which is used in the semantic web.

2.2 User’s Rating

Now, let’s have a look at user’s ratings, e.g. from Table 1. It is clear that there are
no clearly good and bad hotels. Rather, there is a hierarchy of hotels (in our case,
excellent, good and poor). The users overall preference is monotonically dependent
on the grade of fulfilment of single features of objects (hotels). Such an ordinal
(monotone graded) classification is quite common, e.g. we classify students in school
by grades, hotels by stars, investment safety of countries ranging from AAA to FFF,
cars by categories, etc. In all these cases an object with higher classification should
fulfil requirements for one with lower classification. For example, the hotel marked
by *** fulfils requirements for hotels with grades ** and * (worse) and does not fulfil
all requirements for hotels **** and ***** (better). Note that because the mentioned
ordinality, we do not need to find rules for the lowest grade (poor) because every
hotel fulfils requirements of the lowest grade (i.e. every hotel is at least poor).

2.3 Attribute Domain Ordering

As mentioned before, the specific property of the classification of hotels from our
example is the natural order among the different classes. Moreover, there is an
(partial) ordering in attribute domains, too. These orderings determine which va-
lues of the attribute are preferable to the user. In case of numerical attributes we
distinguish four main types of such orderings. These are called higher-best, lower-
best, middle-best or marginal-best according to which values (higher, lower, middle,
marginal) of an attribute the given user prefers5. These main types of orderings are
illustrated in Figure 1.

d
eg

re
e

d
eg

re
e

d
eg

re
e

d
eg

re
e

attr. domainattr. domainattr. domainattr. domain

a) b) c) d)

Fig. 1. Four main types of orderings of numerical attribute domains: a) higher-best b)
lower-best c) middle-best d) marginal-best

5 Note that, in fact, these types of orderings are common.

A Model of User Preference Learning for Content-Based Recommender Systems 1005

Thus, an attribute domain ordering can be viewed as a mapping f : D −→ [0, 1],
where D is an attribute domain and the mapped value from the unit interval [0, 1]
represents the impact (importance) of an attribute value.

Note that in case of non-numeric types of attributes we can use this concept,
too.

2.4 Attribute Type

The attributes can be of two basic types: nominal (without any ordering in the
domain) and ordinal (with ordered domain). However, in our case we deal mainly
with ordinal types; it can happen that some nominal attributes have big impact
on the classification. An interesting attribute is the Boolean type attribute which
can behave as nominal or ordinal (i.e. that an ordering between the true and false
values is present). It means that the true values are better, or, conversely, the false
values have positive impact to the classification6. From our point of view the most
interesting attributes are the ordinal ones. These can be divided into two classes:
discrete and continuous. In the case of discrete attributes an (partial) ordering of
individual values or a disjunctive sets of values (disjunctive subsets of the domain)
are present. In the case of continuous attributes we have a partial ordering of
disjunctive intervals of values (disjunctive subintervals of the domain).

2.5 Imperfection

In a standard logical framework, we are restricted to represent only facts that are
absolutely true. Thus, this framework is unable to represent and reason with imper-
fect – uncertain, vague, noisy, ranked/preferenced – information. This is a significant
gap in the expressive power of the framework, and a major barrier to its use in many
real-world applications. We use imperfection in the generic sense of uncertainty. Im-
perfection is unavoidable in the real world: our information (and particularly our
classification) is often inaccurate and always incomplete, and only a few of the
“rules” that we use for reasoning are true in all (or even most) of the possible cases.
Furthermore, it is hard to represent the notions of a natural language just with two
values (true, false). If we consider the concept “cheap”, in a standard two-valued
logic we can say that it holds (an object is cheap) or not (an object is not cheap).
However, in two valued logic we cannot express easily that one item is cheaper than
another. So, it is convenient to use several degrees of truth to the facts, in order to
represent e.g. the concepts “more” or “less” cheap. For this purpose we can use the
multi-valued logical framework, in which a truth value (accuracy, trustworthiness or
preference) is assigned to information. Beside probabilistic models7 [45, 46] there is
an extensive study of these phenomena in multiple-valued logic [44, 46].

6 It depends on the nature of the domain.
7 Probability theory models uncertainty by assigning a probability to each of the states

of the world that an agent considers possible.

1006 T. Horváth

Definition 1. Fundamental requirements for a flexible formal model for user pre-
ference learning are:

• Capability to represent and learn ordinal ratings (classification) of objects.

• Working with an arbitrary combination of ordinal and nominal attributes.

• Consideration of several types of orderings of attribute domains (at least, the
above-mentioned higher-best, lower-best, middle-best and marginal-best types).

Definition 2. Special requirements for a flexible formal model for user preference
learning are:

• Ability to deal with several data models (Object-Attribute, Multi-Relational,
RDF).

• Representation of imperfection (uncertainty, vagueness, imprecision, . . .) and
the notions of a natural language (e.g. vague concepts, as “cheap”, “near”).

Notice that none of the recent approaches8 to user preference learning cover all
of these fundamental resp. special requirements at once.

3 THE USER PREFERENCE LEARNING MODEL

As stated in the previous chapter, there are some fundamental requirements, which
a flexible formal model should fulfil (Definition 1). Assume that we have extensional
data in relation R having attributes A,A1, . . . ,An with domains D, D1, . . . , Dn in
which the A attribute is a key, i.e. an identifier of an object. In other words, it is an
object-attibute model where an object of interest is represented by values uniquely
assigned to its attributes. For a tuple (x,x) ∈ R, where x ∈ D is an identifier of an
object and x = (x1, . . . , xn) ∈

∏

i∈{1,...n} Di, this generates a mapping dataR : D −→
∏

i∈{1,...n} Di defined as dataR(x) = x. In the following text, (dataR(x))i will denote

the ith component xi of x = (x1, . . . , xn).
Since we are interested in the case when user rates objects, take a look at user’s

ratings. Ratings can be expressed in natural language (poor, good, excellent) or by
real numbers (e.g. normalized to the unit interval [0, 1]). Here the preference degrees9

are assumed to be totally (linearly) ordered10. In general, user’s preference degrees
can be represented by (or transformed to) real numbers from the unit interval [0, 1].
Thus, if a user u rates objects, he/she determines a linear ordering of these objects,
i.e. an ordering �u

D
on the domain D. Note that an ordering �u

D
is distinctive (and

thus subjective and unique) for an individual user u. In case of m users we denote
their orderings as �u1

D
, . . . ,�um

D
.

8 Discussed later in this work.
9 User’s ratings are often called preference degrees, too.

10 The position is that partially ordered ratings – without contradictions, cycles – can
be realised by a linear extension of these ratings.

A Model of User Preference Learning for Content-Based Recommender Systems 1007

Partial orderings �u
D1

, . . . ,�u
Dn

on the attribute domains D1, . . . , Dn are an im-
portant part of our model. Notice that these orderings have the same meaning as
the above-mentioned four main types of orderings of attribute domains, illustrated
in Figure 1. Again, these orderings are distinctive for an individual user u. In case
of m users, we denote these orderings as �u1

D1
, . . . ,�u1

Dn
, . . . ,�um

D1
, . . . ,�um

Dn
.

Definition 3. Suppose an ordering � on the set X and a function p : X −→ [0, 1].
Then we say that � is generated by p if the following holds: (∀x, y ∈ X) x �
y iff p(x) ≤ p(y). In this case, we can denote �p.

Definition 4 (Monotone dataset). Suppose a dataset R ⊆ D ×
∏

i∈{1,...,n} Di, a li-
near ordering �u

D
on D and partial orderings �u

D1
, . . . ,�u

Dn
on D1, . . . , Dn, and the

mapping dataR : D −→
∏

i∈{1,...,n} Di.

If for any two objects (x,x), (y,y) ∈ R it holds

(∀i ∈ {1, . . . , n})(dataR(x))i �
u
Di

(dataR(y))i =⇒ x �u
D

y (1)

we call the dataset11
R monotone w.r.t. orderings �u

D
,�u

D1
, . . . ,�u

Dn
.

Definition 5 (User’s preferences). Suppose a dataset R ⊆ D×
∏

i∈{1,...,n} Di having
attributes A,A1, . . . ,An with domains D, D1, . . . , Dn. Suppose that R is monotone
w.r.t. orderings �u

D
,�u

D1
, . . . ,�u

Dn
, where �u

D
is generated by an pu

G : D −→ [0, 1] and
�u

Di
are generated by mappings pu

Li
: Di −→ [0, 1].

Then the mapping pu
G is called user’s global preferences and the mappings12

pu
Li

are called user’s local preferences on R for attributes A1, . . . ,An compatible to
user’s global preferences pu

G. In this case, we say that R is monotone w.r.t. pu
G and

pu
L1

, . . . , pu
Ln

.

As can be seen from Definition 5, we consider user’s preferences on the whole
domain of objects. The reason is the following: we assume that users have their fixed
preferences at certain time, valid for all objects, even if these are hard to determine
exactly. For example, if one prefers cheap hotels, then this preference is valid for all
hotels, and doesn’t depend on concrete objects (hotels). Of course, preferences can
change with time, but are stable at a certain moment; e.g. if a user gets good job,
he/she is assumed to prefer medium price hotels.

Note that some exceptions can occur, when user likes objects, which don’t fulfil
his/her known preferences. Usually this is because of other, previously not consi-
dered attributes. For example, user can prefer a hotel which has a lovely receptionist,
although it is a little bit expensive. In this case, “loveliness” of receptionist can be
considered as an additional (or “hidden”) attribute.

11 In the following text, we will use shorter notation “monotone dataset”, instead of
“monotone dataset w.r.t. orderings �u

D
,�u

D1
, . . . ,�u

Dn
”.

12 In the following text, we will use shorter notation “user’s local preferences”, instead
of “user’s local preferences on R for attributes A1, . . . ,An compatible to user’s global
preferences pu

G”.

1008 T. Horváth

An important question arises: Do user’s local preferences always exist? An
example of dataset, where user’s local preferences cannot be found is given in the
next example.

Example 1. Suppose the dataset R = {(a, 0, 0), (b, 0, 1), (c, 1, 0), (d, 1, 1)} ⊆ D ×
D1 × D2 where D = {a, b, c, d}, D1 = D2 = {0, 1}. The mapping pu

G (generating an
ordering �u

D
is defined as pu

G(a) = pu
G(d) = 0, pu

G(b) = pu
G(c) = 1. The situation is

similar to classical XOR operator, as can be seen in Figure 2.

6

-
D1

D2

e

e

u

u

0 1

1

a b

c d

Fig. 2. Example of a XOR-typed dataset

There are three possible cases of mappings pu
L1

for the domain D1, namely, when
pu

L1
(0) < pu

L1
(1), pu

L1
(0) > pu

L1
(1) or pu

L1
(0) = pu

L1
(1). Similar situation arises in case

of mapping pu
L2

for the domain D2. Note that the concrete values of these functions
(which are from the unit interval [0, 1]) do not matter. Thus, there are nine different
combinations of mappings pu

L1
, pu

L2
, which generate orderings �u

D1
,�u

D2
, respectively.

None of these combinations is approppriate to fulfil Condition 1 for a monotone
dataset (and thus for local preferences, too). Note that for the dataset R with user’s
global preferences pu

G, local preferences do not exist.

Notice that a non-monotone dataset, i.e. in which local preferences do not exist
can be denoted as XOR-type dataset.

Let’s modify Example 1 by adding an attribute to the data model as can be
seen in the following example:

Example 2. The dataset R = {(a, 0, 0,♦), (b, 0, 1,♥), (c, 1, 0,♥), (d, 1, 1,♦)}⊆ D×
D1×D2×D3 where D = {a, b, c, d}, D1 = D2 = {0, 1} and D3 = {♥,♦}. The mapping
pu

G is equal to that in Example 1, i.e. pu
G(a) = pu

G(d) = 0, pu
G(b) = pu

G(c) = 1.
Now, define the following mappings pu

Li
: Di −→ [0, 1] as follows: pu

L1
(x) = pu

L2
(y) = c

for every x ∈ D1, y ∈ D2, where c ∈ [0, 1] is a constant and pu
L3

(♦) = 1
3
, pu

L3
(♥) = 2

3
.

This situation is illustrated in Figure 3.
Now, the mappings pu

Li
and pu

G generate orderings which fulfil Condition 1 and
makes the dataset R monotone. Thus, pu

L1
, pu

L2
and pu

L3
can be declared as user’s

local preferences.

Definition 6. A user’s local preference pu
Li

defined as (∀x ∈ Di) pu
Li

(x) = c, where
c ∈ [0, 1] is called constant user’s local preference for attribute Ai of the domain Di.

A Model of User Preference Learning for Content-Based Recommender Systems 1009

6

-
D1

D2

e

e

u

u

0 1

1

a

b

c

d

♦

♥
D3

Fig. 3. Illustration of data from Example 2

Note that a constant user preference indicates that an attribute to which it be-
longs has no certain ordering on its domain, i.e. all values have the same importance.

Definition 7 (Exact user preference learning task). Suppose a monotone dataset
R ⊆ D×D1× . . .×Dn w.r.t. orderings �u

D
,�u

D1
, . . . ,�u

Dn
, where �u

D
is generated by

pu
G : D −→ [0, 1].

The exact task of user preference learning has a sample set (training set) S ⊆ R

and pu
G ↾ S on input. The task is to find mappings pu

Li
: Di −→ [0, 1] which generate

�u
Di

, and find a mapping @ : [0, 1]n −→ [0, 1], such that

(∀o ∈ D ↾ R) @(pu
L1

((dataR(o))1), . . . , p
u
Ln

((dataR(o))n) = pu
G(o) (2)

where @ is called aggregation function.

As can be seen, a user preference learning task consists of two individual learnig
steps: to find user’s local preferences and an aggregation function @. We will call
the value of @(pu

L1
((dataR(o))1), . . . , p

u
Ln

((dataR(o))n) the learned value for an object
o by an user preference learning method.

Note that the presented user preference learning tasks do not depend on a con-
crete learning method. It can be chosen arbitrarily, depending on the concrete
domain and application.

Naturally, if we demand effective (resp. on-line) computation, the mappings
pu

L1
, . . . , pu

Ln
and @ have to be learned on a small dataset, instead of R, but the results

must be valid for the whole R. Thus, the accuracy of computation determines how
precise are the local (pu

Li
) and global (@) preferences, learned from a small subset

of the domain w.r.t. the whole domain of objects.
Such an accuracy, which determines how precisely can be the user’s preferences

(valid on the whole domain) predicted by learning from a small dataset, is called
prediction accuracy. It can be expressed in the following form:

exact prediction accuracy =
number of correctly learned objects

number of all objects
(3)

where an object is learned correctly, if the learned value for the object is equal to
user’s rating of this object (i.e. the Condition 2 holds for the given object o).

1010 T. Horváth

An accuracy of learning on a mentioned small dataset (often called training
set) is called training accuracy. It can be defined as usual in the concrete learning
methods used in the learning process13.

Note that in general the training accuracy is higher than the prediction accuracy.
Since it is often hard to find an aggregation function @ having exactly the same

values on R as user’s global preferences pu
G, a task with a weaker condition is needed,

whose main idea is that an aggregation function can’t change the ordering of objects
w.r.t. user’s rating (i.e. his/her global preferences).

Definition 8 (Order preserving user preference learning task). Suppose a mono-
tone dataset R ⊆ D×D1 × . . .×Dn w.r.t. orderings �u

D
,�u

D1
, . . . ,�u

Dn
, where �u

D
is

generated by pu
G : D −→ [0, 1].

The order preserving task of user preference learning has a sample set (training
set) S ⊆ R and pu

G ↾ S on input. The task is to find mappings pu
Li

: Di −→ [0, 1]
which generate �u

Di
, and to find a mapping @ : [0, 1]n −→ [0, 1], such that

(∀or, os ∈ D)(∀i ∈ {1, . . . , n}) pu
G(or) < pu

G(os) =⇒

@(pu
L1

((dataR(or))1), . . . , p
u
Ln

((dataR(or))n) ≤ (4)

≤ @(pu
L1

((dataR(os))1), . . . , p
u
Ln

((dataR(os))n)

where @ is called aggregation function14.

The left side of the above implication determines that an object os is better in
all attributes than an object or. The aim is to get a mapping (@) which does not
evaluate os worse than or. Note that it is sufficient to define the mapping @ as equal
to a constant value. This result will be correct, albeit useless.

In this case, the prediction accuracy is similar to exact prediction accuracy:

order preserving pred. accuracy =
number of correctly learned pairs

number of all pairs
(5)

where a pair of objects is learned correctly, if the Condition 4 holds for the given
pair of objects.

Figure 4 illustrates the situation presented in Definitions 7, 8. First step of
our model assumes attribute domains D, Di and orderings �u

D
,�u

Di
(depending on

user) which build a monotone dataset R (where i ∈ {1, . . . , n}). Moreover, �u
D

is
generated by a mapping pu

G. This is illustrated in the #1 part of the commutative
Diagram 4.

Further, we assume that orderings �Di
can be approximated (resp. generated)

by mappings pu
Li

. Let us note that these are very strong assumptions in general, in
practice for finite domains and a finite subset of [0, 1], these mappings can be found
(subject to some decrease of precision of the used learning method).

13 The training accuracy will be discussed with the learning algorithm later.
14 An aggregation function is often mentioned as utility function.

A Model of User Preference Learning for Content-Based Recommender Systems 1011

∏

〈Di,�
u
Di
〉

D

?

[0, 1]

[0, 1]n

6

-

-

dataR

pu
L1

, . . . , pu
Ln
≈�u

D1
, . . . ,�u

Dn

@ ≈ pu
G

�u
D
≡ pu

G

����������������������

monotone dataset R

#1

#2

Fig. 4. Commutative diagram of our formal model of user preference learning

Finally, to complete the commutative diagram #2, we have to find an aggre-
gation function @, which approximates pu

G (and thus generates �u
D
), such that the

diagram commutes.
The above-described of user preference learning tasks assumes that an ordering

�u
D generated by mapping pu

G is known (on the whole R). Thus, these can be
mainly used for off-line computation of user preferences. For example, we have
a huge amount of objects and their ratings by many users stored and we want to
know which user was having stable preferences during the time (in this case the
sample sets correspond to given time periods).

Now, imagine that we do not know the mapping pu
G (or an ordering �u

D). The
situation is as follows: The user gets some objects which she/he evaluates. Thus
we have the sample set S and the mapping pu

G : S −→ [0, 1], which form an input
to the computation of the – local and global – preferences of a given user (i.e. the
mapings pu

Li
and @). Note that @ approximates pu

G and thus generates the ordering
�u

D
of objects from R. Using �u

D
we can choose the top-k15 (i.e. the best) objects

from the whole R. These objects are again rated by the user and the whole process
is repeated. This approach is called PHASES [14]. The respective task to this
approach is introduced in Definition 9 and illustrated in Figure 5.

Definition 9 (Iterative user preference learning task with samples of size k). Sup-
pose R ⊆ D× D1 × . . .× Dn is a dataset and S ⊆ R is an initial sample.

The iterative user preference learning task in phase 0 has on input S ⊆ R and
the mapping pu

G,0 : S −→ [0, 1]. The iterative user preference learning task in
phase 0 has on output mappings pu

Lj,0
: Di −→ [0, 1],@0 : [0, 1]n −→ [0, 1] and the set

S0 = topk(R) of objects computed w.r.t. ordering �D,0 of all objects o ∈ D generated
by @0(p

u
L1,0

(dataR(o))1, . . . , p
u
Ln,0

(dataR(o))n).
The iterative user preference learning task in phase j + 1 has on input Sj and

the mapping pu
G,j+1 : Sj −→ [0, 1]. The iterative user preference learning task in

15 An efficient top-k object search algorithm can be found in [21].

1012 T. Horváth

phase j + 1 has on output mappings pu
Li,j+1

: Di −→ [0, 1],@j+1 : [0, 1]n −→ [0, 1]

and the set Sj+1 = topk(R) of objects computed w.r.t. ordering �D,j+1 of all objects
o ∈ D generated by @j+1(p

u
L1,j+1

(dataR(o))1, . . . , p
u
Ln,j+1

(dataR(o))n), where topk(R)
can be an arbitrary procedure which gets top-k objects according to some orderings
(thus |Si| = k).

The accuracy of iterative user preference learning task expresses how effectively
the user’s preferences are learned in several phases, i.e. if the offered topk(R) objects
computed w.r.t. �D,j are better than the topk(R) objects computed w.r.t. �D,j−1.
This accuracy can be computed by several ways, such as:

τ -iterative correlationi = τ(〈Si,�D,i〉, 〈Si,�G,i+1〉) (6)

where �G,i+1 is generated by the user’s evaluation pu
G,i+1 of a sample set Si and

τ(X, Y) refers to the Kendall tau rank correlation coefficient16 [1] computed for
ordered sets X and Y .

average iterative ratingi =

∑

x∈Si

pu
G,i+1(x)

k
(7)

end

?

pG,j

learning

top-k

Sj

?

?

?

?

�

S

begin

?

j=j+1

Fig. 5. The PHASES approach

An important step is the selection of an initial sample of objects. One solution
is the random selection. On the other hand, if we have the previously computed

16 Other correlation coefficients can be used, too.

A Model of User Preference Learning for Content-Based Recommender Systems 1013

user preferences available (e.g. by an off-line computation from the user history), we
can use these preferences to select the top-k objects to initial sample set.

As can be seen, the presented model meets the fundamental requirements (Defi-
nition 1): it is capable to represent and learn ordinal ratings (@) and attribute value
orderings (pu

Li
). If we consider an attribute with constant user’s local preferences

as nominal, we have included the remaining fundamental requirement (i.e. to deal
with an arbitrary combination of nominal and ordinal attributes). The fulfilment of
the special requirements (Definition 2) in this model is determined by the concrete
learning method or framework17 used in the learning process.

4 LOCAL PREFERENCE LEARNING

As mentioned in the previous section, learning user’s global preferences is preceded
by learning user’s local preferences. We concentrate on two methods for local pre-
ference learning in this section: one is used for non-numerical attributes (discussed
in [15]) and one for numerical attributes (introduced in [14]).

In local preference learning, the main problem is whether the overall evalua-
tion of objects depends on given attributes (e.g. price, distance) according to some
ordering of the domain of these attributes.

We learn attribute orderings for every attribute, from the projections of attribute
values to user’s evaluation. As mentioned in the previous section, we assume finite
domains and a finite number of evaluations (grades).

Thus, in case of objects o1, . . . , om ∈ D, for every attribute Ai, the set LAi
=

{〈(dataR(oj))i, p
u
G(oj)〉|j = 1, . . . , m} is considered. To allow numerical computa-

tions, we need to transform user’s evaluation to numbers18, if these are expressed in
natural language (e.g. “poor”=1, “good”=2 and “excellent”=3).

4.1 Non-Numerical Attributes

If an attribute Ai with the domain Di is non-numerical, we have two choices:

• We leave the computation of local preferences and consider the attribute Ai as
nominal.

• The other choice is to compute for every X ⊆ Di the average value of user’s
evaluation of objects having X in attribute Ai. Thus, local preferences can be
computed as

pLi
(X) =

∑

{o∈D|(dataR(o))i=X}

pu
G(o)

|{o ∈ D|(dataR(o))i = X}|
. (8)

17 The proposed IGAP method will be introduced later in this work.
18 Note that there is a linear ordering of user’s evaluations, so the transformation to

numbers can be made easily.

1014 T. Horváth

To make the computation more general, in case of non-numerical attributes we
use sets of attribute values X ⊆ Di instead of single attribute values x ∈ Di. It
allows to deal with more values for one attribute (e.g. in the illustrative example
in Table 1, an equipment attribute can be {tv, internet}).

Example 3. In case of the illustrative example (Table 1), local preferences for
a non-numerical attribute “equipment” can be computed as follows:

• pu
Lequipment

(tv) = user ′sevaluation(Danube)+user ′sevaluation(Pear)
2

= 2+2
2

= 2

• pu
Lequipment

(internet) = 2+2
2

= 2

• pu
Lequipment

(tv , internet) = 3+3+2+2+3+1+3
7

= 23
7

• pu
Lequipment

(nothing) = 1+1+1
3

= 1

Since we defined local preferences as a mapping of the domain to the unit in-
terval [0, 1], we can normalize the values of pu

Lequipment
(X) to this interval. In this

case, we can divide the computed values by 3, thus we get pu
Lequipment

(tv) = 2
3
,

pu
Lequipment

(internet) = 2
3
, pu

Lequipment
(tv, internet) = 17

21
, pu

Lequipment
(nothing) = 1

3

Thus, the corresponding (partial) orderings on the domain of an attribute equip-
ment from Table 1 are as follows: {nothing} �u

equipment {tv}, {internet} �u
equipment

{tv , internet}.

Note that it can happen that the local preferences for an attribute can’t be
computed correctly. It is when there are not substantial differences between pu

Li
(X)

for the values X ⊆ Di of an attribute. We can view such local preferences as
constant-local preferences and consider the given attribute as nominal.

4.2 Numerical Attributes

As mentioned, we learn local preferences from the projection of attribute values to
user’s evaluation. Such a projection is illustrated in Figure 6.

ev
al

u
at

io
n

distance

1

2

3

10
0

30
0

50
0

80
0

11
00

12
00

13
00

price

1

2

3

ev
al

u
at

io
n

35
40

45 60 99 12
0

14
9

Fig. 6. Projection of attribute values (distance or price) to user’s evaluation, corresponding
to Table 1

A Model of User Preference Learning for Content-Based Recommender Systems 1015

Usually, noncomplicated expressions of local preferences are desirable. Since
an aggregation of local preferences forms global preferences, more complex local
preferences indicate more complex global preferences.

So-called simplified types of numerical attribute domain orderings are considered,
as illustrated in Figure 7. These are similar to ordering types, introduced in Figure 1,
but more effectively usable in computation (even if we have to consider a slight
decrease of correctness).

d
eg

re
e

d
eg

re
e

d
eg

re
e

d
eg

re
e

attr. domainattr. domainattr. domainattr. domain

a) b) d)c)

Fig. 7. Simplified types of orderings of numerical attribute domains: a) simple higher-best

b) simple lower-best c) simple middle-best d) simple marginal-best related to ordering
types, introduced in Figure 1

The main goal is to detect that area in the domain, in which the values are more
preferable. This area is represented by one value, called critical value (see Figure 7),
in contrast to basic ordering types (Figure 1), where this area was an interval.

First, we have to compute the quadratic polynomial on the projection of at-
tribute values to user’s evaluation, i.e. the quadratic polynomial regression task
with an input LAi

(introduced at the beginning of the chapter). Such computed
polynomials are illustrated by solid lines in Figure 8 in Example 4.

Then, we have to find out the critical value ci of an attribute Ai, in which the
polynomial has its global minimum or global maximum. If the critical value is out of
the used domain of an attribute or is inside the domain, but very “near” to borders
of the used domain, the ordering will be of the lower-best or higher-best type. If
the critical value is somewhere in the middle of the used domain then the ordering
will be of the middle-best or marginal-best type. There are six possible situations,
as illustrated in Table 2, where min(Di) and max(Di) are the minimal and maximal
values of attribute Ai, present in the dataset, and ǫ represents some measure of
nearness to borders of the values of a given attribute in the dataset.

ci ci > max(Di)− ǫ ci < min(Di) + ǫ ci ∈ 〈min(Di) + ǫ, max(Di)− ǫ〉

min simple lower-best simple higher-best simple marginal-best

max simple higher-best simple lower-best simple middle-best

Table 2. Possible (simplified) types of orderings, detected by quadratic polynomial regres-
sion, according to the position of the critical value ci (columns) and to the case, if
ci is the global maximum minimum of the polynomial (rows)

1016 T. Horváth

Finally, we compute the local preferences pu
Li

(x) for that x ∈ Di, which are
present in the dataset. The computation depends on the detected simplified type of
ordering of the attribute Ai. Thus, we distinguish four cases:

• simple higher-best type of ordering of Ai

pu
Li

(x) =
x−min(Di)

max(Di)−min(Di)
(9)

• simple lower-best type of ordering of Ai

pu
Li

(x) =
max(Di)− x

max(Di)−min(Di)
(10)

• simple middle-best type of ordering of Ai

pu
Li

(x) =

x−min(Di)
ci−min(Di)

, if x ≤ ci,

max(Di)−x

max(Di)−ci
, else

(11)

• simple marginal-best type of ordering of Ai

pu
Li

(x) =

ci−x
ci−min(Di)

, if x ≤ ci,

x−ci

max(Di)−ci
, else.

(12)

Example 4. We compute the local preferences for the illustrative example (Table 1)
as follows: The quadratic polynomials for the attributes distance and price are
computed by a standard least squares regression:

polynomdistance(x) = −0.000000963524x2 + 0, 00250191x + 1.02457

polynomprice(x) = +0.0000172466x2− 0, 0161825x + 3.36741

for which the critical values are cdistance = 1298.31 (global maximum) respectively
cprice = 469.15 (global minimum).

The local preferences are computed19 by using the Equations (9), (10):

100 �u
distance 300 �u

distance . . . �u
distance 1200 �u

distance 1300

or
149 �u

price 120 �u
price . . . �u

price 40 �u
price 35.

19 Note that min(Ddistance) = 100, max(Ddistance) = 1300 and min(Dprice) = 35,
max(Dprice) = 149. Ususally, we choose the value of ǫ as the 30 % of the used domain (i.e.
400 for the attribute distance and 50 for the attribute price).

A Model of User Preference Learning for Content-Based Recommender Systems 1017
ev

al
u
at

io
n

distance

1

2

3

10
0

30
0

50
0

80
0

11
00

12
00

13
00

price

1

2

3

ev
al

u
at

io
n

35
40

45 60 99 12
0

14
9

ǫ ǫ ǫ ǫ

Fig. 8. Learning local preferences by quadratic polynomial regression. The solid lines
represent the polynomials, the dotted lines represent the simple higher-best and lower-
best types of orderings. The exact values of pu

Ldistance
resp. pu

Lprice
are represented by

squares.

5 GLOBAL PREFERENCE LEARNING

A multi-relational learning method with the ability to deal with imperfect informa-
tion should fulfil all requirements to flexible learning at once (Definitions 1 and 2).

Inductive logic programming (ILP) [13] combines first-order logic and machine
learning algorithms. Briefly, the task of ILP is to find a correct hypothesis from the
sets of positive and negative examples under the presence of background knowledge.

To fulfil all requirements to flexibe user preference learning (Definitions 1 and 2)
we have to join ILP with generalized annotated programs (GAP) [30]. Thus an
inductive GAP model was developed, called IGAP [26]20.

The language of GAP consists of qualitative and quantitative part. The quali-
tative part of GAP language is the usual language of predicate logic (with variables,
constants, predicates and function symbols). The quantitative part of the language
in our approach is typed (sorted) and for each logical predicate p there is a (possibly
different) truth values set Tp with ordering ≤p.

A rule of GAP is an implication A : ρ(µ1, . . . , µk) ← B1 : µ1 ∧ . . . ∧ Bk : µk,
where B : µ1, . . . , B : µk, and µ ∈ [0, 1] are so-called variable-annotated atoms and
A : ρ is a possibly complex annotated atom.

A mapping f : BL → [0, 1] is a Herbrand interpretation for annotated logic, where
BL is a Herbrand base. The satisfaction is defined along the complexity of formulas
as in the classical logic. An annotated atom A : µ is true in an interpretation f

(f |=GAP A : µ), i.e. f is a model of A : µ iff f(A) ≥ µ.

f |=GAP A : ρ(µ1, . . . , µk)← B1 : µ1 ∧ . . . ∧ Bk : µk

if for all assignments e of annotation variables µ1, . . . , µk we have (13)

f(A) ≥A ρ(e(µ1), . . . , e(µk))← f(B1) ≥B1
e(µ1) ∧ . . .∧ f(Bk) ≥Bk

e(µk)

20 Note that we do not know about any inductive GAP system.

1018 T. Horváth

Definition 10 (the learning from entailment setting of the IGAP task). When
learning from GAP entailment, a set of annotated examples E is given. The anno-
tated background knowledge B is given. The task is to find an annotated hypothe-
sis H, such that the following conditions hold:

(∀e : α ∈ E)H ∧B |=GAP e : α (gap-completeness of H) (14)

(∀e : α ∈ E)(∀β > α)H ∧ B 2GAP e : β (gap-consistency of H).

The ϕ-GAP algorithm we present here is based on the multiple use of the ILP
system ALEPH [37]. Practical illustration of the algorithm can be found in Exam-
ple 5.
The ϕ-GAP algorithm

• Input: Annotated E and B, local preferences pu
Li

for pi ∈ B.

• Output: Annotated H

1. Initialize the two-valued (crisp) hypothesis Hc = ∅.

2. Find out

• every annotations α, present in E (α1 < . . . < αn)

• every m1, . . . , mk classes of annotations for predicates p1, . . . , pk ∈ B

(βp11
, . . . , βp1m1

, . . . , βpk1
, . . . , βpkmk

).

3. Transform the annotated background knowledge B to a crisp background know-
ledge Bc by an additional attribute for the annotation, i.e.
pi(x1, . . . , xis) : βpij

99K pc
i(x1, . . . , xis, βpij

), where j ∈ {1, . . . , mi}.

4. For every predicate pc
i ∈ Bc corresponding to pi ∈ B, i ∈ {1, . . . , k}, add

ordering-completion axioms to Bc which consist of

• ordering-completion axioms:
pc

i(x1, . . . , xis, X)← lepi
(X, Y), pc

i(x1, . . . , xis, Y)

• attribute-value ordering predicates:
lepi

(βpiv
, βpiw

) if pu
Li

(βpiv
) ≤ pu

Li
(βpiw

) for v, w ∈ {1, . . . , mi}, v 6= w.

5. For all αi, where 1 < i ≤ n do the following:

• split the example set E to negative Ec−
i = {ec(x1, . . . , xt, αi))|e(x1, . . . , xt) :

γ ∈ E and γ < αi} and positive Ec+
i = {ec(x1, . . . , xt, αi))|e(x1, . . . , xt) : γ ∈

E and γ ≥ αi} parts

• compute with ALEPH the hypothesis Hc
i for the two-valued background

knowledge Bc, positive Ec+
i and negative Ec−

i example sets

• add the hypothesis Hc
i to Hc.

6. Transform the crisp hypothesis Hc to annotated hypothesis H by transforming
the additional attributes in literals back, i.e.

A Model of User Preference Learning for Content-Based Recommender Systems 1019

pc
i(x1, . . . , xis, βpij

) 99K pi(x1, . . . , xis) : βpij
, where j ∈ {1, . . . , mi}

ec(x1, . . . , xt, αi) 99K e(x1, . . . , xt) : αi, where 1 < i ≤ n

Example 5. We demonstrate the work of the ϕ-GAP algorithm on the illustrative
example in Table 1. First, we have to define inputs21:

• E = { eval(apple):1,eval(danube):2,...,eval(tulip):3 }

• B = { di(apple):100, pr(apple):99, eq(apple):[],. . .

. . .,di(tulip):800, pr(tulip):45, eq(tulip):[tv,int] }

• we use local preferences for numerical attributes di and pr computed in Exam-
ple 4. For the non-numerical attribute eq local preferences from the Example 3
are used.

At the first step of the algorithm, we initialize Hc = {}. In step 2, we find the
following annotations:

• α1 = 1 < α2 = 2 < α3 = 3

• there are three classes mdi = 7, mpr = 7, meq = 4 of annotations with the
following values:
βpdi1

= 100, βpdi2
= 300, . . . , βpdimdi−1

= 1200, βpdimdi
= 1300

βppr1
= 35, βppr2

= 40, . . . , βpdimpr−1
= 120, βpdimpr

= 149

βpeq1
= [], βpeq2

= [tv], βpeqmeq−1
= [int], βpeqmeq

= [tv , int].

In the following step (3), the transformation of background knowledge is pro-
vided to the form of Prolog atoms with the following result:
Bc = {di(apple, 100), pr(apple, 99), eq(apple, []), . . .,

di(tulip, 800), pr(tulip, 45), eq(tulip, [tv, int])}.
As the next step, we add the following axioms and predicates to Bc:

• ordering-completion axioms:
di(A, X) :- ledi(X, Y), di(A, Y)

pr(A, X) :- lepr(X, Y), pr(A, Y)

eq(A, X) :- leeq(X, Y), eq(A, Y)

• attribute-value ordering predicates:
le di(100, 300), le di(300, 500), le di(500, 800),

le di(800, 1100), le di(1100, 1200), le di(1200, 1300)

le pr(149, 120), le pr(120, 99), le pr(99, 60), le pr(60, 45),

le pr(45, 40), le pr(40, 35).

le eq([], [tv]), le eq([], [int]), le eq([tv], [tv, int]),

le eq([int], [tv, int])

21 We use shortest notations for attributes, i.e. eval for user’s evaluation, na for hotel

name, di for the distance, pr for price and eq for equipment. Similarly, the grades of
user’s evaluation are expressed by numbers 1 (poor), 2 (good) and 3 (excellent). Since
Prolog perceives capitals as variables, we use lower-case notation, e.g. “apple” instead of
“Apple”.

1020 T. Horváth

In step 5, we have two iterations, in this case, namely for α2 = 2, α3 = 3, with
the following example sets and resulting hypotheses:
Ec+

2 = {eval(danube, 2), eval(cherry, 2), eval(iris, 2),

eval(linden, 2), eval(oak, 2), eval(pear, 2), eval(poplar, 2),

eval(rose, 2), eval(spruce, 2), eval(tulip, 2)}
Ec−

2 = {eval(apple, 2), eval(lemon, 2), eval(rhine, 2),

eval(themse, 2)}
Hc

2 = {eval(A, 2) :- di(A, 300), eq(A, [tv]);

eval(A, 2) :- pr(A, 120), eq(A, [int])}
or
Ec+

3 = {eval(iris, 3), eval(linden, 3), eval(rose, 3), eval(tulip, 3)}
Ec−

3 = {eval(apple, 3), eval(danube, 3), eval(cherry, 3),

eval(lemon, 3), eval(oak, 3), eval(pear, 3), eval(poplar, 3),

eval(rhine, 3), eval(spruce, 3), eval(themse, 3)}
Hc

3 = {eval(A, 3) :- di(A, 500), pr(A, 99), eq(A, [tv, int])}

As the last step, we transform the crisp hypothesis Hc = Hc
3 ∪ Hc

2. Thus, the
final result is:
H = { eval(A):2 :- di(A):300, eq(A):[tv];

eval(A):2 :- pr(A):120, eq(A):[int];

eval(A):3 :- di(A:500, pr(A):99, eq(A):[tv, int] }

According to the computed local preferences, we can express these results as:

• IF distance≥300 AND equipment={tv} THEN user’s evaluation ≥ 2

• IF price≤120 AND equipment={int} THEN user’s evaluation ≥ 2

• IF distance≥500 AND price≤99 AND equipment={tv, int}
THEN user’s evaluation ≥ 3

Note that we do not normalize the annotations to a unit interval [0, 1], since we
want to make the computation simpler.

Now, note about the training accuracy, mentioned in Section 3. It concerns the
quality of learned hypothesis. As can be seen in the ϕ-GAP algorithm, in case of n

grades of user’s evaluation we have Hc
2, . . . , H

c
n hypotheses, whose qualities can be

expressed by several measures. One measure can be the standard accuracy measure
for hypotheses, used in ALEPH [37]:

ϕ− accuracy(Hc
i) =

cov(Hc
i , E

c+
i) + (|Ec−

i | − cov(Hc
i , E

c−
i))

|Ec+
i + Ec−

i |
(15)

where cov(Hc
i , E

c+
i) and cov(Hc

i , E
c+
i) are the number of covered examples from Ec+

i

and Ec−
i , respectively by the hypothesis Hc

i .

Since we do not allow the hypothesis to cover negative examples, the more
convenient measure for training accuracy is the ratio of covered positive examples

A Model of User Preference Learning for Content-Based Recommender Systems 1021

to all positive examples:

ϕ− coverage(Hc
i) =

cov(Hc
i , E

c+
i)

|Ec+
i |

. (16)

Note that the complexity of an ILP system is quite great22 since it deals with
joins of relations (and several substitutions).

In our case, the data in object-attribute representation (i.e. Table 1) are trans-
formed to RDF-triples Object-Attribute-Value, represented by a predicate
attribute(object , value). Thus, all predicates are joined via an object identificator
and substitutions are considered just for attribute values23.

Moreover, user’s preferences are usually learned from a small dataset24 like our
illustrative example (Table 1), so the learning process is relatively fast. Thus, using
the ϕ-GAP algorithm is convenient for on-line user preference learning (see the
following chapter about experiments).

Le us have a look, why the IGAP model (and the respective ϕ-GAP algorithm)
is convenient for user preference learning. We do this by considering the defined
fundamental and special requirements (Definitions 2 and 1):

• Since IGAP is a generalization of ILP (proved in [26]), we are able to represent
an arbitrary combination of ordinal and nominal attributes. Moreover, in ILP
it is easy to deal with several data models (Object-Attribute, Multi-Relational,
RDF).

• The truth values in the quantitative part of GAP can be used to represent im-
perfection (uncertainty, vagueness, imprecision, ...) and the notions of a natural
language (e.g. vague concepts, such as “cheap”, “near”). Moreover, by truth
values the orderings of attribute domains can be represented.

• Considering ρ in GAP rules as aggregation function @, ordinal ratings (classi-
fication) of objects can be represented. Since IGAP is an inductive model, we
are capable to learn these ratings.

Thus, we can conclude that IGAP (or the ϕ-GAP learning method) cover all the
fundamental and special requirements for a flexible user preference learning model
(Definitions 1 and 2).

6 EXPERIMENTS

The ϕ-GAP method was tested in two ways: as a standalone data-mining algorithm
and as an integrated tool to a so-called recommender system, developed during the
NAZOU project [34]. Since the aim was to check the precision of our models, we
concentrated mainly to accuracy measures.

22 It is well-known fact in data mining.
23 All these settings can be determined in the ALEPH background knowledge.
24 Note that rating a big number of objects is unusual for users.

1022 T. Horváth

First, ϕ-GAP was tested on the real dataset of 206 Slovak companies, which had
to submit their preferences (ratings from 1 to 7) of business competitiveness and
information systems usage, where the aim was to learn the impact of information
systems on nine processes identified in the companies. The results are discussed
in [23], where the ϕ-GAP was compared with a linear regression model. To sum up,
ϕ-GAP on the given data yields at least three times better results in every dimension
of competitiveness than regression. It could be expected that large homogenous sets
of data will be in most cases better explained by ϕ-GAP than by regression. Note
that time complexity was not measured (it is evident that regression is faster than
ϕ-GAP).

The second experiment concerned the well-known auto-mpg dataset from the
UCI machine learning repository [41]. The above mentioned UCI data describes
properties of 398 cars, concerning city-cycle fuel consumption. There are 9 at-
tributes, 2 nominal, and 7 ordinal, from which the fuel consumption in miles per
gallon (mpg) was considered as the target attribute, on which the user preferences
were based. The dataset contains missing attribute values. Note that the more
miles per gallon the car runs the better for the user. Thus, this attribute was dis-
cretized to 5 classes of preferences (5 – the best fuel consumption, 1 – the worst).
The discretisation was made equidistantly, i.e. the domain of the attribute mpg was
divided into 5 parts of the same size. We tested the order preserving accuracy (see
Equation (5)) of ϕ-GAP by the mentioned method of proportion of correctly clas-
sified pairs of objects to all comparable pairs of objects. The accuracy of ϕ-GAP
was over 97 %, so, at most 3 % of all comparable pairs was classified badly. This
experiment was discussed in [24]. Other characteristics of this experiment – as the
ϕ−coverage, number of rules and time of the computing are presented in Table 3.

i 5 4 3 2

ϕ− coverage(Hc
i) 0.22 0.58 0.78 0.85

time of computing Hc
i (sec) 32 106 209 364

number of rules in Hc
i 2 8 12 5

Table 3. Characteristics of the experiment of ϕ-GAP on the auto-mpg dataset according
to the hypotheses Hc

i

During the NAZOU project [34], ϕ-GAP was integrated to a chain of tools
forming a type of a recommender system [20]. ϕ-GAP was used for an Iterative
User preference learning task (see Definition 9). An experiment with 109 sessions
with real users was performed, from which in each session users made at least two
iterations of the recommendation process. The accuracy of ϕ-GAP was measured
in two ways:

• τ -iterative correlationi was computed for each iteration i of the recommendation
process (see Equation (6)). Thus the sequence τ -iterative correlation0, τ -iterative
correlation1, . . . , τ -iterative correlationk of accuracies was obtained for each ses-
sion. About 60 % of these sequences were non-decreasing, 20 % were non-

A Model of User Preference Learning for Content-Based Recommender Systems 1023

increasing, and 20 % were non-monotone (thus, in one iteration the accuracy
grows, in the following iteration it falls, or conversely). We deduced that in the
dominant part of the sessions, the user’s preferences computed by ϕ-GAP ap-
proximate to the real preferences of users, i.e. in most cases, ϕ-GAP was helpful
in recommendation;

• average iterative ratingi was computed for each iteration i of the recommen-
dation process (see Equation (7)). Thus the sequence of average evaluations
average iterative rating0, average iterative rating1, . . . , average iterative ratingk

of objects was obtained for each session. The results were similar to the pre-
vious ones: about 60 % of these sequences was non-decreasing, while 20 % was
non-increasing and 20 % it was non-monotone. These results prove the previous
consequences, i.e. that in most cases ϕ-GAP was helpful in the recommendation.

Since users rated just a few objects (as usual in real life), the computations
on these small datasets were fast (within a second). Such computing times make
ϕ-GAP approppriate for on-line user preference learning.

7 COMPARISON TO OTHERS

There are several approaches and models of user preference learning in recommender
systems [2, 10, 31, 36]:

Term extraction and text categorization methods are used in [42, 39, 35] for
classification of documents to user profiles according to words they contain. It is
often hard to precisely get the attributes of objects (e.g. the semantics of data) in
case of unstructured data repersentation. Thus, textual representation of objects is
not considered further in this work.

Statistical approaches [28, 29, 43, 3] usually assume attribute independence or
require assumptions on probability (usually normal)distribution. These assumptions
are very strong and not general in real situations.

Clustering algorithms are used in [16, 11, 38]. In [8, 6], preferences are repre-
sented by graphs. Note that these approaches deal just with correlations between
objects, not considering the attributes of objects. Thus, these models are not good
to express more complex user preferences (for example in form of rules).

Support Vector Machines and k-Nearest Neighbour classification techniques are
used to compute user preferences in [12, 18]. These techniques are more approppriate
in case of homogenenous (mainly numerical) data but this is not the general case in
real applications.

In [17], Knowledge-Based Artificial Neural Networks are used for preference elici-
tation, with the ability to encode assumptions concerning preferential independence
and monotonicity. The use of pairwise preferences is assumed in this work. E.g.,
consider a rule xi < xj ∧ yi ≥ yj −→ oi ≻ oj, where oi ≻ oj indicates that the object
oi is preferred to the object oj . This rule expresses that if an object oi has smaller
value in the attribute x and greater or equal value in the attribute y than object oj,
then oi is preferable to oj for the user.

1024 T. Horváth

In [19], an evolutionary approach is used. In this model, a user’s utility func-
tion U applied to a product (object) p with n attributes is defined as U(p) =
∑n

i=1 wifi(xi), where wi ∈ R denotes the weight (importance) of an attribute ai and
fi : Domain(ai) → R denotes the “attribute utility” function25 of an attribute ai,
and xi is the value of an attribute ai of the product p. Except the complete utili-
ty function, the proposed algorithm learns both the attribute weight and attribute
utility function.

A language called DD-PREF is introduced in [27]. Preferences are learned over
sets of objects, where the learning method takes as input one or more sets of objects
that have been identified by a user as desirable26. In DD-PREF preferences are
represented as tuples P = 〈−→q ,

−→
d ,−→w , α〉, where qf : Vf → [0, 1] is the desired

“depth”27 (preferred feature values), df ∈ [0, 1] is the desired “diversity” (preferred
distribution of values across the desired range), wf ∈ [0, 1] is the feature preference
“weight” for the feature f with values in the set Vf and α ∈ [0, 1] specifies the
relative importance of diversity versus depth across all features. qf , df and wf are
estimated using probability methods.

The language of first-order logic is used to represent user preferences in [32].
In [9] preferences are learned using an Inductive Logic Programming system TIL-
DE [5]. ILP systems are able to learn from multiple-relations. Due to their expres-
siveness, input and output of ILP systems are readable, in contrast to sub-symbolic
systems like neural networks.

The presented rules in [17] allow to define complex preferences but deal with
pairwise preferences (rankings28, instead of ratings). Moreover, these consider only
numerical data. The attribute utility function in [19] allows to define some “prefe-
rences” for both numerical and non-numerical data. The drawback of this model
is that the preferences can be expressed strictly as a weighted sum. The model
presented in [27] seems to be more flexible, however, the α parameter is a-priori
given. Moreover, the preferences are learned not from ratings but from a set of
preferable objects. Except [32, 9], none of the approaches presented considers multi-
relational data. Even if ILP systems are able to learn from multiple relations, the
approaches presented in [32, 9] do not consider imperfection nor ordinal ratings, or
orderings of attribute domains.

As can be seen, unlike IGAP none of the other approaches to preference learning
in (content-based) recommender systems cover all fundamental and special require-
ments introduced in Definitions 2 and 1.

Comparing IGAP to other models in [26, 25] we find out that IGAP can be
viewed as a “generalization” of other fuzzy inductive logic programming and ordinal
classification models.

25 For example, fprice(x) = 1− x
26 The idea is that it is often easier for users to express their preferences by a set of

preferable objects (for example, a set of favourite songs).
27 The depth and the attribute utility function in [19] have the same meaning.
28 As stated before, this paper deals with rating.

A Model of User Preference Learning for Content-Based Recommender Systems 1025

8 CONCLUSIONS

This paper is focused to a formal model of user preference learning for content-based
recommender systems.

Fundamental and special requirements to user preference learning were identi-
fied.

Three learning tasks were introduced as the exact, the order preserving and the
iterative user preference learning tasks. The first two tasks concerned the situation
where we have the user’s rating available for a large part of objects. The third task
does not require any prior knowledge about the user’s ratings history. Local and
global preferences were distinguished in the presented model.

Two methods for local preference learning were proposed. The model of in-
duction of generalized annotated programs (IGAP) was described. The ϕ-GAP
algorithm was presented as the learning method for IGAP. All these methods were
illustrated in the example. Note that we do not know about any other inductive
GAP model.

ϕ-GAP was tested as a standalone data mining application and as an integrated
tool to a recommender system. IGAP was compared to other approaches to user
preference learning. The comparison of IGAP to other models of inductive fuzzy
logic programming and ordinal classification was made in [26]. The experiments and
the comparison to other approaches shows promising results.

The research showed that, however, a flexible model has to consider multi-
relational data (in case of some background knowledge about objects, users and
the used domain), in most cases data are represented in one table. Thus, a proposi-
tional (i.e. one table on input) version of ϕ-GAP, called π-GAP was developed. This
algorithm is now in the testing phase, the results seem promising – it is considerably
faster than the ϕ-GAP.

In the future, an integration of π-GAP to a recommender system and its expe-
rimental verification is planned, especially for the domain of used cars.

Acknowledgement

This work was supported by the NAZOU project [34].

REFERENCES

[1] Abdi, H.: The Kendall Rank Correlation Coefficient. In N. J. Salkind (Ed.): Ency-
clopedia of Measurement and Statistics, Sage, Thousand Oaks (CA), 2007.

[2] Adomavicius, G.—Tuzhilin, A.: Using Data Mining Methods to Build Customer
Profiles. Computer, Vol. 34, 2001, No. 2, pp. 74–82.

[3] Ardissono, L.—Gena, C.—Torasso, P.—Bellifemine, F.—Chiarotto,

A.—Difino, A.—Negro, B.: Personalized Recommendation of TV Programs. In:

1026 T. Horváth

Proceedings of the 8th AI*IA Conference, Pisa, 2003, Springer, LNAI, Vol. 2829,

ISBN 978-3-540-20119-9, pp. 474–486.

[4] Balabanovic, M.—Shoham, Y.: Fab: Content-Based, Collaborative Recommen-
dation. Communications of the ACM archive, Vol. 40, Issue 3, 1997, ISSN 0001-0782,
pp. 66–72.

[5] Blockeel, H.—de Raedt, L.—Jacobs, N.—Demoen, B.: Scaling up Inductive
Logic Programming by Learning from Interpretations. Data Mining and Knowledge
Discovery, Vol. 3, 1999, No. 1, ISSN 1384-5810, pp. 59–93.

[6] Branting, L.K.—Broos, P. S.: Automated Acquisition of User Preferences. In-
ternational Journal of Human-Computer Studies, Vol. 46, 1997, pp. 55–77.

[7] Burke, R.: Hybrid Recommender Systems: Survey and Experiments. User Modeling
and User-Adapted Interaction, Vol. 12, 2002, No. 4, ISSN 0924-1868, pp. 331–370.

[8] Crane, M.: Efficiently Learning Trends in User Preferences. Poster at Computer
Science 294, Practical Machine Learning, Fall 2006.

[9] Dastani, M.—Jacobs, N.—Jonker, C.M.—Treur, J.: Modelling User Prefe-

rences and Mediating Agents in Electronic Commerce. Lecture Notes in Computer
Science, Vol. 1991, ISBN 3-540-41671-4, pp. 163–193, Springer 2001.

[10] Delgado, J.—Ishii, N.: Formal Models for Learning of User Preferences, a Pre-
liminary Report. In: Proceedings of the IJCA99 Workshop on Learning about Users,
Stockhpm 1999, pp. 13–20.

[11] Delgado, J.—Ishii, N.: On-line Learning of User Preferences in Recommender
Systems. In: Proceedings of the IJCAI-99 Workshop on Machine Learning for Infor-
mation Filtering, 1999.

[12] Deng, L.—Chai, X.—Tan, Q.—Ng, W.—Lee, D. L.: Spying Out Real User
Preferences for Metasearch Engine Personalization. In: Proceedings of the 6th WE-
BKDD Workshop, Seattle, 2004.

[13] Džeroski, S.—Lavrač, N.: An Introduction to Inductive Logic Programming.
Relational data mining, Springer, 2001, ISBN 3-540-42289-7, pp. 48–73.

[14] Eckhardt, A.—Horváth, T.—Vojtáš, P.: PHASES: A User Profile Learning
Approach for Web Search. In: Proceedings of the 2007 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence (WI 2007), Silicon Valley, USA, IEEE Com-
puter Society, 2007, ISBN 0-7695-3026-5, pp. 780–783.

[15] Eckhardt, A.—Horváth, T.—Vojtáš, P.: Learning Different User Profile An-
notated Rules for Fuzzy Preference Top-k Querying. In: Proceedings of the 1st Inter-
national Conference on Scalable Uncertainty Management, (SUM ’07), Washington
DC, USA, Lecture Notes in Artificial Intelligence, Vol. 4772, 2007, ISSN 0302-9743,
ISBN 978-3-540-75407-7, pp. 116–130, Springer, 2007.

[16] Goerge, T.—Merugu, S.: A Scalable Collaborative Filtering Framework Based on
Co-clustering. In: Proceedings of the Fifth IEEE International Conference on Data
Mining, 2005, ISBN 1550-4786, pp. 625–628.

[17] Geisler, B.—Ha, V.—Haddawy, V.: Modeling User Preferences via Theory Re-
finement. In: Proceedings of 6th International Conference on Intelligent User Inter-
faces (IUI), Santa Fe, New Mexico, ACM, 2001, ISBN 1-58113-325-1, pp. 87–90.

A Model of User Preference Learning for Content-Based Recommender Systems 1027

[18] Grčar, M.—Fortuna, B.—Mladenič, D.—Grobelnik, M.: kNN Versus SVM

in the Collaborative Filtering Framework. Data Science and Classification, ISBN 978-
3-540-34415-5, pp. 251–260, Springer, 2006.

[19] Guo, Y.—Műller, J. P.—Weinhardt, C.: Learning User Preferences for Multi-
attribute Negotiation: An Evolutionary Approach. In: Proceedings of CEEMAS2003,
LNAI 2691, pp. 303–313, Springer, 2003.

[20] Gurský, M.—Horváth, T.—Novotný, R.—Vaneková, V.—Vojtáš, P.:
UPRE: User Preference Based Search System. In: Proceedings of the 2006
IEEE/WIC/ACM International Conference on Web Intelligence (WI ’06), Hong
Kong, 2006, IEEE Computer Society, 2006, ISBN 0-7695-2747-7, pp. 841–844.

[21] Gurský, P.—Horváth, T.: Dynamic Search of Relevant Information. In: 4th Con-
ference Znalosti ’05, Stará Lesná, Slovakia, 2005: FEI VB-TU Ostrava, Czech Repub-
lic, 2005, ISBN 80-248-0755-6, pp. 194–201.

[22] Hawkins, R.: Ranking and Scoring – Guidelines. Manual, ICRA Learning Resources.

[23] Horváth, T.—Sudzina, F.—Vojtáš, P.: Mining Rules from Monotone Classifi-
cation Measuring Impact of Information Systems on Business Competitiveness. In:
6th IFIP International Conference on Information Technology for Balanced Automa-
tion Systems in Manufacturing and Services, Vienna, Austria, 2004, Springer, IFIP
International Federation For Information Processing (Vol. 159), 2004, ISSN 1571-
5736, ISBN 0-387-22828-4, pp. 451–458.

[24] Horváth, T.—Vojtáš, P.: GAP – Rule Discovery for Graded Classification. In:
Workshop of Advances in Inductive Rule Learning (W8) of the 15th European Con-
ference on Machine Learning and the 8th European Conference on Principles and
Practice of Knowledge Discovery in Databases (ECML/PKDD ’04), Pisa, Italy, 2004,
TU Darmstadt (J. Fuernkranz, Ed.), Darmstadt, Germany, 2004, pp. 46–63.

[25] Horváth, T.—Vojtáš, P.: Ordinal Classification with Monotonicity Constraints.
In: Proceedings of the 6th Industrial Conference on Data Mining (ICDM ’06), Leipzig,
Germany, 2006, Springer-Verlag, Lecture Notes in Artificial Intelligence (Vol. 4065),
2006, ISSN 0302-9743, ISBN 3-540-36036-0, pp. 217–225.

[26] Horváth, P.—Vojtáš, P.: Induction of Fuzzy and Annotated Logic Programs.

In: Proceedings of the the 16th International Conference on Inductive Logic Pro-
gramming (ILP ’06), Santiago de Compostela, Spain, 2006, Springer-Verlag, Lecture
Notes in Artificial Intelligence, Vol. 4455, 2007, ISSN 0302-9743, ISBN 978-3-540-
73846-6, pp. 260–274.

[27] des Jardins, M.—Eaton, E.—Wagstaff, K. L.: Learning User Preferences for
Sets of Objects. In: Proceedings of the 23rd International Conference on Machine
Learning, ISBN 1-59593-383, Pittsburgh, PA 2006, pp. 273–280.

[28] Jung, S. Y.—Hong, J.H.—Kim, T. S.: A Statistical Model for User Preferen-
ce. IEEE Transactions on Knowledge and Data Engineering, Vol. 17, 2005, No. 6,
pp. 834–843.

[29] Kang, S.—Lim, J.—Kim, M.: Statistical Inference Method of User Preference on
Broadcasting Content. In: Proceedings of ICCS2005, Springer, LNCS 3514, 2005,
pp. 971–978.

1028 T. Horváth

[30] Kifer, M.—Subrahmanian, V.S.: Theory of Generalized Annotated Logic Pro-

gramming and Its Applications. J. Logic Programming, Vol. 12, 1992, pp. 335–367.

[31] Kobsa, A.: Generic User Modeling Systems. The adaptive web: Methods and strate-
gies of web personalization, Heidelberg, Germany, Springer, LNCS 4321, ISBN 978-

3-540-72078-2, pp. 136–154.

[32] Leite, J.—Babini, M.: Dynamic Knowledge Based User Modeling for Recom-

mender Systems. In: Proceedings of the ECAI2006 Workshop on Recommender Sys-
tems, Riva del Garda, Italy, 2006, pp. 134–138.

[33] Meteren, R.V.—Someren, M.V.: Using Content-Based Filtering for Recommen-

dation. MLnet/ECML 2000 Workshop, May 2000, Barcelona, Spain.

[34] The NAZOU project. http://nazou.fiit.stuba.sk.

[35] Pazzani, M.—Billsus, D.: Learning and Revising User Profiles: The Identification
of InterestingWeb Sites. Machine Learning, Vol. 27, 1997, pp. 313–331.

[36] Al Rashid, M.—Albert, I.—Cosley, D.—Lam, S.K.—McNee, S. M.—

Konstan, J.A.—Riedl, J.: Getting to Know You: Learning New User Preferences
in Recommender Systems. In: Proceedings of the 7th International Conference on

Intelligent User Interfaces IUI ’02, ISBN 1-58113-459-2, pp. 127–134.

[37] Srinavasan, A.: The Aleph Manual. Technical Report, Comp. Lab., Oxford Uni-

versity.

[38] Suryavanshi, B. S.—Shiri, N.—Mudur, S. P.: A Fuzzy Hybrid Collaborative
Filtering Technique for Web Personalization. In: Proceedings of 3rd Workshop on

Intelligent Techniques for Web Personalization, in conjunction with IJCAI ’05, Edin-
burgh, Scotland, 2005.

[39] Taschuk, M.: A Hybrid Knowledge-based/Content-based Recommender System in
the Bluejay Genome Browser. Undergraduate Honours Thesis, Faculty of Medicine
at the University of Calgary, 2007.

[40] Towle, B.—Quinn, C.: Knowledge Based Recommender Systems Using Explicit
User Models. Knowledge-based Electronics Markets, papers from the AAAI Work-
shop, AAAI Technical Report WS-00-04, AAAI Press, pp. 74–77.

[41] Asuncion, A.—Newman, D. J.: UCI Machine Learning Repository. http://www.
ics.uci.edu/∼mlearn/MLRepository.html. Irvine, CA, 2007, University of Cali-
fornia, School of Information and Computer Science.

[42] Xu, J.A.—Araki, K.: A Personalized Recommendation System for Electronic Pro-
gram Guide. In: Proceedings of AI 2005, Springer, LNAI 3809, 2005, pp. 1146–1149.

[43] Yu, Z.–Zhou, X.—Yang, Z: A Hybrid Learning Approach for TV Program Per-
sonalization. In: Proceedings of KES2004, Springer, LNAI 3213, 2004, pp. 630–636.

[44] Vojtáš, P.: Fuzzy Logic Programming. Fuzzy Sets and Systems, Vol. 124, 2004,
No. 3, pp. 361–370.

[45] Vojtáš, P.—Vomlelová, M.: Transformation of Deductive and Inductive Tasks
Between Models of Logic Programming With Imperfect Information. In: Proceedings
of IPMU, 2004, Roma, Italy, pp. 839–846.

[46] Vojtáš, P.—Vomlelová, M.: On Models of Comparison of Multiple Mono-
tone Classifications. In: Proc. IPMU2006, Paris, France, Editions EDK, Paris,
pp. 1236–1243.

A Model of User Preference Learning for Content-Based Recommender Systems 1029

Tomáš Horv�ath is a research assistant and external Ph. D.

student at Institute of Computer Science of Pavol Jozef Šafárik
University in Košice, Slovakia.

