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Abstract. Searching top-k objects for many users face the problem of different
user preferences. The family of Threshold algorithms computes top-k objects using

sorted access to ordered lists. Each list is ordered w.r.t. user preference to one of
objects’ attributes. In this paper the index based methods to simulate the sorted
access for different user preferences in parallel are presented. The simulation for
different domain types – ordinal, nominal, metric and hierarchical – is presented.
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1 INTRODUCTION

Nowadays, in the era of huge databases, processing of ranked queries becomes a sig-
nificant problem. Ranking queries (or top-k queries) are typical in multimedia
databases, web databases and middleware systems. Such systems usually want to
return only small number of objects suitable for a user without seeing all objects.

The main problem of the top-k querying is to find a good balance between
query expressivity and computational complexity. Approaches that are optimal in
computational complexity usually do not support high expressive queries. In the
family of Threshold Algorithms (TA) the basic assumption is a monotone combi-
nation function over ordered sources. The expressivity of a monotone combination
function over domain ordering is low. Many authors [22, 23] face the problem of
more expressive queries by analyzing complicate ranking functions and offer a kind
of multidimensional search.

Example 1. Imagine user u1 looking for a low price flat with size about 60 m2. His
overall ranking function F can be expressed as follows:

Fu1
(price, size) =

(

1 −
price

maxprice

)

· max
{

0,
(

1 − |1 −
size

60
|
)}

. (1)

It can be seen that Fu1
is not a monotone function and TA cannot be used ad-hoc.

Instead of difficult function analysis we prefer a different form of query compound
of local preferences and a monotone combination function. As will be shown in
Section 2, the expressivity of such a query is very high.

Local preference represents user’s notion about the suitability of values from the
attribute domain. Local preference can be expressed by fuzzy predicate that maps
attribute domain to interval [0, 1], where 1 means strong preferred domain value and
0 means the least preferable value.

The monotone combination function is used to compare objects incomparable in
particular local preferences (one flat can be better in price, another in size). Typical
monotone combination functions are weighted average, minimum, maximum or a set
of ranking rules.

Fig. 1. Local preferences

Notice that the ranking function Fu1
of user u1 can be written as a monotone

combination (product) of partially linear scoring functions fp and fs depicted in
Figure 1.
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Formally the preferences of user u to a set of objects with m attributes a1, . . . , am

are described by m arbitrary scoring functions of one variable fa1
, . . . , fam

(local
preferences) and one monotone combination function F (global preferences), and
for every object X with attribute values x1, . . . , xm the preference of user u to
object X is equal to F (fa1

(x1), . . . , fam
(xm)).

In the näıve approach, the attribute vales according to local preferences can be
ordered and any effective TA-like algorithm to find top-k flats can be used.

Unfortunately, the meaning of good values of attributes (specified by local pre-
ferences), as well as the combination function, can be different for each user.

Example 2. Consider a user u2 with preferences to rather large flats but mainly
those with price about $ 50 k:

Fu2
(price, size) = 3 · fp2

(price) + fs2
(size), (2)

where

fp2
(price) =



























price

10 k
− 4, price ∈ 〈40 k, 50 k〉

6 − price

10 k
, price ∈ (50 k, 60 k)

0, otherwise

fs2
(size) =

size

maxsize

It can be seen that local preferences induce different ordering of the attributes
than functions in Figure 1. Now the näıve approach fails – reordering in the time of
the query is unacceptable.

Example 3. Assuming that the attributes price and size are indexed separately by
a B+ tree the tree according to user local preferences can be traversed to simulate
sorted access. In Example 2 the price tree is traversed from maximal value in de-
scending direction using leave pointers. In the size tree two pointers can be created,
both starting at 60 m2. The first pointer traverses the tree in descending direction
and the second one in ascending direction. Having simple functions (partially lin-
ear), the points of extremes to identify the pointers and directions can be found
easily.

Similarly in (2), the price tree is searched using two pointers starting at 50 k
and the size tree is traversed from maxsize. The algorithm for traversing B+ tree is
described in Section 4.1.

To enable top-k queries made by different users an intuitive user friendly inter-
face has to be designed. As an alternative to complicated user input an inductive
procedure can be used. Our system was integrated in the UPRE system described
in [9]. In UPRE, a user defines his/her global preference by ordering or evaluating
a sample of objects. Based on user global preferences the system creates input for
top-k search in a two step learning process. First, local fuzzy preference functions
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have to be induced for each attribute. Second, based on these functions the mono-
tone combination function in the form of fuzzy rules is learned by an inductive logic
programming method IGAP described in [11]. Alternatively the SVM based system
in [21] can be used.

This paper faces the challenge to serve different users with various preferences
over the same data simultaneously.

Instead of analyzing the complex ordering function of m variables like in [22, 23],
we offer an extension of the family of Threshold Algorithms (TAs) [7] which allows
us to cover queries generated by our preference model. In TAs the basic assumption
is a monotone combination function over ordered sources. In terms of our model,
the users in TAs must have identical local preferences and can differ only in global
preferences.

Our extension of TAs is based on a simulation of sorted access without any real
reordering of sources with a support of index structures. We describe the simulation
over wide class of attribute types: ordinal (Section 4.1), nominal (Section 4.2),
metric (Section 4.3) and hierarchical (Section 4.4).

Analysis of TAs followed us to a modification of NRA algorithm proposed by
Fagin et al. [7] to improve its performance. In Section 3 two versions of our new
3P-NRA algorithm is described. Instance optimal version of 3P-NRA is proved to
have maximal number of disk accesses equal to the number of accesses needed by
standard NRA algorithm.

Performance study in Section 5 with 243 different user preferences over 3 syn-
thetic datasets and 3 queries over real-world dataset shows significant decrease of
the number of disk accesses and computational time against baseline approaches.

In summary, the contributions of this paper are:

• The sorted access by different indexes for 4 types of attribute domain – nominal,
ordinal, metric and hierarchical – is described. Thus, the analysis of many
valued functions is skipped and using of optimal TA-like algorithms is enabled
(Section 4).

• A variant of NRA algorithm named 3P-NRA is proposed (Section 3). In expe-
riments the significant decrease of number of accesses and computational time
against standard NRA algorithm is shown (Section 5).

2 RELATED WORK

Top-k query processing is studied in several scenarios. In the first category there are
middleware based top-k algorithms, which combine several ordered sources from the
individual subsystems [1, 2, 3, 7, 8, 10]. All of these algorithms assume monotone
combination function and ordered sources or sources accessed only by random access.
The Best position algorithm [1] works with the objects’ positions in the ordered list
in addition. All these algorithms compute the overall object value using a monotone
combination function. We are not aware of solutions to different user problem in
these papers. On the other hand, if the ordered sources are available, many of these
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algorithms are effective and proven to be instance optimal for the top-k search of
a single user (constant local preferences).

In the second category there are top-k algorithms embedded in RDBMS [13,
14, 15]. These approaches are concerned with augmenting the query optimizer to
consider rank-joins during plan evaluation. Optimization can be effective especially
in the case of very selective attributes. The rank-join algorithms require ordered
data on input similarly to the middleware algorithms. The way of ordering is not
considered or implicitly the ordering of attribute domains is used.

The problem of more expressive queries was studied in different ways. The
MPro [5] and Upper [4] systems access unordered sources by random access only.

In the PREFER system [12] the sorted access is provided by choosing one of
several prepared ranked materialized views having ordering near to that made by
ranked query. This approach requires non-trivial number of materialized views grow-
ing with the number of attributes.

Another possible view of recent research distinguishes the following: one branch
of research generalizes types of data to uncertain (see e.g. [19, 18]) or to XML data
(see e.g. [20]).

Zhang et al. in [23] present the OPT* algorithm combining discrete selection
condition and continuous optimization over arbitrary ranking function to find the
first best object. Xin et al. [22] analyse the ranking function of many variables
similarly to [23] to navigate through the huge set of states over m B+ trees. If the
ranking function over any domain subregion can be analyzed (to find the minimum
and possibly recognize monotonicity) this approach is able to find top-k objects in
an effective way.

Most of the above systems with high expressive queries use an analytic expres-
sion of a ranking function. For instance, in [22] the authors identify the function
F (A, B) = A · e−A2

−B2

to be not even “semi-monotone”. For illustration, we show
that this query can be represented in our model.

The function F (A, B) is a product of two scoring functions of one variable
fA(A) = A · e−A2

and fB(B) = e−B2

.

An analysis of the functions fA and fB can be used to find local maximums
(needed by simulation procedure in Section 4.1). Such an analysis is much easier
than the analysis of function of two or more variables and the composition of global
and local preferences induces the same results. Unfortunately we do not have a de-
composition procedure to convert any complex scoring function in analytical form
to our form of the query.

Note that by monotone combination function also the Boolean restrictions on
attribute values can be simulated. All we need is to set overall ranking value to
zero if domain element does not fulfil selection condition (i.e. fuzzy predicate value
is zero).

We believe that our user preference model is more intuitive for users than com-
plex analytical function, because when they specify their preferred objects in natural
language they usually express which values are more suitable than the others.
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3 TOP-K ALGORITHMS

The optimal performances among all top-k algorithms have algorithms that aggre-
gate ordered lists. In Section 4 the possibility of simulation of the sorted access over
nominal, ordinal, metric and hierarchical attributes using tree like indexes is shown.
This allows the use of TA-like algorithms.

In our implementation the modification of NRA algorithm [7] named 3P-NRA

(3-phased no random access) is primarily used. It will be shown in Section 5 that
in practical implementation the orders of magnitude improvement over NRA are
obtained.

In the rest of this paper the following notation is used. Value m represents
the number of attributes of objects or the number of sources. An arbitrary object
is denoted as X = (x1, . . . , xm), where x1, . . . , xm are real attribute values of X.
f1, . . . , fm are arbitrary scoring functions of one variable that represent local prefer-
ences to attribute values. For each i ∈ {1, . . . , m}, fi(xi) represents a user preference
to the real value of the i-th attribute of X. Let V (X) = {i1, . . . , in} ∈ {1, . . . , m}
be a subset of known attributes xi1, . . . , xin of X, we define WV (X) (or shortly
W (X) if V is known from context) to be minimal (worst) possible value of the com-
bination function F for the object X. Monotonicity of combination function F is
assumed. WV (X) is computed such that each missing attribute is substituted by
the minimum of appropriate scoring function. For example if V (X) = {1, . . . , g}
then WV (X) = F (f1(x1), . . . , fg(xg), min(fg+1), . . . , min(fm)).

Analogously we define maximal (best) possible value of the combination func-
tion F for object X as BV (X) (or shortly B(X) if V is known from context).
Since the sorted access returns values in descending order, the corresponding value
from the vector u = (u1, . . . , um) can be substituted for each missing value, where
u1, . . . , um are the last scoring values last seen by sorted access from each source
(these values are scoring values for attributes of different objects usually). For
example if V (X) = 1, . . . , g then BV (X) = F (f1(x1), . . . , fg(xg), ug+1, . . . , um).

The real value of object X is W (X) ≤ F (f1(x1), . . . , fm(xm)) ≤ B(X). Note
that unseen objects during the computation (no values are known) have B(X) =
F (u1, . . . , um). The value τ = F (u1, . . . , um) is well known as the threshold value.

In algorithms the top-k list T ordered by the worst value is used. The object in T
with the smallest worst value is labeled Tk. In the (unordered) set C the candidates
with the worst value smaller than or equal to W (Tk) but with the best value larger
than W (Tk) are stored. These are the objects with a hope to get into T later. The
objects in C are called candidates.

In 3P-NRA the set C is implemented as a hash table with object identifiers as
a key. To recognize the sources with all known values between objects in T and C
the number of missing values for each source is maintained.

3P-NRA algorithm works as follows:

Input: k, F, m sources

Output: k ranked objects if exist
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T = ∅ , C = ∅
Phase 1:
Do the sorted access in parallel to all sources.

For every object X seen under sorted access compute W (X) and do

If |T | < k then put X to T
Else If W (X) > W (Tk) then

If X /∈ T move Tk to C, put X to T
Else put X to C

If W (Tk) ≥ threshold τ goto Phase 2

repeat Phase 1

Phase 2:
Do the sorted access in parallel to the sources for which there are

unknown values for objects in C and T.
For every object X seen under sorted access do

If X is not in T or in C ignore it

Else If B(X) ≤ W (Tk) remove X from C
If |C| = 0 return T and exit

If W (X) > W (Tk) and X /∈ T move Tk to C, put X to T
If (W (Tk) increased) OR (threshold τ decreased) then

heuristic H can choose to go to Phase 3

repeat Phase 2

Phase 3:
For every object X ∈ C compute B(X); If X is no more relevant (i.e.

B(X) ≤ W (Tk)) remove X from C
If |C| = 0 return T and exit; otherwise goto Phase 2.

Phase 1 works similarly to the standard NRA algorithm with the exception of
the threshold test. The heuristic H in 3P-NRA algorithm can be used to skip an
expensive computation of Phase 3. On the other hand, if H always chooses to do
Phase 3 the 3P-NRA algorithm is proved to be instance optimal. The instance
optimality of NRA means that if NRA finds top k objects using y sorted accesses,
then there are no algorithms reading the sources only by sorted access, that can find
top k objects using less than m · y sorted accesses (see [7]).

Theorem 1. Let F be a monotone combination function, then algorithm 3P-NRA

finds top-k objects correctly.

Proof. Let S(X) = F (f1(x1), . . . , fm(xm)). Assume that 3P-NRA algorithm ended
its computation at position z = (z1, . . . , zm) (i.e. algorithm did zi sorted accesses to
the ith source) and returned objects X1, . . . , Xk. Let X /∈ {X1, . . . , Xk}. We will
show that B(X) ≤ W (Tk).

Note that the W (Tk) cannot decrease during the computation and in the whole
algorithm we removed from C only the objects with the best value smaller than or
equal to actual W (Tk). Thus it holds for each such object X that its best value is
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smaller than or equal to the W (Tk) at the end of the computation, more formally it
holds for every removed object X from C holds that S(X) ≤ B(X) ≤ W (Tk).

Next we need to consider the objects ignored in Phase 2. These are the objects
not seen in Phase 1. Let X be such object with scores f1(x1), . . . , fm(xm) and let
v1, . . . , vm be equal to values u1, . . . , um at the end of Phase 1. It holds that fi(xi) ≤
vi for each i ∈ {1, . . . , m}. It can be seen from the monotonicity of combination
function that S(X) = F (f1(x1), . . . , fm(xm)) ≤ B(X) = F (v1, . . . , vm). The last
equality goes from the fact that X was not seen in Phase 1. It is known from the
condition at the end of Phase 1 that W (Xj) ≥ F (v1, . . . , vm) for each j ∈ {1, . . . , k}
thus B(X) ≤ W (Tk).

Note that the fact that the sources where all values between objects in T
and C are known can be skipped follows from the observations that all unseen ob-
jects can be ignored. From such sources the interesting objects cannot be retrieved
any more. 2

Theorem 2. Let F be a monotone combination function. If heuristic H always
chooses to go to Phase 3, then algorithm 3P-NRA makes at most the same number
of sorted accesses as NRA algorithm, i.e. 3P-NRA algorithm is instance optimal.

Proof. It can be seen that Phase 1 accesses the sources in the same way as NRA [7]
algorithm as well as Phase 2 + Phase 3 together except the skipped sorted accesses
to useless sources.

All we need to show is that algorithm NRA cannot stop earlier than Phase 1 does.
Algorithm NRA ends when there are no more relevant objects out of the list T i.e.
B(X) ≤ W (Tk) for all X /∈ T . Phase 1 ends when F (u1, . . . , um) ≤ W (Tk). Observe
that F (u1, . . . , um) is the best value for all unseen objects. We need to wait until
F (u1, . . . , um) decreases to have W (Tk) ≥ F (u1, . . . , um) because we have to be sure
that there is no object with the best value greater than W (Tk). 2

The improvements of the 3P-NRA algorithm in contrast to NRA [7] are as
follows:

• New objects are considered in phase 1 only. Other objects are ignored.

• Many computations of the best values are omitted.

• After acquisition of all unknown values of any attribute between objects in T ∪C
the algorithm stops the work with the corresponding source (no more sorted
accesses to the source will be done). This feature decreases the number of disk
accesses significantly.

• A good choice of heuristic H can yield a massive speedup of the algorithm,
however it can slightly increase the number of disk accesses according to H.

In our tests in Section 5 the heuristic that goes to phase 3 only each 1 000th loop
of phase 2 is used. In the tests the orders of magnitude speedup against algorithms
without heuristic is shown.
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4 INDEX BASED SORTED ACCESS

To accommodate to system which has to serve many different users and possibly
various domains, we decided to keep data on disk. It is assumed that our system
is query intensive and data insertions and deletions will be rare (e.g. updated once
per day). Many functionalities of traditional transaction oriented RDBMS will not
be used. Expected querying is structurally easy. This led to the estimation that
the overhead of classical systems is too high and we decided to implement an own
backend data organizing system based on indexes – one per each attribute. In this
section the simulation of sorted access over ordinal, nominal, metric and hierarchi-
cal attributes is described. Such algorithms are needed to compute more complex
queries typical for systems with many different users.

4.1 Ordinal Attributes: B+ Trees

The most common attributes are the ordinal ones. Typical structures for indexing
the ordinal attributes are B-trees and B+ trees. In our implementation the B+
tree having all data in the tree and leaves stored on the disk has been slightly
modified. Pages of leaf data are double linked and they can be easily traversed
in either direction. The leaf traversal supported by B+ tree allows us to follow
records (attribute values) from higher ranking to lower ranking. When a user defines
a scoring function over the ordinal attribute, he/she actually defines the ordering of
the domain. We assume that the found local maximums of the scoring function can
be derived. Having partially linear scoring function, the search of local maximums
is trivial. In the case of arbitrary scoring function in analytical form, some kind
of additional analysis needs to be done. Local maximums are the starting points
of traversing the B+ tree. After delivering the local maximums, the whole scoring
function is used as a black box.

In the following algorithm the simulation of sorted access for one ordinal at-
tribute and an arbitrary scoring function f is described. Let o be an object with
value xo in the given attribute, any triple [p(o), f(xo), directiono] in T represents
the following: p(o) is the position of object o in a materialized leaf in the memory,
f(xo) is the relevance of object o given by scoring function f and third value repre-
sents the direction of the next move after returning the pair 〈o, f(xo)〉 to the master
algorithm.

Function max(T ) returns triple with highest score. If there are more triples with
the same score, max(T ) returns the one with the lowest object identifier.

Algorithm simulating the sorted access over B+ tree works as follows:

Input: scoring function f (as a black box)

Set M ={ x : f(x) is a representative of each local

maximum of f }
Output: The next best object with its score value in the sorted

output stream
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Function getNext():
If (first call) then

For all x ∈ M do

Traverse from the root of B+ tree to find neighbor records

〈a, xa〉, 〈b, xb〉 in a leaf (or leafs) such that xa ≤ x ≤ xb

Add triples [p(a), f(xa), left ] and [p(b), f(xb), right ] to T, if there

were no such records on the left or on the right do not add

the corresponding triple.

[p(o), f(xo), directiono] := max(T ).
Return 〈o, f(xo)〉.

Else

If T = ∅ return "no more objects";

[p(o), f(xo), directiono] := max(T ); //last returned object

Remove [p(o), f(xo), directiono] from T
If directiono from p(o) shows to the leaf on the disk, load it to

the memory, if there is not such a leaf return getNext() ;

Traverse to the record 〈u, xu〉 defined by p(o) and directiono.

If [p(u), f(xu), opposite(directiono)] ∈ T //in local minimum

Replace it by [p(u), f(xu), null] in T
Else add [p(u), f(xu), directiono] to the set T
[p(v), f(xv), directionv] := max(T ).
If directionv = null remove [p(v), f(xv), directionv] from T
Return 〈v, f(xv)〉.

Fig. 2. B+tree traversing

Example 4. To illustrate the simulation of sorted access consider the situation in
Figure 2. Under the B+tree there is the fuzzy (score) function. It has one local
maximum: M = { a random value in the interval 〈200, 250〉, e.g. 225}. When
top-k algorithm calls for the first object by sorted access, the random value in the
interval (e.g. 225) by hierarchical traversal needs to be searched. Two neighbor
objects around 225 are found, i.e. the triples [p(o10), 1.0, right] and [p(o1), 1.0, left]
are added to T . Seeing that the both scores are the same the object with lower
object id is returned, i.e. record 〈o1, 1.0〉. In further sorted access calls one of the
gray arrows will be followed to get new objects to return. Next we traverse left for
the object o3 with score 0.9 but returning better record 〈o10, 1.0〉. After the next
sorted access call the direction of the last returned object is followed (i.e. to the
right) and fuzzy value 1.0 of object o7 is computed and 〈o7, 1.0〉 is returned. After
the next sorted access call and computing fuzzy value 0.6 of object o4 object o3
needs to be returned and the traverse to the left in the next call is done.

Traversing of the B+tree is much easier when the scoring function f is monotone.
In this case only one direction is followed (the size of T is 1).
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It can be easily shown that our getNext() function over B+tree accesses only
the necessary leaves, thus it does the optimal number of disk accesses.

4.2 Nominal Attributes: Dis-Index

Usual types of nominal attributes are String and/or list of domain values (Enumera-
tion). The unordered character of nominal attributes very often causes their absence
in rank aware queries. Commonly, the nominal attributes are used to express the
restrictive parts of queries only.

We believe that there are many situations, in which a user wants to express
relevance to nominal attribute values in a scoring function. For instance consider the
attribute sellerType in our flat scenario with possible values “mediator”, “private
person”, “corporate entity” and “estate agency”. Each user can specify his/her
meaning about a suitability of each seller type respective to his/her experience.
Similar attributes in our example domain can be e.g. house color, building material,
floor type etc.

The suitability can be expressed by a fuzzyfication of nominal attributes, i.e.
by assigning fuzzy values (scores) to the domain attribute values one by one. The
assignment is expressed by a user and can be completely different for each user.

We created a very simple index structure Dis-index depicted in Figure 3. In
Dis-index each domain value is stored in memory together with the corresponding
pointer to the first page on the disk with objects’ identifiers having appropriate
domain value. Every inner page on the disk stores also the pointer to the next
page holding identifiers with the same attribute value. Dis-index stores much more
objects per page than B+tree, i.e. needs less accesses to the disk. We focus especially
on small attribute domains where the fuzzyfication made by a user is easy to specify.
The main problem of Dis-tree over bigger domains is many ties. If the cardinality
of an active domain of the nominal attribute is big, the B+tree is better choice.

The simulation of the sorted access over Dis-index is straightforward. If there
is a fuzzyfication f of the actual attribute domain, the domain values are sorted ac-
cording to f in memory. First the identifiers of the value with the best fuzzyfication
value are returned. If all objects under the best value are returned we follow the
pages under the next best value etc.

Fig. 3. Dis-index

Example 5. Consider the situation in Figure 3 with fuzzyfication

{〈”mediator”, 0.6〉, 〈”private person”, 1.0〉, 〈”corporate entity”, 0.2〉,

〈”estateagency”, 0.9〉}

Together with the sorted access calls, first the values under “private person” are
returned, i.e. records 〈o1, 1.0〉, 〈o11, 1.0〉, followed by “real estates” objects: 〈o3, 0.9〉,
. . . , 〈o17, 0.9〉, “mediator” objects and finally the objects under “corporate entity”.
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The correctness of the sorted access over Dis-index is evident. The big number
of stored identifiers per page makes the Dis-index an effective variant to the B+ tree
for small attribute domains, especially for nominal attributes.

4.3 Metric Attributes: M-Tree

Metric attributes are common in many areas. A typical metric attribute in multime-
dia databases is color. The color distance between two objects is typically expressed
by cosine distance between two color histograms. In our real estates scenario, user
usually counts with the locations of flats when evaluating the overall ranking of the
flats. An advantage of the M-tree [6] (e.g. in contrast to R-tree) is that it allows
arbitrary metrics. For example the metrics as the traveling time between any two
objects in rush hours can be defined e.g. between flat and the city center.

A standard query over metric attribute is k-nearest neighbor (kNN) query [6].
We want to go further and simulate the sorted access stream over the fuzzy predi-
cate suitableDistance(O,X), where O is user specified anchor point and X is an
arbitrary point from the attribute domain. Using such fuzzy predicate, for example
the preference to the flats from 5 to 20 km from the Bratislava city center can be
expressed, which is typically the quiet zone far from the noisy center but not far to
travel to.

The structure of M-tree is based on hierarchical organization of data objects
according to a given metric d. The indexed data objects are recursively clustered
in hyper-spherical metric regions associated with M-tree nodes. The inner nodes
contain routing entries describing the metric regions, while the ground entries (stored
in leaves) represent the indexed data objects. A routing entry, stored in an inner
node, is denoted as:

rout(O) = [O, ptr(T (O)), rO, d(O, Par(O))]

where O is a routing object (a local pivot), ptr(T (O)) is a pointer to the subtree
T (O) of rout(O) (called covering subtree), rO is a covering radius and d(O, Par(O))
is a precomputed distance, where Par(O) is the parent routing object. Unlike the
inner entities, the ground entries lack the pointer to a subtree as well as the covering
radius. The ground entry over indexed object O will be denoted as grnd(O). In
situations where the type of node entry is not important, the routing entry rout(O)
or ground entry grnd(O) will be denoted simply as entry(O).

By defining the SortedStreamMTree algorithm for M-tree the sorted access over
arbitrary anchor object and arbitrary scoring function can be simulated. Note that
here is no need to search the local maxima.

SortedStreamMTree:
Input: anchor object Q , scoring function f (as a black box)

M-tree M using metric d
Output: The next best object with its score value in the sorted

output stream
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Initialization:
L = ∅;
Load the root node of M
For each entry(X) in root compute (for ground entries rX = 0):

dmin(X) = max{0, d(Q,X) − rX}, dmax(X) = d(Q,X) + rX,
fmin(X) = min f(z) : z〈dmin(X), dmax(X)〉
fmax(X) = max f(z) : z〈dmin(X), dmax(X)〉
Input [entry(X), fmax(X), fmin(X)] into list L.

Triples in L are ordered by fmax in descending order. Triples with

equal fmax value are secondary ordered by fmin also in descending

order. Triples in L can hold routing entries as well as ground

entries. Ground entries (points) are always ordered in front of the

routed entries with the same fmax value.

Function getNext():
Do {

Remove the first triple [entry(X), fmax(X), fmin(X)] from L.
If X is a ground entry, return 〈X, fmax(X)〉 and exit;

Load child node of rout(X) using ptr (T (X)).
For each entry(Y) in node T (X) do

Compute fmin(Y) and fmax(Y)
Put [entry(Y), fmax(Y), fmin(Y)] into the proper position in L

} While L 6= ∅ ;

Return ‘‘no more objects’’;

Fig. 4. Fuzzy function over metric attribute in M-tree

Example 6. To illustrate the simulation of sorted access stream over M-tree, con-
sider the situation in Figure 4. In this example there are 11 objects (A–K) stored
in an M-tree. The fuzzy function specifies the anchor object Q and the fuzzy func-
tion f with the maximum value in the gray zone and the zero value for the objects
behind the dashed line. In the phase of initialization the values dmin(A), dmax(A)
and dmin(B), dmax(B) are computed for root entries, i.e. the minimum and the ma-
ximum possible distance of the points in appropriate covering radius. By analysis
of fuzzy values in intervals 〈dmin(A), dmax(A)〉 and 〈dmin(B), dmax(B)〉 the range of
possible fuzzy values in both covering areas is obtained. Finally the sorted list L =
([rout(A), 1.0, 0.0], [rout(B), 1.0, 0.0]) is created. The first getNext() call works as
follows. First, the triple [rout(A), 0.0, 1.0] is removed from L and the procedure
goes to the left child of the root node. Processing the node the new list L with va-
lues like ([rout(B), 1.0, 0.0], [rout2(A), 0.9, 0.0], [rout2(C), 0.0, 0.0]) is obtained where
rout2 means the routing entry from the second level of the M-tree. After next cy-
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cle the list L looks like ([rout2(B), 1.0, 0.2], [rout2(E), 1.0, 0.1], [rout2(A), 0.9, 0.0],
[rout2(D), 0.8, 0.0], [rout2(C), 0.0, 0.0]). The last complete cycle in this getNext()
call will produce the list L with triples like ([grnd(B), 1.0, 1.0], [rout2(E), 1.0, 0.1],
[rout2(A), 0.9, 0.0], [grnd(H), 0.8, 0.8], [rout2(D), 0.8, 0.0], [grnd(I), 0.7, 0.7],
[rout2 (C), 0.0, 0.0]). Finally [grnd(B), 1.0, 1.0] is removed from L and 〈B, 1.0〉 as
a result of the first call of getNext() is returned.

The correctness of our sorted stream algorithm over M-tree is guaranteed by
the character of the list L. A triple with the ground entry at the first position
of the list can be found only if there are no routing entries with possibly better
objects in the covering area. Counting with the fmin values higher preference to the
routing entries can be set with higher probability to find good objects. This feature
is interesting when a fuzzy function has intervals of the same score value. Ordering
of the ground entries in front of the routed entries with the same fmax value inhibits
the unnecessary node accesses when fmax value equals the fmin value.

Similar simulation algorithm can be generated to search over R-tree or other
spatial structures.

4.4 Hierarchical Attributes: Hierar-Index

Hierarchical attributes are typical for ontologies, where objects have properties with
values arranged into a hierarchy of classes or instances. It can be a classification
of concepts, whole-part relationships, or any other tree structure of objects. Differ-
ent ontology properties can be used to relate distinct nodes in a tree; typical are
rdfs:subClassOf and rdf:type.

The main problem we found about the hierarchical attributes is that users are
not able to rate every node in the hierarchy tree. Hierarchies can easily have hun-
dreds of nodes. Users are covenient, and rating of 1-5 nodes in the hierarchy is
a standard amount. Sorted access to objects with attribute values in a hierarchy
corresponds to a linear ordering of the hierarchy tree. Some heuristics to make user
rating with the linear ordering will be discussed.

Example 7. Imagine the attribute job position in the domain of job offers and
a user who wants to find a job in IT most likely as a Linux administrator or a Java
programmer. So he rates the Linux administrator and the Java programmer with
high ratings. But what if there are other IT positions like C++ programmer or
Solaris administrator with higher salary or closer to his home? We don’t want to
ignore the job positions in the neighborhood of the rated job positions. We prefer
to send them with lower scores in a sorted access stream after the most preferred
job positions.

Example 8. Another typical hierarchical attribute of many application domains
is Location. Location represents a political hierarchy of regions (countries, states,
districts, cities, neighbourhood units). A user looking for a new house in Slovakia



On Supporting Wide Range of Attribute Types for Top-k Search 1015

close to Bratislava can combine the metrical attribute with the specification of prefe-
rence to houses near the anchor point in the center of Bratislava and the hierarchical
attribute of Locations with high preference to Slovakia and negative preference to
Hungary, Austria and Czech Republic which are very close to Bratislava. He can
also specify a low preference to some districts he does not prefer, like Petržalka or
villages near the Slovnaft refinery.

4.4.1 Distance Evaluation in a Hierarchy

In Section 4.4.4 our method of scoring the nodes not rated by a user will be discussed.
In this method unsymmetrical distances between nodes of a hierarchy are used.
To describe the distances only one node rated by a user with value 1.0 (strong
preference) will be considered. The value of the rated node is called the searched
value. The aim of the distances is to order nodes from the nearest to the farthest
according to the similarity with the single searched value. The expected order is
intimated in the following example.

Example 9. Imagine a situation where a user searches for a flat in Bratislava. At-
tributes for flat location refer to the hierarchy of regions where the root is Slovakia
and leaves are villages, towns and city parts. The top-k search should offer flats asso-
ciated with Bratislava node at first and then flats from Bratislava’s districts, i.e. the
subtree of Bratislava’s node. Afterwards it should offer flats from region containing
Bratislava (the direct parent of Bratislava’s node), then from other towns from the
same region (siblings of Bratislava) and then from districts of these towns. If this is
not enough, it should find flats from Slovakia (the grand-parent of Bratislava) and
afterwards from its other sub-regions etc.

The distance evaluation is taken from a method named Criteria Search [17],
which uses hierarchical classifications of objects in order to find the best correspon-
dence to user explicit preferences. The user specifies expected values of (mainly
hierarchical) search criteria and the method evaluates each candidate object accord-
ing to the user preferences.

The unsymmetrical distance from node vs to node vo is defined as the length of
the shortest path between them:

dist(vs, vo) =
∑

e∈spath(vs,vo)

δ(e). (3)

spath(vs, vo) is the set of directed edges laying on the shortest path from vs to
vo. δ(e) is the length of the directed edge e, which is described below.

To find the shortest path between two nodes, their lowest common ancestor
needs to be found and the paths from the first node to the common ancestor and
from the common ancestor to the second node need to be united:

spath(vs, vo) = spathup(vs, vca) ∪ spathdown (vca, vo) (4)
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where vca is the lowest common ancestor of vs and vo. spathup and spathdown are
sets of directed edges of the appropriate paths:

spathup(vs, vca) = {(vc, vp) | vc, vp are values in the path

from vs to vca and vp is a direct parent of vc} (5)

spathdown (vca, vo) = {(vp, vc)|vc, vp are values in the path

from vo to vca and vp is a direct parent of vc}. (6)

We want to preserve the expected order (from Example 9) given by distance from
the node having searched value. In this order wewant to process all descendants of
the preferred node before its parent. Thus the distance from a node to its parent
should be greater than distances to its descendants. Hierarchies have also a property
of increasing similarity of concepts moving from the top of the hierarchy tree to its
leaves. The children of the root are high level concepts whereas siblings in the
lowest level of the hierarchy are specific concepts similar to each other. Thus the
edge distances in the lower part of the tree should be smaller than edge distances
in the higher parts. In the spirit of the above considerations, the edge distance is
dependent on its direction and its depth in the tree. In [17] the distance of the
directed edge e is defined as:

δ(e) = γ(e)εdepth(e) where (7)

γ(e) =











γ+, if the edge e is oriented from a child to a parent, γ+ > 0

γ−, if the edge e is oriented from a parent to a child, γ− > 0.
(8)

depth(e) represents the depth of the edge from the root of the hierarchy and ε
denotes the discount of the edge distance from the top to the bottom of the hierarchy
and should be slightly less than 1. γ+ should be distinctly greater than γ−.

Pázman in [17] choses the values as γ+ = 1.0, γ+ = 0.2 and ε = 0.9. It is
a sufficient condition to make sure that the distances to the descendants of any
node are smaller than to its ancestor.

Theorem 3. For an ancestor node of searched value (SV ), say A, the distance from
SV to any descendant of A (DA) is less than distance from SV to any node not
placed in the subtree of A (NA) if

γ+ >
depthmax−1
∑

i=0

(γ− εi). (9)

Proof. We want to prove that dist(SV, DA) < dist(SV, NA).
From the definition of dist it holds: dist(SV, DA) = dist(SV, A) + dist(A, DA).

Similarly, dist(SV, NA) = dist(SV, A) + dist(A, NA).
So we need to prove: dist(A, DA) < dist(A, NA).
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Let A’s depth in the tree be depthA and DA’s depth be depthDA. DA is a de-
scendant of A, so depthDA > depthA.

The distance between these two nodes can be calculated as:

dist(A, DA) =
∑

i=0..(depthDA−depthA)

γ− ∗ εdepthA+i = εdepthA ∗
∑

i=0..(depthDA−depthA)

γ− ∗ εi.

Because depthDA > depthA and depth of any edge is less than maximal depth
of nodes (depthmax), the following holds:

∑

i=0..(depthDA−depthA)

γ− ∗ εi <=
∑

i=0..(depthmax−1)

γ− ∗ εi

and thus:
dist(A, DA) <= εdepthA ∗

∑

i=0..(depthmax−1)

γ− ∗ εi.

Using statement (9), the following implies:

dist(A, DA) < εdepthA ∗ γ+. (10)

On the other side, path to NA must lead through A’s parent (AP ). So
dist(A, NA) can be restricted as: dist(A, NA) >= dist(A, AP ) and thus:

dist(A, NA) >= γ+ ∗ εdepthA−1.

Because of εdepthA−1 > εdepthA and using statement (10), the following is true:
dist(A, DA) < εdepthA−1 ∗ γ+ and thus: dist(A, DA) < dist(A, NA) which was to
have been demonstrated. 2

The situation is illustrated in Figure 5. The distance of the highlighted path
from Pezinok to Petržalka is 0.9 + 0.18 + 0.162 = 1.242. On the other hand the
distance from Pezinok to Dubový vŕšok is only 0.162.

Fig. 5. The distance calculation for two hierarchy values when γ+ is 1.0, γ− is 0.2 and ε

is 0.9

In the expected order there are the objects from the closest to the farthest. The
given order can be used to simulate the sorted access. From hierarchy in Figure 5
the first objects from Pezinok will be sent, then the objects of the children nodes
of Pezinok and all their descendants. After processing the whole subtree of Pezinok
the objects in Bratislava region are processed, then the siblings of Pezinok and their
children after that. The next processed node will be Slovakia followed by the rest
of the hierarchy.

The scores of the nodes can be computed as 1 − (dist(vs, vo)/ maxdist), where
maxdist represents the distance from the deepest leaf in the hierarchy to its farthest
node and vs is the searched value.
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4.4.2 Hierar-Index

Now the index for the hierarchical attributes will be explained. This index is similar
to the Dis-index (see Section 4.2) – attribute values are organized in a memory
structure and object identifiers are stored on disk. The Hierar-index holds the
information about nodes and domain values in memory and object identifiers on
disk pages. Each node in the hierar-index is represented as

x = [label(x), Par(x), {Ch1(x), . . . , Chc(x)}, offsetx] (11)

where label(x) represents a unique domain value, Par(x) is a pointer to the parent
node, {Ch1(x), , Chc(x)} are pointers to all children nodes of the node x and finally
offsetx represents the position of the first page on disk, where identifiers of the
objects having attribute value label(x) are stored. The node in Figure 6 has the
label “Programmer”.

Fig. 6. Hierar-index node

Hierar-index is updated off-line and no node changes in the time of a query are
done.

4.4.3 Sorted Access Simulation

To support the sorted access over a hierarchical attribute the nodes of the hierarchy
need to be processed according to their scores in descending order. The simulation
presented in this chapter is independent of the method of scoring the nodes that are
not evaluated by a user.

The sorted access simulation algorithm is similar to the algorithm used in the
Dis-index. The simulation procedure returns the rated records according to the
rating of the attribute values as usual.

The sorted access simulation procedure is proposed to be more general to use
various scoring techniques. The top-k algorithm stops reading of the rated records
after it has the top-k objects. Rating of some nodes can be useless when the whole
subtree will be scored with zero or when descendants can be processed after the
processing of their ancestor i.e. they have smaller or equal ratings to their ancestor.

The simulation function getNext() works with the priority queue Q containing
some nodes of the Hierar-index. Priority queue Q is organized according to scores of
the nodes having the node with the highest score on the top of the queue. Priority
queue can be updated with useful objects in line 7 of the getNext() during the
sorted access simulation.

Initialization and update of Q depends on the method of scoring the nodes not
rated by a user. One of the possible methods is proposed in Section 4.4.4.

The update is given by scoring nodes method too. If all nodes have their scores
before the first call of the getNext() function, this line can be skipped.
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Function getNext():
If (currentNode = null) and (Q = ∅) return ‘‘No more objects’’;

If currentNode = null then

Remove node x with the highest score(x) from Q
currentNode := x;

X := getNextObjectFromNode(currentNode);
If X = null then

updateQueue(Q, currentNode);

currentNode := null;

return getNext();

Else return 〈X, score(currentNode)〉;

Function getNextObjectFromNode loads disk pages relevant to the given
node if necessary and returns object identifiers one per call. If a node contains
no objects or all the objects appertaining to the node were returned, the function
returns null.

The procedure updateQueue is correct if it does not add a node that was
already processed or the node with higher score than any of already processed nodes
has. Then the getNext() function processes the nodes in correct order from the
nodes with the highest scores to the nodes with the lowest scores, and the whole
simulation of the sorted access is correct.

4.4.4 Proposal of the Method of Scoring the Nodes Not Rated by User

It is probably impossible to generate a universal system for scoring the not rated
nodes because each hierarchical attribute has its own semantics. Imagine the hie-
rarchy of localities and a user that rated Bratislava as the preferred node. If the
attribute represents the area where he can use the services of a delivery company
then the company delivering in Nitra should be rated with zero. On the other hand
if the attribute is a job location then Nitra can be interesting and needs to be rated
higher.

The object associated with the inner node can usually have two different seman-
tics.

Firstly it can be an uncertain information, i.e. the real (unknown) value of the
object attribute is somewhere in the subtree. For example it could be known that
a hotel is placed in High Tatras but the exact place is not known.

Secondly the object can fulfil the properties of the whole subtree, e.g. the com-
pany delivering the packages in Bratislava can deliver a package to any part of
Bratislava.

We focus on the first semantic.
In Section 4.4.1 the unsymmetrical distance is used in a scoring method allowing

the rating in interval [0, 1] of more than one node.
The scoring of the nodes has two phases. First an initial priority queue is created
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and then Q is updated when the sorted access simulation algorithm getNext() calls
the procedure updateQueue. The input for these scoring methods is a nonempty
user fuzzyfication f of some nodes.

Initialization:
For each node x set:

score(x) := null;

countx := 0;
sumx := 0;

For each fuzzy pair 〈x, f(x)〉 set score(x) := f(x);
For each node x in domain of f do

If all ancestors y of x has f(y) = null then

For all ancestors y of x
county++;

sumy += f(x) ·
(

1 − dist(x,y)
maxdist

)

;

For each node y having county > 0 do

score(y) := sumy/county

Add all nodes having score(x)! = null to Q

updateQueue(Q, x)
For all children y of x having score(y) = null do

score(y) := f(x) ·
(

1 − dist(x,y)
maxdist

)

;

Add y to priority queue Q

These two methods can be used in simulation procedure getNext(). The intu-
ition behind this procedure is to propagate fuzzyfied values through the hierarchy
in accordance with distances. A fuzzyfied node influences a node without explicit
preference according to its proximity (inverse to distance) to the other node. Any
node is scored using its direct fuzzyfied ancestor if it exists, otherwise it is evaluated
according to its fuzzyfied descendants.

Fig. 7. User preferences calculation with three nodes rated by user (numbers in squares).
Numbers on the sides display distance of directed edges in the tree in the tree’s various
levels. Inferior index represents the round of updateQueue in which the value was
computed.

Example 10. Figure 7 shows the more complicated situation where a user ranked
three nodes with different values. The maximal distance value equals to 3.252 and
is computed as a distance from nodes labeled “Centrum” or “Vajnory” to nodes
labeled “Košice” or “Prešov”. Note that this number can be computed in the time
of indexing.

In the initialization only the score of the root node is computed. The value
obtained from the node labeled “Košice reg.” is 1.0 ∗ (1 − (1/3.252)) = 0.69, and
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the value from node labeled “Bratislava reg.” is 0, 7 ∗ (1 − (1/3.252)) = 0.49. The
score of the root is computed as (0.69 + 0.49)/2 = 0.59. The priority queue after
initialization is (in this example a simplified version is used, real priority queue
contains whole nodes):

Q0 = 〈(Košice reg., 1.0), (Bratislava reg., 0.7), (Slovakia, 0.59), (Centrum, 0)〉.

The first call of the getNext() function removes the node “Košice reg.” from
the priority queue and starts to process the objects having attribute value “Košice
reg.” from disk and returns the first object from disk in rated record having rated
value 1.0. When all objects from the disk related to “Košice reg.” are processed,
the simulation calls the procedure updateQueue. Here the node labeled “Košice”
is scored by value 1.0 ∗ (1 − (0.18/3.252)) = 0.94 and added to priority queue:

Q1 = 〈(Košice, 0.94), (Bratislava reg., 0, 7), (Slovakia, 0.59), (Centrum, 0)〉.

Now the sorted access simulation removes “Košice” from the priority queue and
processes its objects. Next call of updateQueue does not add any node to priority
queue and the “Bratislava reg.” is processed. With the next call of updateQueue
two nodes are added to priority queue:

Q2 = 〈(Pezinok, 0.66), (Bratislava, 0.66), (Slovakia, 0.59), (Centrum, 0)〉.

The other updates of the priority queue are intimated by inferior indexes of the
scores in Figure 7.

This generalized version of scoring nodes induces the same ordering as the ap-
proach of [17] when user ranks only one node. The computed scores slightly differ
because Pázman’s approach computes the score based strictly on the distance from
the searched value and our generalized approach computes the scores of nodes that
don’t have a fuzzyfied ancestor based on the score of its parent and the distance
from the parent. This comparison was verified in a small experiment in the NAZOU
project [16].

There can be several other methods to score the nodes not rated by a user. The
rating depends on the semantic of the hierarchical attribute. One of the easiest
methods is to score all nodes in the subtree of fuzzyfied node with the same value as
the fuzzyfied node and set score to zero for all nodes without a fuzzyfied ancestor.

5 EXPERIMENTS

This section reports the experiments on our system supporting multiple users over
both real-world and artificial data.

The experiments are conducted on a PC having Intel Pentium M 2 GHz CPU
and 512 MB RAM running on Windows XP. Lists of B+ trees 4 kB have per page
which yields 338 objects per node. Internal nodes of B+ trees are stored in memory.
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Nodes of Dis-index and Hierar-index have 4 kB size holding 1 021 objects per node.
Nodes of M-trees have size 1kB with 35 entries per node.

5.1 Tests of Sorted Access Simulation Algorithms

In this experiment all the above-mentioned sorted access simulation algorithms are
compared with table scan, i.e. with processing of preordered sorted list. Four differ-
ent indexes were generated: B+tree, Dis-index, M-tree and Hierar-index, containing
100 000 randomly distributed objects.

Domain of attribute in B+tree is interval [0, 1]. 5 fuzzy functions in sorted access
simulation over B+tree were tested. Fuzzy functions are partially linear functions
between points 〈0, 0〉, local maximum and 〈1, 0〉 with local maxima at 0, 0.25, 0.5,
0.75 and 1.

Dis-index was tested using 10 randomly generated fuzzyfications.

M-tree contains points of Euclidean two-dimensional space randomly generated
in square [0, 2 000]×[0, 2 000]with anchor point [1 000, 1 000]. Fuzzy functions similar
to those used in simulation over B+tree were tested, but they were transformed to
interval [0, 1 415].

In Hierar-index, a full 3-ary tree of height 5 with 121 nodes was created. Objects
were randomly distributed over all nodes. In the simulation 10 different fuzzyfica-
tions were used. In each fuzzyfication 5 random nodes with random fuzzy score were
chosen. The input constants used by distance function: γ+ is 1.0, γ− is 0.2 and ε
is 0.9.

Fig. 8. The time needed to retrieve different number of scored objects from different storage
types

The time needed to retrieve different number of objects with their score in sorted
stream was measured. The average times are presented in Figure 8. Simulations
over M-tree and Hierar-index are faster than table scan because there are only
object identifiers on disk, thus standard tables scan needs more I/Os. B+tree is
slower mainly because of partially filled pages on disk. The slowest is the simulation
algorithm over M-tree. The main reasons are more space needed to represent the
object and smaller page size (we have used smaller page size because the circles with
less points have smaller intersections).

5.2 Tests of Top-k Search Algorithms

In all experiments 4 different algorithms were compared: Threshold algorithm (TA)
and NRA algorithms from [7], instance optimal version of 3P-NRA and finally the
algorithm 3P-NRA, labeled as 3P-NRA2, with the heuristic H choosing to go to
Phase3 of the algorithm every 1 000th loop of Phase2.
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5.2.1 Real-World Data

Our real-world dataset contains 18 817 flats and houses obtained by wrapping the ad-
vertisement estate system www.byt.sk in Slovakia. We have identified 8 attributes –
price, rooms , floor , size, status , age , seller and place, where status and seller are
considered to be nominal attributes and place is a hierarchical attribute. All other
attributes are continuous. To work also with a metric attribute, over 150 different
real GPS coordinates were manually assigned to all places and new attribute named
coordinates was added. As a metric the standard arc distance on the sphere was
used. In all following queries only the “ORDER BY” part is presented.

Query Q1: 3∗fp(price)+2∗fr(rooms)+ff (floor)+2∗fsi(size)+2∗fst(status)+
fa(age) + fse(sellerType) + 3 ∗ fpl(place) + 2 ∗ fc(lat , long); fp and fa are linearly
decreasing fuzzy predicates, fr and fsi are linearly ascending fuzzy predicates, ff is
a partially linear function between points 〈0, 0〉, 〈1, 0.5〉, 〈2, 1〉, 〈6, 0.4〉, 〈11, 0.4〉 and
〈12, 0〉 (12 is the highest floor in dataset), fst is a fuzzyfication {〈”initial status”, 0〉,
〈”partial reconstruction”, 0.3〉, 〈”complete reconstruction”, 0.6〉, 〈”new”, 1〉}, fse is
a fuzzyfication {〈”mediator”, 0.1〉, 〈”private person”, 0.5〉, 〈”corporate entity”, 0.7〉,
〈”estate agency”, 1.0〉}, fpl is a fuzzyfication {〈”Bratislava”, 1〉, 〈”Petržalka”, 0〉}
(Petržalka is a part of Bratislava in which our user does not want to buy a flat)
and finally fc is a linearly decreasing fuzzy function up to 100 km from anchor point
at 48◦9′N and 17◦8′E situated in Bratislava city center (flats behind 100 km are inad-
missible). Note that using the combination of hierarchical and metric attribute the
algorithm can be forced to search the flats and houses 100 km from Bratislava placed
only in Slovakia using appropriate fuzzyfication of hierarchical attribute (100 km
from Bratislava there are also Hungary, Austria and Czech Republic). Data in our
dataset contain flats and houses in Slovakia only and therefore flats in Petržalka
were supressed instead.

Query Q2: fs(size) ∗ maxsize ∗
1

maxprice ∗(1−fp(price))
∗ fr(rooms), where:

fs(size) =
size

maxsize

,

fp(price) = 1 −
price

maxprice

and

fr(rooms) =
{

1 if rooms ∈ {3, 4}
0 otherwise.

This query is a simulation of the not monotonic scoring function price

size
: P = 3 or

rooms = 4 used in [23].
Query Q3:

IF (fp(price) ≥ 0.95 and fsi(size) ≥ 1.0 and fr(rooms) ≥ 0.9 and ff (floor) ≥ 1.0)
OR (fp(price) ≥ 0.95 and fsi(size) ≥ 0.9 and fr(rooms) ≥ 0.95 and ff (floor) ≥ 1.0)
THAN grade ≥ 1;
IF (fp(price) ≥ 0.9 and fsi(size) ≥ 0.8 and ff (floor) ≥ 1.0) THAN grade ≥ 0.6;
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IF (fp(price) ≥ 1.0 and ff (floor) ≥ 1.0) THAN grade ≥ 0.4;
The fuzzy functions in Query 3 are identical to the fuzzy functions in Query 1.
Query 3 simulates IGAP learned form of monotone combination function [11].

5.2.2 Artificial Data

Our artificial data consist of is 3 different datasets. Each dataset consists of 5 at-
tributes (x1, . . . , x5). Each attribute has 10 000 values in the range of [0, 1]. Dataset 1
and Dataset 2 were randomly generated with exponential and Gaussian distribu-
tions, respectively. Exponential distribution has mean 0 and standard deviation 0.1.
Gaussian distribution has mean 0.5 and standard deviation 0.1. Dataset 3 has at-
tribute x1 from Dataset 1, x2 from Dataset 2. Attribute x3 is a full 3-ary hierarchy
tree of height 5 (i.e. has 121 nodes) with randomly assigned objects to the tree
nodes. Attribute x4 represents the nominal attribute and was randomly generated
with uniform distribution to 5 crisp values. Attribute x5 is a representative of met-
ric attribute containing 10 000 points of Euclidean two-dimensional space randomly
generated in square [0, 2 000]× [0, 2 000].

Queries: In our experiments we focus on testing of many different users with
various preferences. In each ordinal and metric attribute different users preferring
either value near 0 or 0.5 or 1 represented by fuzzy functions f0, f0.5 and f1, respec-
tively were simulated:

f0(x) =







−x + 1, x < 0.8

0, x ≥ 0.8,

f0.5(x) =











|x − 0.5|, x ∈ (0.1, 0.9)

0, otherwise,

f1(x) =







x, x > 0.2

0, x ≤ 0.2.

Values 0 represent strict restrictions. Note that for metric attribute these fuzzy
functions from domain of [0, 1] to [0, 1 415] were transformed with the anchor point
[1 000, 1 000] to cover the distance to all data points. Nominal and hierarchical
attributes have 3 different fuzzyfications. In each fuzzyfication one random domain
value has the score 1.0, two random domain values have the score 0.5 and two
random domain values have the value 0.0. Thus, in nominal attribute all domain
values are covered and in the hierarchical attribute the score of other domain values
needs to be computed by distance driven traverse in the hierarchy tree.

Using all possible combinations over 5 attributes there are 35 = 243 settings of
local preferences for different users. For each setting a single scoring function is used:
fa(x1)+2∗fb(x2)+4∗fc(x3)+8∗fd(x4)+12∗fe(x5) if min{fa(x1), fb(x2), fc(x3), fd(x4),
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fe(x5)} > 0; where a, b, c, d, e ∈ {0, 0.5, 1}, otherwise the value of scoring function
equals 0.

On each dataset 243 users with 1, 5, 10 and 20 retrieved objects were simulated
to yield the total of 729 queries over 3 synthetic datasets.

Fig. 9. Average time of top-k search over artificial data

Fig. 10. Improvement of average number of page accesses in contrast to TA (more is better)

Fig. 11. Time of top-k search with queries over real world data

5.2.3 Results

Figure 9 shows the time needed to find top-k results for queries Q1, Q2 and Q3 over
our real world data. It is shown that the combination of local preferences expressed
by fuzzy functions is an effective way to search top-k objects for heterogeneous
queries. Observe that for all queries, our algorithms work near best search times.
Especially in the most complex query Q1 the algorithm 3P-NRA2 outperforms other
algorithms by more than two orders of magnitude. TA outperforms other algorithms
for Q2 because of several fake offers like flats for free or flats having size of a small
country that are identified by TA in few steps.

In Figure 10 the average time of searching over our 3 datasets is measured.
Again, it can be seen that using the 3P-NRA2 algorithm the time needed to retrieve
the final top-k results can decrease drastically. Tests show more than 5 orders of
magnitude speedup. It is caused by both dropping useless sources in Phase2 and
mainly the Phase3 skipping caused heuristic H (it saves a lot of CPU time).

Figure 11 shows the results of tests with the number of disk accesses. Graphs
show the improvement of disk accesses in contrast to Threshold algorithm. Note
that OPT* algorithm [23] was formally added as a representative of multidimen-
sional approach. The comparison from [23] showing the improvement of OPT* al-
gorithm against the TA (the implementation of OPT* algorithm or data used in [23]
is not accessible) is used. The authors observe about 3 times less disk accesses than
TA when searching the best object. Another approach in [22] is also hard to repli-
cate because of unclear analysis of ranking function. Moreover, the authors didn’t
compare their approach to TAs.

Observe that all NRA, 3P-NRA and 3P-NRA2 requires up to 110 times less disk
accesses than TA. Finally, it can be seen that the instance optimality of 3P-NRA

according to Theorem 2 guarantees the best number of disk accesses.
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6 CONCLUSIONS

In this paper a method supporting top-k answers for multiple users is presented. It
proposes a new combination of back end data maintenance system and a middle-
ware top-k optimization heuristics. Back end system consists of various indices for
ordinal, nominal, metric and hierarchical attributes. The efficient variants of the
NRA algorithm were proposed and querying with optimal cost was enabled. The
combination of fuzzy predicates and a monotone combination function can be used
to express many types of not monotone functions. Efficiency of sorted accesses for
different fuzzy predicates is assured by effective index traversal.

Instead of analyzing the ranking function of m variables, an extension of TAs [7]
was offered to be able to cover not monotone queries generated by our preference
model.

Efficiency and high expressivity of queries using both real life and artificial data
different users and datasets were demonstrated. The experimental results show up
to 5 orders of magnitude speedup and significant disk access saving.

The our implementation is integrated also in bigger project NAZOU – Tools

for acquisition, organization and maintenance of knowledge in an environment of

heterogeneous information resources (see http://nazou.fiit.stuba.sk). In NA-

ZOU there is a scale of tools concerning to find relevant job offers for the user and
besides searching of suitable job offers to users also crawling, wrapping, annotating
and data mining are considered.
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