
Computing and Informatics, Vol. 28, 2009, 277–298

MULTI-AGENT ENVIRONMENT FOR MODELLING
AND SOLVING DYNAMIC TRANSPORT PROBLEMS

Jaros law Koźlak

Department of Computer Science, AGH University of Science and Technology

al. Mickiewicza 30, Kraków, Poland

e-mail: kozlak@agh.edu.pl

Jean-Charles Créput, Vincent Hilaire, Abderrafiaa Koukam

Systems and Transport Laboratory

University of Technology of Belfort-Montbeliard

Belfort, France

e-mail: {Jean-Charles.Creput, Vincent.Hilaire, Abder.Koukam}@utbm.fr

Manuscript received 4 August 2005; revised 21 December 2007

Communicated by Baltazár Frankovič

Abstract. The transport requirements in modern society are becoming more and
more important. Thus, offered transport services need to be more and more ad-
vanced and better designed to meet users demands. Important cost factors of many
goods are transport costs. Therefore, a reduction of costs, a better adjustment
of strategies to the demand as well as a better planning and scheduling of avail-
able resources are important for the transport companies. This paper is aimed at
modelling and simulation of transport systems, involving a dynamic Pickup and De-
livery problem with Time Windows and capacity constraints (PDPTW). PDPTW
is defined by a set of transport requests which should be performed while mini-
mising costs expressed by the number of vehicles, total distance and total travel
time. Each request is described by two locations: pickup and delivery, periods of
time when the operations of pickup or delivery can be performed and a load to
be transported. The nature of this problem, its distribution and the possibility of

using a lot of autonomous planning modules, lead us to use a multi-agent approach.
Our approach allows the modeling of entities which do not appear in the classical
PDPTW such as company organisation, communication among vehicles, interac-
tions between vehicles and company dispatcher or different strategies of requests

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics, SAS, Bratislava)

https://core.ac.uk/display/267940988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

278 J. Koźlak, J.-Ch. Créput, V. Hilaire, A. Koukam

acceptation by different vehicles. This paper presents also a software environment

and experimentations to validate the proposed approach.

Keywords: Multi-agent simulation, transport planning and scheduling, dynamic
pickup and delivery problem with time windows

Mathematics Subject Classification 2000: 68T20, 68U20

1 INTRODUCTION

The transport requirements in modern society are becoming more and more im-
portant. The transport services need to be more and more advanced and better
designed to meet the needs of users. A significant part of costs of many goods are
transport costs. The size of the market of transport services as well as the sales vo-
lume and derived profits intensify competition. Therefore, a reduction of costs and
better adaptation of strategies to the demand require better planning and schedul-
ing tools for available resources of transport companies. Computer systems can be
a useful tool for transport companies. They may support a rapid creation of effective
transport plans and schedules or enable simulation research leading to the correct
selection of company organization, vehicles and capacities or locations of depots.

This paper is aimed at modeling and simulation of transport system, involving
a dynamic Pickup and Delivery problem with Time Windows and capacity con-
straints (PDPTW). The nature of this problem, its distribution and the possibility
of using a lot of autonomous planning modules, lead us to use a multi-agent ap-
proach. A multi-agent approach allows to consider aspects which do not appear in
classical PDPTW, such as a company organisation, different strategies of requests
acceptation by different vehicles or communication among vehicles.

The dynamic PDPTW can be seen as an extension of the standard and static
PDPTW. PDPTW is defined as follows: there is a set of transport requests, which
should be performed by a fleet of vehicles at the lowest possible cost expressed by
the number of vehicles, total travel distance and total travel time. Each request
is described by two locations: pickup and delivery, and two time windows, the
time window for the pickup operation and the one for the delivery operation. Both
the request pickup and delivery places should be visited by the same vehicle in
the proper order. The time window is a period of time, when the service may be
started. The time window is described by the start time and due time. A vehicle
has to arrive at some location before the due time, and must wait if it arrives before
the start time, then it performs its services. Each request has a load and each
vehicle has a maximum capacity which cannot be exceeded by the total load of
goods transported. In the dynamic PDPTW, the difference with the static case is
that the request input set now vary dynamically and that the optimisation process
has to take place in real-time as new input requests arrive.

Multi-Agent Environment for Modelling and Solving Dynamic Transport Problems 279

The static PDPTW has several practical applications. For example, a version
of the problem called Dial-a-Ride problem [10] has applications to the transport
of elderly and handicapped people. PDPTW is adequate for minibus companies
planning, sealift and airlift, discharge of pesticide, school bus routing and scheduling
or shared taxis. Optimisation approaches based on the use of meta-heuristics already
exist and have been applied to standard set of benchmarks [24]. But an important
feature of a real problem is its dynamic. A lot of transportation applications need
to take into account uncertainty of user demands and transport conditions, such
as traffic jams or car crashes. In the dynamic case, the problem now becomes
considerably harder [3] and needs to consider benchmarking problems with various
dynamics [2].

The nature of the problem, which involves distributed entities as vehicles in com-
munication with the company controllers dealing with environment uncertainty and
random demands, leads us to use a multi-agent approach. We developed a multi-
agent system following the RIO (Roles, Interactions, Organisation) [21] method-
ology, which allows us to specify the system at the level of role, interaction and
organisation, and by using the Contract Net Protocol [33] as an interaction schema.
The aim is to exploit the physical distribution among vehicles and a central company
in order to distribute computations and solve collectively the optimisation problem.
We think that another advantage of the proposed approach is its flexibility, that is
its capacity to be easily extended. Furthermore, in contrast to other works on dy-
namic PDPTW, which model vehicles movng into the Euclidean plan, we represent
the transport network as a graph to better reflect the structure of the interconnected
streets in a city.

The structure of the paper is as follows: Section 2 contains a research overview.
We put the emphasis on heuristic principles to solve the PDPTW and related prob-
lems, their architectures and description of multi-agent systems for transport plan-
ning and scheduling. In Section 3, main features and advantages of our approach
are given and a model of the system is described. Section 4 presents a description
of the system architecture and implementation, while Section 5 presents goals and
configurations of the performed experiments as well as obtained results. Section 6
concludes and presents plans of future works.

2 RESEARCH OVERVIEW

2.1 Heuristic Method of Plan and Schedule Construction

The PDPTW can be seen as an extension of the Vehicle Routing Problem with Time
Windows (VRPTW) which concerns only collections of either pick-ups or deliver-
ies, assuming requests with a single location. Thus, generalizing heuristic principles
from VRPTW is a natural way to build new solutions to the PDPTW. In contrast
to static vehicle routing problems, that have been well known problems since the
seventies [12], fewer works focus on the dynamic aspects of PDPTW. Usually, the
algorithms are similar to the ones used for static problems, and it is often assumed

280 J. Koźlak, J.-Ch. Créput, V. Hilaire, A. Koukam

that the incoming of new requests interrupts the optimization process which is then
restarted with a new set of requests. An overview of exact and heuristic methods
of pickup and delivery problem solving can be found in [10, 13, 27]. Vehicle routing
heuristics generally consists of two phases: a construction phase generates an ini-
tial schedule and an improvement phase ameliorates the constructed solution. An
overview of route construction algorithms may be found in [7, 34, 23, 24, 25, 28].
Improvements in route schedules are generally performed using metaheuristics like
evolutionary algorithms [4, 5, 11], tabu search [23, 24, 28], simulated annealing [24],
squeaky wheel optimisation [25], or ant-colony systems [18]. One difficulty in the
dynamic PDPTW case is the lack of benchmarking testbeds recognized for eval-
uation. In [22] the author proposes to classify them according to their degree of
dynamism. In [26] and [19], the authors describe a method for determining times of
requests generation on the basis of Poisson distributions. Here, we will use a similar
request generator, but adapted to our transport model based on graphs rather than
on Euclidean space.

2.2 Multi-Agent Systems

The multi-agent approach concerns the development of systems consisting of many
autonomous entities which are able to create plans and choose actions to reach
their goals [14]. Because of different locations of vehicles, the transport planning
and scheduling problem may be considered as a typical example of a problem with
a distributed domain, which are very suitable for a multi-agent methodology. The
multi-agent approach allows autonomous, goal-driven agents, which represent com-
pany or vehicles, to be taken into consideration. Each agent-vehicle manages its
route. An agent estimates a request taking into consideration its feasibility, the
payment it obtains and the expenses. Thus, in multi-agent approaches, the natural
distribution between physical entities (vehicles and company) is exploited in order
to achieve distributed computations and optimization.

In the literature, the multi-agent approach to transport problems focuses mostly
on complex cargo shipping problems, sometimes taking into consideration trans-
shipments and transport multi-modality as the MARS (Modeling Autonomous Co-
opeRating Shipping Companies) platform [17] or TeleTruck system [8]. TeleTruck
is an extended implementation of the MARS system. While agents of MARS repre-
sent homogenous trucks, the TeleTruck approach models the basic physical objects
(drivers, trucks, trailers, containers) by basic agents which join together and form
holonic agents that act in a corporated way. Some multi-agent systems are specifi-
cally targeted for vehicle routing problems [1] and very few on transport-on-demand
problems [20]. In the above multi-agent approaches two mechanisms are identi-
fied to deal with route optimisation. Route construction is generally performed by
instantiating a Contract Net Protocol [33] between agents, whereas route improve-
ment is achieved by the simulated trading procedure [1]. However, few benchmark
results exist for staric VRP, VRPTW or PDPTW and no benchmarks are given for

Multi-Agent Environment for Modelling and Solving Dynamic Transport Problems 281

the dynamic case problem. Here, we will instantiate negotiation protocols based
on similar structure and dynamic benchmark.

Apart from the approaches based on Contract Net protocol and simulated trad-
ing, there are also solutions used which take advantage of the algorithms solving
the DCSP (Distributed Constraints Satisfaction Problem) which has been widely
researched in the domain of the multi-agent research problem [29]. Among recent
results related to the application of multi-agent approaches in solving transport prob-
lems, it is worth mentioning the AS/ATN (Living Systems Adaptive Transportation
Networks) system [30]. According to its authors, this system was applied in practice
by several big international shipping companies to construct their transport sche-
dules, making the application of this system probably the largest commercial use of
agent technologies in the world.

3 SYSTEM MODEL

3.1 Specification of System Organization

Our goal is to create a system which makes the simulation of transport company
possible. Transport requests performed by a company should suit dynamic PDPTW
with capacity constraints. A model of a multi-agent system for transport planning
is composed of the following main entities:

• environment: it is a transport network, a graph describing road connections,

• agents: customer agent responsible for the generation of transport requests,
agent-company, representing a transport company, and agent-vehicles, repre-
senting single vehicles like mini-buses.

Figure 1 shows agent population within its environment. Each agent-vehicle
has a representation of the transport network and of its successive positions on
roads assuming, that a vehicle uses a geographical information system (GIS) and
geo-localizes itself using satellite positioning as GPS (Global Positioning System)
system. The agents-vehicle communicate with the agent-company or directly one
to each other. The system organization is described using the RIO framework pre-
viously defined in [21]. This framework is based on three interrelated concepts: role,
interaction and organization. Roles are generic behaviours. These behaviours can
interact mutually according to interaction pattern. Such a pattern groups generic
behaviours and their interactions into an organization. Organizations are thus de-
scriptions of coordination structures. In this context, an agent is an active commu-
nicative entity which plays roles [15].

Figure 2 describes the organizations of our system. There are two organiza-
tions, one specifying the Contract Net protocol and one specifying the interactions
between clients and pick-up and delivery service providers. The former organization
is composed of three roles: Manager, Bidder and Contractor. This organization
specifies a Contract Net based negotiation between a Manager which proposes pick-
up and delivery requests, some Bidders which are able to realize these requests and

282 J. Koźlak, J.-Ch. Créput, V. Hilaire, A. Koukam

Customer

Company

Population
 of agents

Transport
network

Vehicle i Vehicle j

Location Location

Request

Request

Answer

Request

Answer

Propose

Answer

Fig. 1. Multi-agent system model: structure and main interactions

among these Bidders a Contractor who eventually realizes this request. The Ma-
nager role is played by the agent-company and the Bidder and Contractor roles
are played by agents-vehicles. The latter organization specifies two roles: Provider

and Client. The Client role represents virtual clients that send a request of pick-up
and delivery to a virtual Provider that accepts these requests and answers with an
offer. The Provider role is played by the agent-company. Agents instantiate orga-
nizations (roles and interactions). They always exhibit behaviours defined by the
organization’s roles. Each time they play one or more roles and they act executing
predefined associated protocols. The different protocols coordinate actions in order
to favour distributed optimization. Conversely, a role may be instantiated by one
or more agents. Furthermore, roles are basic protocol components that are assigned
or deleted in a dynamic way, depending on events received and actions performed.

3.2 System Entities and Their Distribution

Environment. The transport network is represented by a directed graph
TN(N, E), where N is a set of nodes and E is a set of arcs. Nodes represent

Multi-Agent Environment for Modelling and Solving Dynamic Transport Problems 283

*

1 *

1

1

1

Client

Manager

CNET

Provider Client

Request

Contractor

Contractor

Bidder

Company

Fig. 2. System organization

the locations. They may be either a start or destination point of the vehicle
route or a travel intermediate node. With each node of the transport network
Vi ∈ N , a pair (xi, yi), where xi, and yi are coordinates on the map, a numerical
value (wi), describing the probability that this node will appear in the transport
request as pickup or delivery point and a list of requests waiting for pickup from
this node (pli) are associated. Each arc Ei has a time period tpi, which informs
how much time the vehicle needs to traverse it. The time period tpi expresses
also the main travel cost carried out by a vehicle.

The following types of agents exist in the system: agent-customer, agent-vehicle
and agent-company.

Agent-customer. The agent-customer is responsible for the generation of random
events. The methods of events generation is inspired by [19] and then the agent-
customer sends request events to agent-company. The agent-customer ACust

is described by a list of periods of requests generations (prg
i
), each period is

characterized by: coefficient of Poisson distribution describing the frequency of
request generation (γ), probability that time window of pickup starts just after
request arriving (β) and an expected size of time windows (δ).

Agent-company. Agent-company is responsible for request reception from agent-
customer and after it schedules requests to agent-vehicles. Agent-company ACi

is represented as a tuple (g, c, gains, RL), where:

284 J. Koźlak, J.-Ch. Créput, V. Hilaire, A. Koukam

g – incomes;

c – costs;

gains – (gains = incomes-costs);

RL – a list of received requests with information concerning the state of their
realization (received, rejected, scheduled to agent, pickup performed, delivery
performed).

Agent-vehicle. Agent-vehicle represents a vehicle. It moves among nodes in the
transport network and possesses plans of its routes and schedules of requests
realisation. To obtain a request, it sends offers to the agent-company. Agent-
vehicle AVi is defined as a tuple (loci, gi, ci, capi, passi, LRNi, Ri, Oi, LOi), where:

loci – a current location, expressed by a node, a direction and a percentage of
traversed arc;

gi – current incomes;

ci – current costs;

capi – maximal capacity allowed;

passi – current number of passengers;

LRNi – list of request nodes in the schedule;

Ri – list of nodes forming the route;

Oi – list of accepted orders,

LOi – list of embarked orders (after pickup and before delivery).

3.3 System Dynamics

Vehicles communicate, with the company or with other vehicles, following protocols
and defined organization roles. Thus, they are equipped with message communi-
cation modules. Each vehicle has its proper decision module of acceptance and
estimation of request. Vehicles negotiate, knowing only local information about
their own situation. They are able to determine their localization and compute
shortest distances on road network. They memorized their own route or potential
routes. While following their plans, vehicles can open or close a company negotia-
tion, open an optimizing round with other vehicles or do nothing else. Roles are
activated within an event driven framework. A clock generator serves as a based
time to generate random events, which in turn start agent activities.

The originality of our approach, among the others, is based on the application
of multi-agent methodology and specification of agent roles, which makes a presen-
tation of system functions and its future development easier. The main organiza-
tion scheme is the Contract Net Protocol based interactions between agents-vehicles
and agent-company. After reception of a randomly generated transport request, the
agent-company sends this information to its agents-vehicles. Agent-vehicles respond
with their estimation of expenses that they will bear while realizing the request. To
do so they consider the optimum possible insertion points for pickup and delivery. In

Multi-Agent Environment for Modelling and Solving Dynamic Transport Problems 285

our case, evaluation of expenses concerns an extra time to travel, since a reduction
of travel time is the single objective of PDPTW once the number of vehicles is fixed.
If a request realization is impossible for a vehicle, it informs the company about it.
Furthermore, the company makes a selection of the vehicle which will perform the
request and will become a contractor of the allocated request.

There are two other situations, when request allocation takes place. The first
one takes place when a new request arrives, which cannot be served. In this case,
vehicles try to find in their schedules non-served requests which cause the highest
distance increase and then remove them from the schedules to make a realisation of
a new request possible. If such a request is found and there is another vehicle which
may serve it, then the “bed” request is re-scheduled to this other agent and a new
request is inserted in its place. The second situation is when an agent tries to get
rid of a request which highly increases a distance of its route and move it to another
agent. If such an agent is found then the request is moved from the schedule of the
first agent and inserted into the schedule of the second one (Figure 3).

OfferRequesToOtherVehicles(r) {vehicle tries to reschedule request r}
calculateCost(O) {travel cost of the route serving set of requests O}
{Main}
δmax = 0;
for all r in Oi − LOi do

δr = calculateCost(Oi) − calculateCost(Oi − r)
if δr > δmax then

rmax = r; δmax = δr

end if

end for

if δmax > threshold then

OfferRequestToOtherVehicles(rmax)
end if

Fig. 3. Request rescheduling

All these request allocation operations are performed using Contract Net Pro-
tocol scheme, only the roles played by agents change. A manager may be, beside
an agent-company agent, also an agent-vehicle which tries to get rid of the request.
If there is no agent being able to perform the request, it remains not scheduled and
not realized.

When a new request arrives, the decision module tries to generate a now route by
adding (construction) or exchanging (optimisation) the new request to the current
route. While doing so, the quality of the new route is rated. The rating is sent to
the agent-company. If the modification of the route is confirmed, then the current
route is updated. The payment for realization is calculated on the basis of the

286 J. Koźlak, J.-Ch. Créput, V. Hilaire, A. Koukam

shortest path in the graph between the pickup and delivery nodes and the number
of transported persons.

Agent-vehicle performs five basic activities which have influence on its state:
moving (move), request acceptation or rejection (accept), request loading (pickup),
request unloading (delivery) or request rescheduling – as a result of negotiations
performed to optimise a solution by exchanging the request another other vehicle
(reschedule). Assume that there are two state configurations of AVi, one at time t,
before an action is performed, and the second at time t′, when action is finished:

1. AVi(t) = (loci, gi, ci, capi, passi, LRNi, Ri, Oi, LOi)

2. AVi(t
′) = (loc′

i
, g′

i
, c′

i
, cap′

i
, pass′

i
, LRN ′

i
, R′

i
, O′

i
, LO′

i
)

The actions modify the following parameters of agent state:

• move: (loci, ci) → (loc′
i
, c′

i
);

• accept: (LRNi, Ri) → (LRN ′

i
, R′

i
);

• pickup: (passi, LOi) → (pass′
i
, LO′

i
);

• delivery: (gi, passi, LOi) → (g′

i
, pass′

i
, LO′

i
);

• reschedule: (LRNi, Ri) → (LRN ′

i
, R′

i
);

fixed fixedfixed
nego-
ciated

flexible
nego-
ciated

flexible flexible

Request1
.

Pick up

Request2
.

Delivery

Request1

Delivery

Request3
.

Pick up

nego-
ciated

nego-
ciated

Request2
.

Pick up

Request3
.

Delivery

Request2
Pick-up node
Delivery node
Pick-up time

window
Delivery time

window
Capacity

Request 3
Pick-up node
Delivery node
Pick-up time

window
Delivery time

window
Capacity

Request1
Pick-up node
Delivery node
Pick-up time

window
Delivery time

window
Capacity

Scheduled requests

Vehicle path
composed of
request points

Full vehicle path
(list of visiting nodes)

Current vehicle position

Fig. 4. Vehicle schedule representation

Agents-vehicles plan their routes so as to contain all nodes of accepted transport
requests. Each agent-vehicle uses two types of route representation (Figure 4): a list
of request nodes and a list of nodes. The list of request nodes is composed of pickup

Multi-Agent Environment for Modelling and Solving Dynamic Transport Problems 287

and delivery points for each accepted request ordered according to vehicle time of
the visit. Thus, each request is represented in the list by two points. Additionally,
if the vehicle agent currently is not on a node associated with the request, this
current node also belongs to the list of request nodes. If an agent is currently
moving between nodes, the future visited node is taken into consideration. It is
assumed that an agent is not able to change its destination node during moving
between nodes. On the basis of request nodes, the full vehicle route composed of all
traversed nodes is constructed. The point of current vehicle position as well as the
status of the vehicle route points are marked (Figure 4). It is possible to distinguish
points which either have to be visited (fixed), or may be omitted but only if another
vehicle will commit itself to visit it (negotiated) or may be omitted without necessity
of additional agreements (flexible).

4 ARCHITECTURE OF THE SIMULATOR

4.1 Main Software Components

In this section, the architecture of the system is described. It is an event-driven si-
mulation, written in Java and having benefit of MadKit platform [16]. As presented
in Figure 5, the system consists of the Simulation module, GUI module, Configu-

ration module and Statistics module. The simulation module is composed of the
multi-agent system, the clock responsible for the management of simulation time
and the event queue. The UML diagram (in Figure 6) shows the main simula-
tion classes. The GUI module, which manages the main screen shown in Figure 7,
is responsible for interactions with the user, setting the configuration parameters,
controlling visualisation of simulation progress as well as presentation of the results.

The Configuration module provides a functionality to define parameters like the
number of vehicles, their features, initial and final positions, duration of simulation,
parameters describing transport requests, as well as access the configuration file and
a map file describing the transport network structure. The Statistic module gathers
data about a simulation process and builds statistics.

4.2 Dynamics of Implemented Agents

The activities performed by agents are consequences of received events from the
event queue. An agent can perform operations on the event queue. It can create
an event and insert it into the event queue. Agent-creator of an event may remove
this event from the event queue. The other operations are execution of an event or
reaction on effects of event, if the agent is on the list of the event recipients.

Each event is a sub-class of a generic event, which has the following attributes:
type of event (type), the time at which the event is performed (time), agent which
inserts the event into the queue (creator), agent which performs the event (executor),
and agents which are directly influenced by the execution of the event (recipients).

288 J. Koźlak, J.-Ch. Créput, V. Hilaire, A. Koukam

Simulator

Multi-agent system

Dynamic PDPTW system

Computation environment: MadKit & Java

Configuration
module

Clock

Event
queue

Customer

Company

Vehicle

Vehicle

Vehicle
Statistics
module

Graphic User Interface

Fig. 5. System architecture

Based upon the generic event, the several types of events which have additional
specific attributes may be constructed: Start Moving, End Moving, Request Gene-

ration, Request Arrival, Pick-up Start, Pick-up End, Delivery Start, Delivery End,
Scheduling and Check for Messages, Start Moving and End Moving are performed
when an agent-vehicle starts to move between the nodes and when it arrives at
destination node. When the Request Generation is executed, a random Request

Arrival event which attributes are set as described in Section 4.4 and a new Re-

quest Generation event is inserted into the event queue. When a Request Arrival

event is performed, the agent-company obtains a new transport request. Then, it
initiates the scheduling process to allocate the request to an agent-vehicle. Pick-

up Start, Pick-up End, Delivery Start and Delivery End launch or finish the exe-
cution of loading and unloading operations. Invoking Scheduling event an agent-
company asks agents-vehicles if they are able to realize the transport request and
which costs they will bear for its realization. During Check for Messages event
an agent checks if it has received a new message, thus it performs actions in re-
sponse.

4.3 Agents

Relations among various types of agents are presented in Figure 8. Agents are
a specialization of a Generic Agent which offers basic features, like name, access to
the clock, representing time flow during simulation process, handling of event queue

Multi-Agent Environment for Modelling and Solving Dynamic Transport Problems 289

-poissonCoef : float
-probPickNow : float
-expectSizeWind : float

Period

+generatesEvent() : Order
+getlevelSatisfaction() : float

Costumer

+checkOrder() : Boolean
+scheduleTaskToVehicle() : void
+chooseBid() : Bid
+notifyVehicle() : void
+iInformCostumer() : void
+confirmTask() : void

-companyID : unsigned long
+levelOfSatisfaction : float
-selectionFuntction : String

Company

+restingTime() : float

#type : String
#start : Date
#end : Date
#state : Boolean

RequestPoint

+geTTotalCost() : float
+getTotalTime() : float
+getCurrentRElem() : unsigned long
+getNextRElem() : unsigned long
+moveToNextRootElem() : Boolean
+insertAnOrder() : Boolean
+cancelOrder() : boolean
+insertARouteElem() : boolean

-routeID : unsigned long
-currentRootElem : unsigned long

Route

+getWaitingOrders() : void

-xcoord : float
-ycoord : float
-locName : String

Location

+getMYGroupID() : Integer
+getCurrentCost() : float
+getLocation() : Location
+calculateBid() : Bid
+getListOfRequestNodes() : void
+getEmbarkedOrders() : void
+transferTask() : void
+informComapany() : void

-vehicleID : unsigned long
-maxCapacity : int

Vehicle

+getTravelTime() : float
+getRoadCost() : float

-roadID : unsigned long
-travelTime : float
-travelCost : float

Road

+getTraveledTime() : float
+getCurrentLocation() : Location

-departureTime : float
-arrivalTime : float
-load : float

RouteElem

+setCost() : void

-cost : float

Bid

+getAllRoutes() : Object
+modifyRoutes() : void

OptimizationProcess

getPickUpPoint() : RequestPoint
getDeliveryPoint() : RequestPoint
getOrderLoad() : float
setOrderState() : String

orderID : long
orderLoad : float
realizationState : String

Order

0..1

+Sends a request to

*

+Receives request from

-is described by1

-describes*

-is defined by1

-belongs to1..*

-contains1

-belongs to1..*-is for0..1

-posses 0..1

-fulfilled by

*

-dispacthes0..1

-has

1

-is at

0..1

-belongs to

*

-posseses 1

-is planned for

0..*

-has planned0..1

-chosen by

0..1

-chooses

0..1

-processes*

-processed by *
-apply *

-is applied by

*

-belongs to1..*

-contains0..*

-groupID : unsigned long

VehicleGroup

-conatains1

-belongs to1..*

+InsertVehicle() : Boolean
+DeleteVehicle() : Boolean
+GetTheVehicles() : void

-is in0..*

-contains0..1

-maintain1

-is maintained1..*

Fig. 6. Main simulator classes

as well as message sending and receiving modules. The decision module depends on
application refinement.

Agent-company and agent-customer have a simple decision module which simply
contains the automaton responsible for the negotiation protocol. Vehicle-agent is
more complex than other types of agents, especially considering the different sets of
actions which this agent is able to perform. The sub-components of an agent-vehicle
decision module are presented in Figure 10. An agent-vehicle manages its current
route following travel steps, from node to nodem in the transport network. When
a new request arrives, it executes the required protocol. Particularly, it generates
a new route by construction and optimisation heuristics and evaluates the gains of
the new route to be returned to the agent company.

290 J. Koźlak, J.-Ch. Créput, V. Hilaire, A. Koukam

Fig. 7. Simulator in MadKit environment

GenericAgent

CompanyAgent VehicleAgentCustomerAgent

Fig. 8. Agents generalisation/specialisation tree

4.4 Transport Requests Generator

Request generation is performed by the agent-customer. The time of arrival of
request at a transport company is calculated on the basis of a Poisson distribution
defining a period of minutes after which a new request arrives. The method of
defining time windows is inspired by the one described in [19]. For the time window
of pickup, the ready time is selected by using a uniform probability distribution
within the period (time of request generation + a constand delay, last possible time
of pickup realization). The last possible time of pickup realisation is a time needed

Multi-Agent Environment for Modelling and Solving Dynamic Transport Problems 291

Event queue
handler

Event generator

Decision moduleMessage sender
Message
receiver

Clock handler

new event
created

message
sent

incoming
message

event
performed

Fig. 9. Generic agent architecture

Current route
management

Route construction

Route optimisation Route estimation

action new request

confirmation

estimation

Fig. 10. Agent-vehicle decision module

for a vehicle to perform the delivery operation and return to a terminal location given
for this vehicle before the simulation end. Depending on experiments, the due time
is selected using uniform distribution within the period (ready time, last possible
time of pickup realisation) or the size of time window is set as a constant. In the case
of the time window of delivery, ready time is selected using a uniform probability
distribution on the interval (ready time of pickup + time of trip between pickup and
delivery points, last possible time of delivery operation, leaving a time necessary to
return to terminal). Due time is calculated by using a uniform distribution on
the interval (staring time of delivery time window, last possible time of delivery
realisation) or the size of the time windows may be set as a constant. The last
possible time of delivery realisation is the delay for a vehicle needed to return to
terminal point on time.

The pickup node is randomly generated taking into consideration the weights wi

attributed to nodes. The probability of being selected is proportional to the weight
of the given node. The delivery node is chosen similarly, but it is assumed that the
delivery node has to be different from the pickup node. The quantity of transported
people is a random integer value from the interval (1, . . . , maxpers), calculated using

292 J. Koźlak, J.-Ch. Créput, V. Hilaire, A. Koukam

the uniform distribution. The payment for realization is calculated on the basis of
the shortest path in the graph between the pickup and delivery nodes and the
number of transported persons.

5 EXPERIMENTS

5.1 Configuration of Experiments

The goal of the performed experiments is to choose the optimum company features,
i.e. a number of vehicles or a capacity of vehicles, for the given topology of transport
network, as well as the quantity and features of requests. In particular, we will
examine configurations with different time window sizes denoted by δ and request
frequencies expressed by γ (see description of agent-customer in Section 3.2). In the
experiments performed, the transport network as presented in Figure 11 was used.
The numbers above the arcs represent the length of travelled distances in seconds.
Nodes marked as a black ones are the nodes with 5 times higher probability of being
a pickup or delivery node (described by wi weight) than other nodes. The numbers
above the nodes are node identifiers. The network consists of 100 nodes and 272 arcs.
The arcs represent the travel time between the nodes of which the average is about
7 minutes.

1
1

2
2

0 3 4 25 26 27 28 29

5 6 7 8 9

10 11 12 13 14

15 16 17
18 19

20 21 22 23 24

30 31 32 33 34

35 36 37 38 39

40 41 42 43 44

45 46 47 48 49

50 51 52 53 54

55 56 57 58 59

60 61 62 63 64

65 66 67 68 69

70 71 72 74 74

75 76 77 78 79

80
81 82 83 84

85 86 87 88 89

90 91 92 93 94

95 96 97 98 99

300 300 300 300

500
500

500
400

300 300
300

300

300

300

300

300

300

300

3500

600 600

500

500500

500

500

400

500

300 300 300 300

500 500

500

500

300 300

600

500

500
500

500

300 300 300

500

600

500

500
500

500

500

500

300

300

300

300

300

600

300

300

300

600

600

300

300

300

300

300

300

300

300

300 300 300 300

500 500 500 300

600

500 500

500

300

500

400

500

300 300

500

600

500
500

300

300500

500

300

300 300 300 300

600

500 500

500

500 500

500

400

300 300 300 300
300

300

3500

600

500

500

500

300

300

500

600

600 600

300

600

600

500

500
500

300

Fig. 11. Network topology

The number of vehicles, their capacities as well as their time windows sizes were
changed from experiment to experiment. The total simulation time was divided
into 5 intervals (4 simulation hours each) with different requests arrival frequencies
describing the period in minutes in which new request arrives. Their Poisson dis-
tribution parameters which describe request frequency are equal to 0.75, 1.10, 0.25,

Multi-Agent Environment for Modelling and Solving Dynamic Transport Problems 293

0.40 and 0.10. A sixth supplementary period of 1 hour gives a time for the last
requests to be completed. The average value of generated requests is equal to 457.
Two sizes of time windows are used in the experiments. The short time windows
are equal to 10 minutes each. For long time windows, ending times of windows are
calculated using uniform distribution, as described in 4.4.

5.2 Optimal Configuration of Transport Company

and Negotiation Process

Figure 12 presents the percentages of performed requests in relation to the quantity
of vehicles used and their capacities. Looking at Figure 12 we can see that the
increase of request realization is relatively small. For this configuration of requests
and transport network, the vehicles rarely have a total load higher than 20 because
they are performing other requests previously submitted and do not have time to
pickup more requests to travel fully laden. In Figure 13 the results obtained for short
and long time windows are shown. The negotiation among vehicles takes place, if it
is necessary. In this experiments vehicles capacities are equal to 50.

Capacity influence

0

20

40

60

80

100

5 7.5 10 20 30 40 50

Vehicles capacity

R
eq

u
es

t
re

al
is

ed

[%
] 50 veh.

30 veh.

Fig. 12. Request realization vs. vehicles quantity and capacity for a problem with short
time windows

In the case of long time windows, the percentage of the performed requests
is significantly increased when the number of vehicles increases. For short time
windows, the percentage of the requests performed by the same number of vehicles
and with the same capacities is clearly lower than for the long time windows, because
of much stronger time constraints during route construction. Similarly, as in the case
of a long time window, increase of the degree of requests realisation when applying
two times higher maximal capacities of vehicles in comparison to the smaller ones
is relatively small (Figure 12).

Experiments with negotiations have shown a slight increase of the degree of
requests performed (Figure 13), but it was associated with a high increase of com-
putation time. Thanks to the negotiation process, also an average cost of request

294 J. Koźlak, J.-Ch. Créput, V. Hilaire, A. Koukam

Requests realisation

0
20

40
60

80

100
120

10 20 30 40 50

Vehicles #

R
eq

. r
ea

lis
ed

 [
%

]
Thin TW

Thin TW & Neg

Wide TW

Fig. 13. Request realization vs vehicles quantity

realisation decreases slightly, because the vehicles get rid of the realisation of re-
quests which cause the highest costs (Figure 14).

Cost of request realisation

1000
1500
2000
2500
3000
3500

4000
4500

10 20 30 40 50

 Vehicles #

A
vg

. c
o

st
 o

f
1

re

q
u

es
t Thin TW

Thin TW & Neg

Wide TW

Fig. 14. Cost of request realisation

6 CONCLUSIONS

In this paper we have presented a simulation environment to solve the dynamic
PDPTW by means of the multi-agent paradigm.

Both the analysis and design of the system have been detailed. In this envi-
ronment, several experiments were carried out and their results were presented. So
far, only few papers concerning dynamic PDPTW have been published, like [19].
In comparison to other research concerning PDPTW problems, our system uses the
transport network as a graph to make the best representation of the network of
interconnected streets in a city possible. Comparison with the results obtained by
MARS system is difficult, because only the results of benchmarks for static VRPTW
were presented and our system deals with dynamic PDPTW.

We developed a system which simulates company organization with vehicles
communicating with the central depot. Following multi-agents development me-

Multi-Agent Environment for Modelling and Solving Dynamic Transport Problems 295

thodology as RIO framework and using the Contract Net Protocols to distribute
request among vehicles, we claim that the proposed approach’s main advantages are
its flexibility and modularity to build systems to transport planning and scheduling.
It becomes possible to add emergencies or unexpected events, modify configurations,
or change features of particular vehicles. In the same way, the system simulates
transport organization and trading policies to perform distributed computations and
optimization directly on the multi-agent structure, thus using natural distribution
between physical entities. The multi-agent environment will have to be enriched
by an introduction of several cooperating transport companies, allowing transport
requests to be tackled by different sources, as autonomous vehicles and not only by
the company. Other improvements are in the optimization algorithm. For example,
one is able to equip vehicle agents with a cache of recently used requests in order
to limit Dijkstra executions for finding shortest distances. The next step is the
distribution on different processors, to follow natural decomposition between vehicles
to go beyond real case company simulations.

REFERENCES

[1] Bachem, A.—Hochstattler, W.—Malich, M.: Simulated Trading a New Pa-
rallel Approach for Solving Vehicle Routing Problem. Proceedings of the International
Conference Parallel Computing: Trends and Application, 1994.

[2] Bent, R.W.—van Hentenryck, P.: Scenario-Based Planning for Partially Dy-
namic Vehicle Routing with Stochastic Customers. Operations Research, Vol. 52,
2004, No. 6, pp. 977–987.

[3] Bertsimas, D.—Simchi-Levi, D.: A New Generation of Vehicle Routing Research:
Robust Algorithms, Addressing Uncertainty. Operations Research, Vol. 44, 1996,
pp. 286–304.

[4] Braysy, O.: Genetic Algorithms for the Vehicle Routing Problem with Time Win-
dows. Arpakanuus 1, 2001, Special Issue on Bioinformatics and Genetic Algorithms.

[5] Braysy, O.—Gendreau, M.: Genetic Algorithms for the Vehicle Routing Problem
with Time Windows. SINTEF Applied Mathematics Report, Oslo, Norway, 2001.

[6] Braysy, O.—Gendreau, M.: Metaheuristics for the Vehicle Routing Problem with
Time Windows. SINTEF Applied Mathematics Report, Oslo, Norway, 2001.

[7] Braysy, O. –Gendreau, M.: Route Construction and Local Search Heuristics for
the Vehicle Routing Problem with Time Windows. SINTEF Applied Mathematics
Report, Oslo, Norway, 2001.

[8] Burckert, H.-J.—Fischer, K.—Vierke, G.: TeleTruck: A Holonic Fleet Mana-

gement System. Available on http://citeseer.ist.psu.edu/76560.html, 2000.

[9] Burckert, H.—Fischer, K.—Vierke, G.: Holonic Transport Scehduling with
TeleTruck. Applied Artificial Intelligence, Vol. 14, 2000, pp. 697–725.

[10] Cordeau, J.-F.—Laporte, G.: The Dial-A-Ride Problem: Variants, Modeling
Issues and Algorithms. Les Cahiers du GERAD, 2002.

296 J. Koźlak, J.-Ch. Créput, V. Hilaire, A. Koukam

[11] Créput, J. C.—Koukam, A.—Kozlak, J.—Lukasik, J.: An Evolutionary Ap-

proach To Pickup-And Delivery Problem With Time Windows. Lecture Notes in
Computer Science, Vol. 3038, 2004, pp. 1135–1142.

[12] Christofides, N.—Mingozzi, A.—Toth, P.: The Vehicle Routing Problem. In
Christofides N. et al. (eds): Combinatorial Optimization, Wiley, pp. 315–338, 1979.

[13] Desaulniers, G.—Desrosiers, J.—Erdmann, A.—Solomon, M.M.—

Soumis, F.: The VRP with Pickup and Delivery. Les Cahiers du GERAD, 2000.

[14] Ferber, J.: Les Systèmes Multi-Agents. Vers une intelligence collective, InterEdi-
tions, 1995.

[15] Ferber, J.—Gutknecht, O.: A Meta-Model for the Analysis and Design of Or-

ganizations in Multi-Agent Systems. In: Y. Demazeau, E. Durfee, N. R. Jennings
(Eds.), Proceedings of ICMAS ’98, 1998.

[16] Ferber, J.—Gutknecht, O.—Michel, F.: MadKit Development Guide Version
3.1. 2003, Available on http://www.madkit.org.

[17] Fischer, K.—Muller, J. P.—Pischel, M.: Cooperative Transportation Schedul-
ing: An Application Domain for DAI. Applied Artificial Intelligence, Vol. 10, 1996,
pp. 1–33.

[18] Gambardella, L.M.—Taillard, E.—Agazzi, G.: MACS-VRPTW: A Multiple
Ant Colony System for Vehicle Routing Problems with Time Windows. Technical
Report IDSIA, 1999.

[19] Gendreau, A.–Guertin, F.—Potvin, J.Y.—Seguin, R.: Neighborhood Search
Heuristics for a Dynamic Vehicle Dispatching Problem With Pick-Ups and Deliveries.
Technical Report CRT-98-10, Université de Montreal, 1998.

[20] Gruer, P.—Hilaire, V.—Kozlak, J.—Koukam, A.: A Multi-Agent Approach
to Modelling and Simulation of Transport on Demand Problem. In: J. Soldek, L. Dro-
biazgiewicz (Eds.): Artificial Intelligence and Security in Computing Systems, The
Kluwer International Series In Engineering And Computer Science 752, 2003.

[21] Hilaire, V.: Vers Une Approche de Spécification. De Prototypage et de Vérification
de Systèmes Multi-Agents. Ph.D. thesis, UTBM, 2000.

[22] Larsen, A.: The Dynamic Vehicle Routing Problem. Ph. D. thesis, Technical Uni-

versity of Denmark, Lyngby, Denmark, 2000.

[23] Lau, H.C.—Liang, Z.: Pickup and Delivery with Time Windows: Algorithms and
Test Case Generation. Proceeedings of 13th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI ’01), Dallas, USA, 2001.

[24] Li, H.—Lim, A.: A Metaheuristic for the Pickup and Delivery Problem with Time
Windows. In: Proceedings of 13th IEEE International Conference on Tools with Ar-
tificial Intelligence (ICTAI ’01), Dallas, USA, 2001.

[25] Lim, H.—Lim, A.—Rodrigues, B.: Solving the Pick Up and Delivery Problem
Using “Squeaky Wheel” Optimization with Local Search. Proceedings of American
Conference on Information Systems, AMCIS 2002, Dallas, USA, 2002.

[26] Madsen, O. B.G.—Ravn, H. F.—Rygaard, J.M.: A Heuristic Algorithm for
a Dial-A-Ride Problem With Time Windows, Multiple Capacities, and Multiple Ob-
jectives. Annals of Operations Research, Vol. 60, 1995, pp. 193–208.

Multi-Agent Environment for Modelling and Solving Dynamic Transport Problems 297

[27] Mitrowic-Minic, S.: Pickup and Delivery Problem with Time Win-

dows: A Survey. Technical Report, SFU CMPT TR, 1998-12, Available on
ftp://fas.sfu.ca/pub/cs/techreports/1998.

[28] Nanry, W.P.—Barnes, J.W.: Solving the Pickup and Delivery Problem With
Time Windows Using Reactive Tabu Search. Transportation Research Part B 34,
2000, Elsevier Science Ltd., pp. 107–121.

[29] Neagu, N.–Dorer, K.—Calisti, M.: Solving Distributed Delivery Problems with
Agent-Based Technologies and Constraint Satisfaction Techniques. Dist. Plan and
Schedule Management, 2006 AAAI Spring Symp., The AAAI Press, USA.

[30] Neagu, N.—Dorer, K.—Greenwood, D.—Calisti, M.: LS/ATN: Reporting

on a Successful Agent-Based Solution for Transport Logistics Optimization. Proceed-
ings of IEEE 2006 Workshop on Distributed Intelligent Systems (WDIS), June 15–16,
2006, Prague, Czech Republic.

[31] Potvin, J.Y.—Bengio, S.: The Vehicle Routing Problem With Time Windows —
Part II: Genetic Search. INFORMS Journal on Computing, Vol. 8, 1996, pp. 165–172.

[32] Sandholm, T.: An Implementation of the Contract Net Protocol Based on Marginal
Cost Calculations. In: Proceedings of AAAI-93, pp. 256–262, 1995.

[33] Smith, R.G.: The Contract Net Protocol: High-Level Communication and Con-
trol in a Distributed Problem Solver. IEEE Transactions on Computer, Vol. C-29,
December, 1980, pp. 1104–1113.

[34] Solomon, M.: Algorithms for the Vehicle Routing and Scheduling Problems With
Time Window Constraints. Operations Research, Vol. 35, 1987, pp. 254–265.

Jaros law Ko�zlak works as an Assistant Professor at the De-
partment of Computer Science of the AGH University of Scien-
ce and Technology in Krakow, Poland. He received his Ph. D.
degree in computer science from the Institut National Polytech-
nique de Grenoble (INPG), France and AGH University of Scien-
ce and Technology, Kraków, Poland in 2000. His research inter-
ests include multi-agent systems, transportation modelling and

optimisation, integration of knowledge expressed using ontology
description languages and social network analysis. He is an au-
thor or co-author of more than 70 scientific publications.

Jean-Charles Cr�eput received his Ph.D. in computer science
from University of Paris 6, France, in 1997. He defended his
Habilitation in November 2008 at the University of Bourgogne,
France. He is currently an Associate Professor in computer scien-
ces and engineering at the University of Technology of Belfort-
Montbeliard, France, and performs research activity at the Sys-
tems and Transportation (SeT) Laboratory. His current research
interests include evolutionary algorithms, neural networks and
multi-agent systems applied to telecommunications and intelli-
gent transportation services.

298 J. Koźlak, J.-Ch. Créput, V. Hilaire, A. Koukam

Vincent Hilaire works as an Associate Professor, he gets his

Ph.D. in computer science and his position in the University of
Technology of Belfort Montbéliard in 2000. He got his Habili-
tation á Diriger les Recherches (HDR) degree from University
of Franche Comté in 2008. The main concerns of the Ph. D.
was formal specification and methodologies for engineering of
Multi-Agent Systems (MAS). Since then his research is focused
on MAS organizational theories and holonic systems, languages
for formal specification prototyping and proofs of MAS, agent
architectures and agent mediated knowledge management.

Abderrafiaa Koukam received the Ph.D. in computer science
from University of Nancy I (France) in 1990, where he served
as an Assistant Professor from 1986 to 1989 and researcher in
Centre de Recherche en Informatique de Nancy (CRIN) from
1985 to 1990. In 1999, he received the authorisation to direct
the research in computer science from University of Bourgogne
(France). Presently, he is Professor of computer science at Uni-
versité de Technologie de Belfort-Montbeliard (UTBM). He is
the Director of Systems and Transportation Laboratory and
heads research activities on modeling and analysis of complex

systems, including software and knowledge engineering, multi-agent systems and opti-
mization. He is the author or co-author of over 100 scientific publications.

