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Bécsi út 96/B
H-1034 Budapest, Hungary
e-mail: tar.jozsef@nik.bmf.hu, rudas@bmf.hu

Manuscript received 3 April 2008; revised 18 July 2008

Communicated by Stanislava Labátová

Abstract. In this paper two different control methods are combined for controlling
a typical nonholonomic device (a bicycle) the dynamic model and parameters of
which are only approximately known. Most of such devices suffer from the problem
that the time-derivatives of the coordinates of their location and orientation cannot
independently be set so an arbitrarily prescribed trajectory cannot precisely be
traced by them. For tackling this difficulty Optimal Control is proposed that can
find acceptable compromise between the tracking error of the various coordinates.
Further problem is that the solution proposed by the optimal controller cannot

exactly be implemented in the lack of precise information on the dynamic model of
the system. Based on the decoupled nature of the dynamic model of the longitudinal
and lateral behavior of the engine special fixed point transformations are proposed
to achieve adaptive tracking. These transformations were formerly successfully
applied for the control of holonomic systems. It is the first time that the combined
method is checked for various trajectories and dynamic model errors via simulation.
It yielded promising results.

Keywords: Nonholonomic systems, optimal control, adaptive control, fixed point
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1 INTRODUCTION

Due to the fact that the Cartesian coordinates and the orientation (i.e. rotational
angle) of certain most commonly used wheeled vehicles cannot independently be
prescribed two typical motion regimes have to be distinguished: a) iterative, small,
“back and forth” type movements for leaving a place/occupying a vacancy in
a crowded parking place with the aim of considerably modifying the rotational angle
of the vehicle at the cost of minimal modification of its position, and b) tracking
control of a path of considerable velocity. For prescribing realizable nominal paths
the trajectory to be tracked normally should be built up by keeping in mind the
kinematic model of the vehicle that yields local trajectory data in such terms as its
local curvature, local center of rotation, and in general by using various quantities
defined by the Frenet frame locally fitted to the path.

Optimal control methods found applications in various practical fields (e.g. [1]).
As alternative approach to solving the tracking problem kinematically typically good
solution may be the application of optimal control under strict constraints in which
a compromise can be found between various controversial requirements as e.g. simul-
taneously required pose and position. The constraints must be taken into account
precisely because they guarantee the physical interpretability and realizability of
the computed results, while the position and pose tracking can only be (well) ap-
proximated. In this manner a lot of complicated computations can be evaded and
replaced by far simpler ones.

It is important to note that this planning problem cannot be satisfactorily reali-
zed by completely omitting the dynamic model of the vehicle under control. Subse-
quently incorrect realization of the kinematically designed trajectory data may lead
to accumulation of the errors and may result in wrong proposed proposition by the
optimal control. The lateral control of vehicle systems obtained considerable atten-
tion in the recent literature, e.g. [2, 4]. The effects of the actuator dynamics of the
steering system were described in the literature by a simplified vehicle model with
good results (e.g. [3, 4]). In the approach presented here the mathematical structure
of this is utilized but its parameters are assumed to be known only imprecisely.

Instead of applying Pontryagin’s original method that can express the kinematic
restrictions as constraints with associated Lagrange multipliers in the proposed so-
lution these restrictions are explicitly utilized so the simplest form of the Reduced
Gradient Method (i.e. the simple Gradient Descent without any gradient reduction)
becomes applicable. Simulation calculations using the MS Excel’s Solver package
with Visual Basic taking into account the dynamics of the steering wheel and that
of the vehicle in the longitudinal direction are presented to show the applicability of
this concept even in the case of approximate knowledge of the dynamic parameters.
However, for more precise tracking some adaptive control is needed.

Heartened by the success of various geometric approaches in adaptive control
(e.g. [5, 6]) elaborated at Budapest Tech, in the present paper a novel, two para-
metric fixed point transformation based adaptive control is applied. The idea of this
new variant was published in [7].
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The paper is organized as follows: at first the kinematic and dynamic models of
the paradigm used (i.e. the bycicle) are presented and substantiated. Following that
the “otrhodox” and “non orthodox” applications of Pontryagin’s Optimal Control
approach are briefly discussed. The next brief part is devoted to the idea of the
adaptive control applied. Finally simulation examples are presented and conclusions
are drawn.

2 THE KINEMATIC AND DYNAMIC MODELS OF THE BICYCLE

The simple device called bicycle is a good paradigm for a wide set of vehicles.
Its control variables are the velocity of the rear end v in m/s, and the rotational
angle of the steering wheel δ in rad units. With respect to a properly chosen local
Frenet frame the motion can temporarily be regarded as a rigid rotation around
a fictitious temporal center point. The front and the rear wheels are situated at
different distances from the local center of rotation; therefore they move at different
speeds. If Φ denotes the rotational pose of the body of the bicycle while x and y are
the Cartesian coordinates of the rear end (wheel center), the kinematic relationships
are given by (1):

ẋ = v cos(Φ), ẏ = v sin(Φ), Φ̇ = v
tan(δ)

L
. (1)

For tracking a smooth trajectory it would be convenient to prescribe the “nominal
velocities” as ẋN , ẏN , and independently of them the rotational velocity of the body,
Φ̇N . For instance, it could be expedient to require Φ to be equal to the angle of
the tangent of the trajectory. However, (1) makes it clear that at an actual pose Φ
the prescribed ẋ determines v and ẏ, while the prescribed Φ̇ and v determine δ,
therefore it is impossible to track a path consisting of the independently given three
velocities. It is also clear that instead of exactly determining two of the three
different data and completely ignoring the third one finding a compromise allowing
some tracking error “distributed” between these three variables may be reasonable.
For this purpose minimization of a cost function composed of these three error
terms plus other optional terms can be expedient. This task will be considered in
the section describing the optimal control.

Regarding the dynamic model of the bicycle, according to [3], [4] the lateral and
the longitudinal behavior seem to be decoupled as

δ̇ = − δ
τ

+
Ka

τ
u, v̇ =

Mmod

M
v̇Des − µ

M
v (2)

where M is the mass of the whole system, Mmod is its model value, µ is a viscous
friction coefficient of the driving wheel, v̇Des is the desired acceleration. Regarding
the dynamics of the steering wheel in (2) it is supposed that the momentum and the
rotational acceleration of the wheel can be neglected, τ is the time constant of its
drive, u denotes the control signal, and Ka is some gain factor. While the dynamic
model of the driving wheel is physically well substantiated by Newton’s 2nd Law,
that of the steering wheel needs some substantiation. For this purpose consider
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the dynamic model of a damped system: mẍ + µẋ = f in which the inertia m is
very small, and f denotes the external exciting force. Integration of this equation
according to time leads to a 1st order inhomogeneous differential equationmẋ+µx =
F0 +

∫ t

0
f(ξ)dξ ≡ F (t). The homogeneous part of this equation evidently has the

solution xHom(t) = C exp
(
−µt

m

)
of which a particular solution of the inhomogeneous

one can be built in by making the coefficient C vary in time. The general solution

is xInh(t) = exp
(
−µt

m

) [
C(0) +

∫ t

0
dξF (ξ) exp

(
µξ

m

)
/m

]
. For constant excitation fc

in the t → ∞ limit we obtain that xInh = F0

µ
− mfc

µ2 + fct

µ
+ transients where the

transients are damped by the exponent − µ

m
. In this limit evidently ẋInh ≈ fc/µ,

that is the solution of the equation without any inertia is obtained: µẋ = fc. This
simple case study substantiates the omission of the momentum of the steering wheel
in our model. In the next section the idea of optimal control is briefly summarized.

3 THE IDEA OF OPTIMAL CONTROL

The essence of any optimal control method is the minimization of some cost function
that is constructed as a weighted sum of nonnegative contributions. Each of these
contributions expresses some error term that takes the value of zero when no error
is present, and yields positive value for finite error. The weighting factors determine
the nature of the “compromise” between the error terms when it is impossible to
drive each error term simultaneously to zero. For solving such tasks many efficient
solutions, e.g. the simple Gradient Descent Method (GDM) applicable for differen-
tiable cost functions is a plausible choice. A different class of optimization problems
is formed by the tasks in which the optimum (either minimum or maximum) of
a function f(~x) has to be found under constraints normally expressed in canonical
form as {g(i)(~x) = 0|i = 1, . . . , K < N}, ~x ∈ ℜN . This task was solved first by
Lagrange in relation with Classical Mechanical Problems [10] for differentiable func-
tions according to the following philosophy: after founding a common point of the
constraint surfaces, instead of moving in the direction of the steepest variation of f
(i.e. in the direction of ~∇f) the next point has to be found in the direction of its

reduced form ~̃∇f := ~∇f +
∑K

s=1 λs
~∇g(s) where the {λs} Lagrange multipliers must

be so determined that ~̃∇f must be orthogonal to each ~∇g(s). (In this manner in
the first order approximation the next point also remains on the constraint surface.)
When the reduced gradient achieves the value zero the local solution is found. This
witty idea was utilized by Pontryagin in his Optimal Control [1].

The idea of optimal control was developed for dynamic systems of state ~x having
the equation of motion ~̇x = ~f(~x, ~u) where ~u denotes the control signal. If a cost
function J(~x, ~̇x, ~u) ≡ J̃(~x, ~u) is given, its integral has to be minimized in the in-
terval [0, T ]. With a small ∆t time-resolution this integral can be approximated as

the sum
∑N

s=0 J̃(~xs, ~us)∆t under the constraints [~xs+1 − ~xs]/∆t ≈ ~f(~xs, ~us). Since

∆t > 0 we can minimize the sum
∑N

s=0 J̃(~xs, ~us) under the same constraints. In the
finite element approximation the variables by the variation of which the cost can be
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minimized are comprised in the sets {~xs|s = 1, . . . , N}, {~us|s = 0, . . . , N − 1} (~x0

corresponds to the initial condition). This problem can be solved by Lagrange’s Re-
duced Gradient Method in which with each constraint variable a Lagrange multiplier
is associated in the “adjoint task”, i.e. constraint-free minimization/maximization

of a function Ψ({~x}, {~u}, {~λ}) =
∑N

s=0 J̃s +
∑N−1

s=0
~λT

s [~xs+1−~xs

∆t
− ~fs] is needed. The

derivatives of Ψ according to the components of ~λs yield the constraints. The deriva-

tives according to the ~xk components yield that
∂(J̃k−

~λT

k
~fk)

∂~xk

+
~λk−1−

~λk

∆t
= 0, and finally,

the partial derivatives according to the ~uk components imply that ∂(J̃k−
~λk

~fk)
∂~uk

= 0.
Turning back to the “continuous limit” this leads to typical “canonical equations of
motion” with a “Hamiltonian” H := ~λT ~f − J̃ as

~̇λ = −∂H
∂~x

, ~̇x =
∂H

∂~λ
,
∂H

∂~u
= 0. (3)

It is worth noting that (3) is not completely equivalent with the solution of the
original problem due to various reasons:

1. the same canonical equations belong to the maximum and the minimum prob-
lems;

2. in (3) the initial values of the variables ~λ does not seem to be determined though
the initial values of the Lagrange–multipliers are determined by a previous op-
timum search.

So the canonical equations have rather “symbolic” than practical significance in
the case of these tasks. They are important from a special point of view: they
canonically map the state space onto itself in time with a symplectic Jacobian. The
spectrum of the symplectic matrices has the following special properties (e.g. [11]):
if χ is an eigenvalue of a symplectic matrix then χ̄, 1/χ, and 1/χ̄ [the ¯ symbol
denotes the complex conjugate] are eigenvalues, too. This implies that in normally
numerical problems instabilities have to arise while solving (3). The best case be-
longs to the |χ| = 1 eigenvalues that may be also dubious due to the limited preci-
sion of the digital representation of the numbers. This emphasizes the significance
of finding the actual minimum of Ψ by correctly applying the Reduced Gradient
Method.

As will be shown later the application of the Lagrange Multipliers in such tasks
can be avoided so the task of searching the optimum can be formulated as a simple
Steepest Descent Method without any reduction of the gradients. For this purpose
the optimum can be found only for a single step in the control cycle and certain values
in the “next time” need not be varied: instead, they can be estimated from the veloc-
ities. In the finite element approximation scheme this choice corresponds to the esti-
mation of the time-derivative of a function h as ḣ(tk+1) ≈ [h(tk+1)−h(tk)]/∆t instead
of the other plausible possibility for the estimation as ḣ(tk) ≈ [h(tk+1) − h(tk)]/∆t.
The lack of the need of using Lagrange multipliers makes it possible to apply al-
ternative optimization methods, like Particle Swarm Optimization (PSO) [12], too.
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In the sequel the basic idea of the adaptive control is briefed that “studies” the
controlled system according to an “excitation–response” scheme.

4 THE IDEA OF THE NOVEL ADAPTIVE CONTROL:

THE EXCITATION – RESPONSE SCHEME COMBINED

WITH FIXED–POINT TRANSFORMATION

Each control task can be formulated by using the concepts of the appropriate ”ex-
citation” Q of the controlled system to which it is expected to respond by some
prescribed or ”desired response” rd. The appropriate excitation can be computed
by the use of some inverse dynamic model Q = ϕ(rd). Since normally this inverse
model is neither complete nor exact, the actual response determined by the sys-
tem’s dynamics, ψ, results in a realized response rr that differs from the desired
one: rr ≡ ψ(ϕ(rd)) ≡ f(rd) 6= rd. It is worth noting that the functions ϕ() and
ψ() may contain various hidden parameters that partly correspond to the dynamic
model of the system, and partly pertain to unknown external dynamic forces acting
on it. Due to phenomenological reasons the controller can manipulate or “deform”
the input value from rd so that rd ≡ ψ(rd

∗
). Other possibility is the manipulation

of the output of the rough model as rd ≡ ψ(ϕ∗(rd)). In the sequel it will be shown
that for SISO systems the appropriate deformation can be defined as some Para-
metric Fixed Point Transformation. For this purpose consider the simple iteration
described by (4) that is suggested by the presence of similar triangles in a very
simple drawing [7]:

g(x|xd, D−,∆+) :=

= (f(x)−∆+)(x−D
−

)
xd

−∆+
+D−,

if f(x⋆) = xd then g(x⋆) = x⋆,

g′ = f ′(x) x−D
−

xd
−∆+

+ f(x)−∆+

xd
−∆+

,

g′(x⋆|xd, D−,∆+) = 1 + f ′(x⋆)
x⋆−D

−

xd
−∆+

.

(4)

According to (4) it is evident that the requested solution x⋆ just is the fixed–point
of the function g, and that by appropriately choosing the initial model and the
control parameters D−, and ∆+ the condition of |dg/dx| ≤ K < 1 can be achieved
in a vicinity of x⋆. This region around x⋆ serves as a basin of attraction for the
iteration xn+1 = g(xn) since if a and b are within this region then |g(a) − g(b)| =

|
∫ b

a
g′dx| ≤

∫ b

a
|g′|dx ≤ K|a− b|, i.e. g() realizes a contractive mapping resulting in

a Cauchy Sequence in the complete normed linear space of the real numbers with
the norm defined by the absolute value. Really, for arbitrary natural number L it
can be stated that

|xn+L − xn| = |g(xn+L−1) − g(xn−1)| ≤ . . .

≤ Kn|xL − x0| → 0 as n→ ∞,
(5)
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therefore the sequence {xn} must converge to a limit value c. This limit value
evidently must be equal to the fixed point x⋆ since |g(c)−c| ≡ |(g(c)−xn)+(xn−c)| ≤
|g(c)−xn|+|xn−c| = |g(c)−g(xn−1)|+|xn−c| ≤ K|c−xn−1|+|xn−c| → 0 as n→ ∞.
For utilizing this convergence in the adaptive control it is just enough to prescribe
some appropriate desired response on the basis of simple kinematical considerations.
If the variation of xd in time is far slower than the speed of convergence of the above
iteration, the idea of Complete Stability can similarly be applied as e.g. in the case
of fast real-time image processing [8], and a good adaptive tracking control can
be achieved. (More precisely, within one control cycle only one step of iteration
can be executed.) This expectation is also supported by the results of previous
investigations made in connection with less lucid fixed–point transformations [6]. In
the sequel this idea will be used in the proposed adaptive control of the bicycle. It
has to be noted that in its philosophical background this idea is smilar to the idea
of “situational control” [9].

5 ADAPTIVE TRACKING CONTROL FOR THE BICYCLE

Let us suppose that the actual x, y, Φ, v, and δ values are given as “initial con-
ditions” in a given time instant, and we seek the “next” values using finite time-
resolution ∆t. According to the kinematic model in (1) we must have the follow-
ing values: xNext = x + ∆t · cos(ΦNext), yNext = y + ∆t · sin(ΦNext), ΦNext =
Φ + ∆t · vNext tan(δNext)/L, vNext, and δNext. If we also have the nominal values for
the “next” time as xN , yN , ΦN , a cost function with positive A,B, and C coefficients
can be constructed as

J̃ := A
√

(xN − xNext)2 + (yN − yNext)2 + B|ΦN − ΦNext| + C(δNext)8. (6)

The term with the coefficient A “prohibits” the tracking error, the term with fac-
tor B stands for the reduction of the error in the angular pose, the term with
factor C inhibits the application of “extreme” steering wheel angles. This cost func-
tion evidently takes into account the “strict constraints” without the application
of any Lagrange-multiplier and can be minimized according to two variables δNext

and ΦNext. (Naturally many other possibilities exist for the construction of vari-
ous cost functions.) The application of the | • | function leads to more sensitive
gradients around 0 than the (•)2 function and has problems with the differential
only in the point of 0. On this reason certain terms are formulated by the use of
the | • | function, and the application of the

√
plays similar role. The only ex-

ception is the value of the steering angle δ that needs small prohibition for small
values and quite drastic prohibition for bigger angles. It is evident that (6) has the
minimum, and by setting the A,B, and C coefficients the compromise between the
requirements in contradiction can be manipulated. In the “ideal case” in which no
dynamic effects are taken into account the result of the optimization really corre-
sponds to the “next point”. If the effects of the system dynamics are also taken
into consideration the optimization yields only some “desired next values” that ac-
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cording to the dynamic model in (2) are related to the “actual next values” vAct
Next

as
Mmod

M
v̇Des − µ

M
vAct

Next =
vAct

Next − v

∆t
≡ v̇Act (7)

in which v̇Des = (vNext − v)/∆t contains the result of the optimization. In sim-

ilar manner δ̇Act = Ka·(δDes
−δ)−δ

τ
if the control signal for the steering angle is a

simple error feedback as u ≡ (δDes − δ). Since (7) can analytically be solved
for vAct

Next it is very easy to develop a simulation program for the description of
the control of the bicycle by the use of MS EXCEL and Visual Basic. This soft-
ware has excellent properties and can efficiently be used in the higher education
(see e.g. [13, 14]). Certain functional relationships can be coded within the work-
sheets as well as the appropriate settings or “model” for the SOLVER package.
The Visual Basic program in this case can be reduced to filling in certain cells
in the worksheets, executing the optimization by the simple commands as Solver-
Solve UserFinish := True, SolverFinish KeepFinal := 1, reading the results of op-
timization and store the simulation data in a worksheet for convenient construc-
tion of graphs. Before going into the cycle the SOLVER’s model settings can
be read from the appropriate worksheet by the command line as e.g. SolverLoad
LoadArea := Range(”B27:B29”). The implementation of the adaptive control inde-
pendently for δ and v is also very easy. In the sequel simulation results will be
presented.

6 COMPUTATIONAL RESULTS

Various cases were investigated. The “ideal case” corresponded to pure kinematic
considerations, i.e. in this case it was supposed that the results of the kinematic
trajectory tracking were exactly realized. The next case was the “realistic case”
in which the dynamics of the system was taken into account without applying any
adaptivity. Since it was found that the main role in the adaptive control was played
by the loop adjusting v while the adaptive loop for δ modified only nuances on its
resulst, we can use the notation “adaptive case” for the full adaptivity.

Due to the periodic nature of the sin, cos, and tan functions for ±2π in (1) special
care was needed for prescribing the “next nominal value” ΦN

Next. For realizable
motion it must be in the vicinity of the previously prescribed one (big ±Φ values
correspond to multiple rotations) while calculating Φ from the arctan function gives
a value only in the [−π, π] interval. Furthermore, since sin(Φ ± π) = − sin(Φ) and
cos(Φ ± π) = − cos(Φ) and tan(−δ) = − tan(δ) the simultaneous transformations
as Φ → Φ ± π, v → −v, and δ → −δ ± 2π kinematically correspond to the same
result but in the consecutive steps these cases dynamically are not equivalent with
each other. However, since the SOLVER can find local minima/maxima one must
be careful with periodic cost functions. For solving these problems in the cost
function (6) the following values were chosen: A = 500, B = 50, and C = 1. This
small C coefficient well kept the |δ| values at bay through the term Cδ8. For correctly
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tracking the ΦN
Next value the result of the arctan function was increased/decreased

with the value 2π until it has been transformed to the vicinity of the previous step.
Another important factor is the ratio of the length of the bicycle body (L = 0.5 m was
used in the simulations) and the size of the “sharp curved parts” in the trajectory
as well as the structure of the cost function (6) that may be built up by using
various different increasing functions, too. The dynamic parameters of the system
considered were as follows: the actual inertiaM = 2 kg, its model valueMmod = 1 kg,
τ = 0.095 s time-constant of the steering wheel’s dynamics, µ = 10 Ns/m, while in
the adaptive control ∆δ

+ = 2 ·106, Dδ
−

= 1 ·106, ∆v
+ = 2500, Dv

−
= −3500. The time-

resolution of the calculations was ∆t = 0.05 s. In Figure 1 typical results are given
for tracking a circular nominal trajectory in the “ideal” and the “fully adaptive”
cases. Apart from the initial transients of the adaptive control the differences seem
to be only nuances. Figure 2 reveals more details that substantiate this statement.
(The circular trajectory is trivially a special one that could exactly be traced by
such devices.)
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Fig. 1. Comparison of the “ideal” (LHS) and the “fully adaptive” (RHS) cases: the trajec-
tory (1st line), the velocity of the bicycle (2nd line), and the steering angle (3rd line)
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Tracking Error [m] vs time [s]
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Fig. 2. Tracking errors of the “ideal” (upper left), the “fully adaptive” (upper right) cases,
fine details of the tracking error for the “fully adaptive” and the “non-adaptive” cases
(middle line), tracking error when only the v loop is adaptive (lower left), and the
pose tracking for the “fully adaptive” case (lower right chart)

Tracking of an interesting trajectory can be seen in Figure 3. The shape of
number 8 is not a smooth line in it. It is rather constructed of letter 3 and its
mirrored version. This means that v and δ has to change sign, that is the vehicle
stops two times in the center. Certain results are given in Figure 3. It is worth
noting that the “stabilized amplitude” of the tracking error on the nonadaptive case
is a little bit greater than ±0.2 m that exemplifies the operation of the adaptive
loops.

We note that similar stable results were obtained for more or less smooth nominal
trajectories of various shapes.

7 CONCLUSIONS

In this paper a combined application of the Optimal Control and a fixed point
transformations based adaptive control was presented to control a dynamically only
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Fig. 3. Tracking an 8 shaped trajectory and pose in the “ideal” case (upper line), the
velocity and the steering angle in the “fully adaptive” case (central line), fine details
of the tracking and the pose error for the “fully adaptive” case (lower line)

approximately known device, the bicycle, that serves as a good paradigm of a wide
set of nonholonomic devices. The optimal control was to resolve the conflict be-
tween the arbitrarily prescribed nominal trajectory and the kinematical abilities of
this device. The adaptive part’s function was to precisely realize the kinematically
optimal motion in spite of the modeling errors in the dynamics. It was found that
the problems originating from the periodic nature of the cost function applied can
successfully be tackled. It is expected that choosing various cost functions further
solutions can be obtained.
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