
 

 

Selected Papers of ISTAL 22 (2017), 224-234, ISSN 2529-1114, © A. Karasimos 

 

Computational prediction of Greek Nominal Allomorphy 
 

 

Athanasios Karasimos 

Academy of Athens 

akarasimos@academyofathens.gr 

 

 
Abstract 

In Theoretical Morphology, an interest in the topic of stem allomorphy has been renewed the 

last two decades. On the other hand, the computational treatment of allomorphy is still a huge 

challenge since the first systematic attempts on predicting allomorphy with machine learning 

techniques. The goals of this paper are to predict the allomorphic changes and to show the 

essential contribution of various morphological, phonological and semantic characteristics. 

Therefore, we use a MaxEnt model to identify the weights of these characteristics that are 

directly dependent on allomorphy and help design a predictive model. Our model is based on 

AMIS and its overall accuracy was 86.49%. To improve the system, we tried a more rational 

approach to achieve a better performance (the correct prediction was raised to 91.43%). 
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1. Introduction 

In Theoretical Morphology, the interest in the topic of stem allomorphy has been 

renewed by Aronoff's (1994) work, which led to novel descriptions of inflectional and 

derivational phenomena in work by Booij (1997), Maiden (2004), Pirelli and Battista 

(2000a, 2000b), Stump (2001) and Thornton (1997), among others. The main aim of 

Aronoff's work and later research is the notion that the significance of a lexeme is not 

a single phonological representation, but an array of indexed stems, which may stand 

in relations ranging from identity through semiregular/ irregular phonological 

alternation to full suppletion. It is pointed out that, beyond the theoretical challenges 

of the phenomenon, allomorphy remains a serious problem for morphological parsing 

that must be solved.  

On the other hand, the goal of Computational Morphology is to create programs 

which can produce an output that matches as closely as possible the analysis that 

would be given by a morphologist. More specifically, an Unsupervised Morphology 

Learning Model (UMLM) accepts only huge corpora and tools for analysis as input, 

without the use of a lexicon and morphological (or phonological) rules for a particular 

language (Goldsmith 2001; Hafer & Weiss 1974; Harris 1955, 1967). As part of the 

criticism of Unsupervised Morphology Learning Models for their failure to deal with 
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Greek allomorphy, Karasimos (2009) has argued that probably only a supervised 

morphology learning model is more likely to successfully face allomorphy. 

Nevertheless, neural network approaches have been shown to overcome several 

problems that the earlier approaches faced (Malouf 2016; Mikolov & Zweig 2012; 

Sundermeyer, Schlüter & Ney 2012, 2015). The computational treatment of 

allomorphy has been a huge challenge since the first systematic attempts on predicting 

allomorphy with machine learning techniques (Ling & Marinov 1994; Pinker & 

Prince 1988; Rumelhart & McLelland 1986, among others). 

 

2. Re-visiting allomorphy 

This study is couched in a theoretical framework centered on the morpheme, treating 

allomorphy as a morphological phenomenon which places derivation at a separate 

level of word formation process. Therefore, we adopt here Ralli‘s (1994, 1999, 2000, 

2005, 2007, 2008) framework and thereby modify it. Allomorphs are defined with 

morphological criteria. More specifically, allomorphy, as defined by Lieber (1982), is 

the study of morpheme variants which share such lexical information as semantic 

representation and argument structure, but which differ unpredictably and arbitrarily 

in the phonological forms and in the morphological environments in which they occur 

(e.g., vima ~ vimat ‗step N ‘, vrisk~ vrik~ vre ‗find‘). Additionally, we introduce the 

term phonomorph, for phonologically-driven ‗allomorphy‘ which is not an actual 

allomorph but a product of a (morpho-)phonological rule. In addition, we classify 

allomorphy into various categories based on its variant forms.  

To enhance our theory, we use the rules of allomorphy treatment, which is a model 

of registry information (inflection, derivation, and compounding) for adjectival, 

nominal, and verbal allomorphs, given that the morpholexical rules in Lexicon (Lieber 

1982) include only inflectional information for allomorphs. These rules are placed 

outside of the Lexicon, in the area of Grammar and assign to each allomorph the 

proper information of their morphological environments of appearance. Based on 

Greek data, we also define the Principle of Allomorphic Behavior, according to which 

all morphemes exhibit the same allomorphic behavior, i.e., the presence or absence of 

allomorphy in all word formation processes without dependence on any specific 

process (Karasimos 2009). Finally, we propose the single allomorphy selection 

constraint, according to which a correlation between derived words with a common 

base is ensured by the participation of only one form of the lexeme-base (this 
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constraint prevents the appearance of all allomorphs of each morpheme as basis of a 

nominal derived word (Καραζίκος 2011)). This constraint applies to all nominal and 

adjectival bases and to ex-contracted verbs without exceptions, usually satisfying the 

optimal syllabic structure (CV). Based on all the aforementioned principles, rules and 

constraints, we try to create a theoretical and effective model of computational 

processing of allomorphy with a concrete prediction system. 

 

3. Computational linguistics: Supervised morphology learning and maximum 

entropy 

3.1 Unsupervised morphology learning vs. supervised morphology learning 

As opposed to the computational analyses on syntax, research on computational 

morphology has been relatively poor. According to Roark and Sproat (2007), the 

absence of a corpus of morphologically annotated words put a burden to the 

development of a machine learning morphological system that could confront 

successfully a morphologically-complex analyzer such as the one proposed by 

Koskenniemi (1983). However, close to the dawn of the new millennium, the interest 

in statistical models of morphology —more specifically of unsupervised (or lightly 

supervised) morphology learning from annotated corpora— has been rapidly 

increased. Unfortunately, most of the unsupervised morphological models have quite 

problematic performance when they are tested with morphologically-rich languages 

(for more discussion about this, see Καραζίκος 2011). 

The strong opponents of the above methods are the supervised morphology 

learning models. These approaches are considered to provide more benefits and 

advantages than other theories; some popular implementations are the rule-based 

models, the probabilistic-stochastic ones, and the connectionist ones. The main 

behind-the-scenes idea of each implementation is to extract some generalised 

standards, rules, principles, and behaviors of a group of training data. More precisely, 

they describe the relationship between input data and obtained results presented as a 

set of examples; the algorithm usually learns the training data to predict what will be 

asked of each new imported data. Nowadays, the most dominant approaches are the 

Maximum Entropy Learning, the Memory-based Learning and the Transformation-

based Learning. 
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3.2 Maximum entropy learning approach 

For the purposes of this paper, we follow the Maximum Entropy Learning Approach 

(MELA) that was extracted from the corresponding mathematic theory. The first 

objective of this approach is to determine the statistical datasets that can capture the 

behavior of a random process, i.e. the feature selection of our training data. Then 

given all these statistics, the second objective is to include these features in a precise 

process model —a model that can predict the future exported processing— i.e. the 

final choice of this model. According to the supporters of MELA all the known and 

unknown, regular and irregular words are using the same strategy, since they 

constitute another feature in the general model of probability. This strategy offers 

great potentials to treat allomorphy, which is considered as something irregular, a 

marginal synchronic junk pile and a relic. 

The MaxEnt framework offers a mathematically sound way to build a probabilistic 

model for SOI (Subject-Object Identification) which combines different linguistic 

cues. The approach of Dell‘ Orletta et al. (2007) uses constraints on the prediction of 

Subject and Object in Italian and Czech by resorting to the technique of Maximum 

Entropy. Based on their concept, we attempt to test a model for the Greek nominal 

allomorphy in derivation. Our goals are to predict the allomorphic changes and to 

show the essential contribution of various morphological, phonological, and semantic 

characteristics. The aim of this model is to identify the weight of these characteristics 

that are directly dependent on allomorphy, in order to help design a predictive model. 

This model is not only destined for nominal stem allomorphy, but also for nominal 

derivational allomorphy. 

 

4. The AMIS experiment for nominal derivation 

4.1 Introduction 

Our model is based on AMIS, which is a parameter estimator for maximum entropy 

models (Berger, Della Pietra & Della Pietra 1996). It is freeware and benefits from 

linguistic feature sets (Yoshida 2006); given a set of events as training data, the 

program outputs parameters that optimise the likelihood of the training data. Given a 

set of events as training data, the program outputs parameters that optimise the 

likelihood of the training data. Usually it was used in syntactic annotated corpora to 

extract processing data for morphosyntactic analysis and it is a significant risk to test 

AMIS with a morphological model. 
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4.2 Linguistic interpretations as feature sets 

The diachronic research points out that allomorphy is usually relics of non-active 

phonological and morphological rules and changes in a language, more specifically in 

Greek. Therefore, we make the assumption that the Greek words perhaps ―include‖ 

the necessary information to a system with minimal supervision to predict whether a 

stem or a word has allomorphs, and if so, what kind of allomorphy. We maintain that 

the stochastic models seem to be more suitable to satisfy the requirements of a model 

with linguistic feature sets. These characteristics are functions type-fxn (λ,), where a 

particular item χi is tested for the word-attribute ι, which is included in a feature set Σ. 

For this MaxEnt model, we chose different types of features that contain 

morphological, phonological and semantic dimensions of the distributions of nominal 

allomorphy (in allomorphic classes ACx). 

Our characteristics are 8 (for more information, see Καραζίκος 2011):  

(i) Allomorphic Class (8 classes of different nominal allomorphic behavior
1
), as the 

main characteristic that is under survey to discover the connection with the other 

characteristics,  

(ii.) Inflectional Class (8 classes based on Ralli‘s (1994) model; two for masculine 

nouns, two for feminine nouns and four for neutral nouns),  

(iii) Syllables (up-to-6 syllables),  

(iv) Stress (3 levels – ultimate, penultimate, antepenultimate),  

(v) Last characters (up-to-4 characters),  

(vi.) Last Syllable types (3 last syllables in reverse order),  

(vii) Animacy (yes/ no) and  

(vii.) Origin – Calque (Greek, English, French, German, Turkish, Italian, Slavic and 

Arabic).  

 

                                                        
1 More specifically, the classes are the following:  

AC1 – zero allomorphy (e.g. άλζρφπ-ος ‗man‘),  

AC2 – α-deletion (e.g. θαρδηά~ θαρδη-, ‗heart‘),  

AC3 – ε-deletion (e.g. υστή~ υστ- ‗soul‘), 

AC4 – η-delection (e.g. παηδί~ παηδ- ‗child‘),  

AC5 – δ-addition (e.g. παπά-ς~ παπαδ- ‗priest‘),  

AC6 – η-addition, (e.g. θύκα~ θσκαη- ‗waveN‘) 

AC7 – ε-deletion/ε-replacement (e.g. πόιε~ ποι-~ ποιε- ‗city‘) and  
AC8 – δ-addition/ε-deletion (ηεκπέιε-ς~ ηεκπειεδ-~ ηεκπει- ‗lazy‘). 
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4.3 Training data 

This Greek model of maximum entropy was trained on a corpus of 4,677 inflected 

nouns (neither derived nor compound nouns), a sufficient sample of all eight 

inflectional classes; training data contain inflected nouns (stem and inflectional 

suffixes), which are not derived by other words or have derivational suffixes that are 

synchronically morphological opaque. Based on electronic dictionary of 

Triantafyllidis, all the nouns were manually imported and every feature of the model 

was checked with the help of the dictionary. From our data only 34.5% of nouns do 

not display allomorphy; therefore, the amount of allomorphs is quite high in the Greek 

language. AMIS produced weights for more than 20,000 features. It is expected that a 

model with more than 20,000 features for weights is quite heavy statistically due to 

the uncountable combinations of syllables and characters increased exponentially the 

size of our sets.  
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Graph 1: Statistics from our nominal training data based on inflectional and 

allomorphic classes 
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To evaluate the effectiveness of our model, a testing corpus with derived nouns 

that have any kind of stem, at least one nominal derivation suffix (in the most right 

part of the word) and an inflectional suffix, was created. This second corpus contains 

2,755 carefully selected nouns to cover the full range of features and all the nominal 

derivational suffixes. We created ALLOMANTIS
2
, a morphological prediction analyzer 

for nominal allomorphy, which takes an input imported data from our training corpora 

on AMIS. ALLOMANTIS replaces each word characteristic with the proper weight 

given by the training corpus from AMIS. The analyzer multiplies the weights of all 

attributes for each candidate allomorphic class and proceeds with the one with the 

largest result of multiplication; according to the model of maximum entropy, this is 

the winner and is identified by the ALLOMANTIS as the proper allomorphic class. 

AC2 Positive affection weights Negative affection weights 

 Syllable3_ηδας 5,33E+01 Syllable1_δε 1,38E-01 

Syllable3_ηε 1,24E+01 Syllable3_δη 1,29E-01 

Syllable2_τηα 1,19E+01 Syllable3_κα 1,20E-01 

Syllable2_κπας 1,01E+01 Character2_κ 1,16E-01 

Syllable1_θηρ 9,93E+00 Syllable3_ιο 7,79E-02 

Syllable2_γας 8,13E+00 Syllable3_ρο 7,70E-02 

Syllable2_γθας 7,46E+00 Character2_σ 7,10E-02 

Syllable2_ρηα 6,88E+00 Syllable3_ο 6,16E-02 

Syllable1_κλα 5,90E+00 Syllable3_λη 3,67E-02 

Syllable3_βηα 5,46E+00 Character1_ε 4,37E-03 

AC3 Positive affection weights Negative affection weights 

 Syllable2_ηρες 5,41E+02 Character3_ζ 1,96E-01 

Syllable3_ρε 1,37E+02 Syllable2_ηα 1,78E-01 

Syllable1_κεγ 7,62E+01 Syllable2_λα 1,64E-01 

Syllable2_δες 5,31E+01 Syllable3_δα 1,24E-01 

Syllable3_πες 4,28E+01 Character2_ζ 1,09E-01 

Syllable2_ληες 3,54E+01 Stress_antipenultimate 9,18E-02 

Syllable3_δες 2,87E+01 Syllable2_κα 7,96E-02 

Syllable3_θες 2,58E+01 Syllable3_ηα 7,05E-02 

Syllable4_τε 2,19E+01 Origin_italian 2,43E-02 

Syllable1_δε 2,05E+01 Origin_turkish 1,98E-02 

Table 1: Sample of the assigned positive and negative affections weights  

by AMIS algorithm 

                                                        
2
 The blend ALLOMANTIS is a combination of ‗αιιοκορθία‘ (allomorphy) and ‗κάληες‘ (seer, 

prophet) and the capital letters refer to the initials of the maximum entropy program AMIS. 
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4.4 Results 

The overall accuracy (recall) of the model was 86.49% with the failure rate up to 

13.51%. A detailed analysis of the model for each allomorphic class is shown in the 

following graph. More than 90% was achieved in several classes, as in the AC1 

96.92%, AC2 95.97% and AC4 91.2%, whereas the two classes with the lowest 

percentage was AC5 (64.37%) and AC8 (9.28%), with the latter rates considered to be 

a strong flaw of (from) the average success.  
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Graph 2: Recall performance for each allomorphic class 

 

 Precision Recall Failed 

Allomorphic Class 1 99,78 99,09 0,91 

Allomorphic Class 2 100 99,59 0,41 

Allomorphic Class 3 99,05 98,43 1,57 

Allomorphic Class 4 100 99,6 0,4 

Allomorphic Class 5 69.78 66,67 33,33 

Allomorphic Class 6 88,74 84,42 15,58 

Allomorphic Class 7 91,11 90,64 9,36 

Allomorphic Class 8 25,25 10,53 89,47 

Average 93,46 91,43 8,57 

Table 2: Precision and Recall performance for each allomorphic class 

 



232 Athanasios Karasimos 

To improve the system, we tried a more rational approach to achieve a better 

performance. In the previous version of the AlloMantIS, we numbered syllables from 

left to right (i.e. ‗uranos‘ ‗sky‘ οσ-syl1, ρα-syl2, λος-syl3), while in the updated 

version we followed the stress strategy for spelling, i.e, the ultimate syllable was 

numbered as first, the penultimate as second and so forth. The result of the upgraded 

version of ALLOMANTIS was the rise of the correct prediction to 91.43% with the 

failed cases to 8.47%. Indeed, the first four allomorphic classes reached 100%, but 

AC8 remained in a tragically low threshold (10.53%), as well as AC5 with 66.67% of 

erroneous estimations, since both of them are similar cases of Turkish nouns and 

derivational suffixes that have a slightly different allomorphy in derivation (two 

allomorphs, i.e. kanape~ kanapeδ ‗sofa‘ vs. three allomorphs, i.e. bakali~ bakaliδ~ 

bakal ‗grocer). If we try to manually change the importance of stress values for these 

two groups, then the accuracy of the system will reach almost 100%. Additionally, 

some trials were performed to reduce the accompanied characteristics with the aim to 

create a less complex model with a similar high performance; nevertheless, it was 

only possible to eliminate a couple of features without affecting the overall 

performance. 

 

5. Conclusions: Re-visiting computational prediction of derivational allomorphy 

It is noteworthy that our model was trained by a corpus of inflected nouns (not created 

by the process of derivation and compounding) with the small number of the dataset 

and tested / evaluated by a corpus with derived nouns, since we tried to make our task 

more difficult. This choice was not arbitrary as it was based on Καραζίκος (2011) 

argument that the nominal derivational suffixes display similarities with nominal 

stems / roots, they participate in the same inflectional classes, and thus they exhibit 

the same allomorphic behavior. ALLOMANTIS correctly predicted allomorphy for 

more than 91% of the derived nouns of the testing corpus. It is expected that if 

ALLOMANTIS is trained with a corpus of inflected and derived nouns, then the 

prediction accuracy rate will be much higher. It was considered necessary in this 

primary testing stage of our model to provide a minimal help from the training corpus.  

The probabilistic language models, the supervised machine learning algorithms and 

modern linguistic theory models appear to support the viewpoint of language 

processing, which is the result of a dynamic and on-line grammatical analysis of 

conflicting constraints. Extending this reasoning means that certain morphological 



Computational prediction of Greek Nominal Allomorphy 233 

phenomena or processes can be a result of a combinatorial analysis of morphological 

features that are (sometimes) assisted from data of other languages (phonology, 

semantics, etc.). We totally agree with Dell‘ Orletta et al. (2007) that we anticipate 

that this kind of research is bound to shed light on the integration of performance and 

competence factors in language study; additionally, it will make mathematical models 

of language increasingly able to accommodate richer and richer language structures, 

thus putting explanatory theoretical accounts to the test of a usage-based empirical 

verification. Therefore, we are planning to test the limits of other machine learning 

approaches of non-probabilistic nature, where the generalizability might be higher, 

and probably the problematic class of loans and calques will be overcome. 

In this MaxEnt experiment, it is inferred how the existence of morphologically 

annotated corpora is essential for the effective conduct of morphological experiments 

in Greek. We have shown that a (supervised) probabilistic model applied to a corpus 

with quite rich annotated words can extract some basic principles that can be the 

keystone to construct a computational model to process the ―unpredictable‖ and hard-

to-deal phenomenon of allomorphy. 
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