
 Journal of Rehabilitation Robotics, 2018, 6, 8-21 8

 E-ISSN: 2308-8354/18 © 2018 Synergy Publishers

Dual Quaternions Robotics: A) The 3R Planar Manipulator

Mahmoud Gouasmi*, Belkacem Gouasmi and Mohammed Ben-Ahmed-Dahou

Algeria Structural Mechanics Research Laboratory, Mechanical Engineering Department, Blida University,
Algeria

Abstract: Kinematics analysis studies the relative motions, such as, first of all, the displacement in space of the end
effector of a given robot, and thus its velocity and acceleration, associated with the links of the given robot that is usually
designed so that it can position its end-effector with a three degree-of-freedom of translation and three
degree-of-freedom of orientation within its workspace. This chapter presents mainly, on the light of both main concepts;
the first being the screw motion or/ and dual quaternions kinematics while the second concerns the classical ‘Denavit
and Hartenberg parameters method’ the direct kinematics of a planar manipulator.
First of all, examples of basic solid movements such as rotations, translations, their combinations and general screw
motions are studied using both (4x4) matrices rigid body transformations and dual quaternions so that the reader could
compare and note the similarity of the results obtained using one or the other method. Both dual quaternions technique
as well as its counterpart the classical ‘Denavit and Hartenberg parameters method’ are finally applied to a three degree
of freedom (RRR) planar manipulator. Finally, we and the reader, can observe that the two methods confirm exactly one
another by giving us the same results for each of the examples and applications considered, while noting that the fastest,
simplest more straightforward and easiest to apply method, is undoubtedly the one using dual quaternions. As a result
this work may as well act as a beginners guide to the practicality of using dual-quaternions to represent the rotations and
translations ie: or any rigid motion in character-based hierarchies.

We must emphasize the fact that the use of Matlab software and quaternions and / or dual quaternions in the processing
of 3D rotations and/or screw movements is and will always be the most efficient, fast and accurate first choice. Dual
quaternion direct kinematics method could be generalised, in the future, to more complicated spatial and/ or industrial
robots as well as to articulated and multibody systems.

Keyword: Dual Quaternions, Forward Kinematics, Homogeneous Matrix, Screw Motion.

1. INTRODUCTION

Many research students have a great deal of trouble
understanding essentially what quaternions are [1-3]
and how they can represent rotation. So when the
subject of dual-quaternions is presented, it is usually
not welcomed with open arms. Dual-quaternions are a
break from the norm (i.e., matrices) which we hope to
entice the reader into supporting willingly to represent
their rigid transforms. The reader should walk away
from this chapter with a clear understanding of what
dual-quaternions are and how they can be used [4].
First we begin with a short recent and related work that
emphasises the power of dual-quaternions:

The dual-quaternion has been around since 1882
[5-7] but has gained less attention compared to
quaternions alone ; while the most recent work which
has taken hold and has demonstrated the practicality of
dual-quaternions, both in robotics and computer
graphics can be resumed in: - Kavan [8] demonstrated
the advantages of dual-quaternions in character
skinning and blending. - Ivo [9] extended Kavan’s work
with dual-quaternions and q-tangents as an alternative
method for representing rigid transforms instead of
matrices, and gives evidence that the results can be
faster with accumulated transformations of joints if the
inferences per vertex are large enough. - Selig [10]
addressed the key problem in computer games. -
Vasilakis [11] discussed skeleton-based rigid-skinning
for character animation. - Kuang [12] presented a

*Address correspondence to this author at the Algeria Structural Mechanics
Research Laboratory, Mechanical Engineering Department, Blida University,
Algeria; E-mail: ygouasmi@hotmail.com

strategy for creating real-time animation of clothed
body movement. -Pham [13] solved linked chain
inverse kinematic (IK) problems using Jacobian matrix
in the dual-quaternion space. -Malte [14] used a mean
of multiple computational (MMC) model with
dual-quaternions to model bodies. - Ge [15]
demonstrated dual-quaternions to be an efficient and
practical method for interpolating three-dimensional
motions. -Yang -Hsing [16] calculated the relative
orientation using dual-quaternions. - Perez [17]
formulated dynamic constraints for articulated robotic
systems using dual-quaternions. - Further reading on
the subject of dual numbers and derivatives is
presented by Gino [18].

In the last three decades, the field of robotics has
widened its range of applications, due to recent
developments in the major domains of robotics like
kinematics, dynamics and control, which leads to the
sudden growth of robotic applications in areas such as
manufacturing, medical surgeries, defense, space
vehicles, under-water explorations etc.

To use robotic manipulators in real-life applications,
the first step is to obtain the accurate kinematic model
[19]. In this context, a lot of research has been carried
out in the literature, which leads to the evolution of new
modeling schemes along with the refinement of
existing methodologies describing the kinematics of
robotic manipulators.

 Screw theory based solution methods have been
widely used in many robotic applications .The elements
of screw theory can be traced to the work of Chasles
and Poinsot [20, 21], in the early 1800’s and Whittaker
[22]. Using the theorems of Chasles and Poinsot as a

Dual Quaternions Robotics Journal of Rehabilitation Robotics, 2018, Vol. 6 9

starting point, Robert S. Ball developed [23] a complete
theory of screws which he published in 1900.
Throughout the development of kinematics, numerous
mathematic theories [24] and tools have been
introduced and applied. The first pioneer effort for
kinematic modeling of robotic manipulators was made
by Denavit and Hartenberg in introducing a consistent
and concise method to assign reference coordinate
frames to serial manipulators, allowing the (4×4)
homogeneous transformation matrices to be used (in
1955) [25], followed by Lie groups and Lie Algebra by
J.M Selig and others, [26-28]) and quaternions and
dual quaternions introduced by Yang and Freudenstein
(1964) [29], see also Bottema and Roth (1979) [30] and
McCarthy (1990) [31]. The original D–H parameter
method has many counterparts: Distal variant, proximal
variant, …to name but a few. There even exist different
options for these counterparts.

 In this method, four parameters, popularly known
as D–H parameters, are defined to provide the
geometric description to serial mechanisms. Out of the
four, two are known as link parameters, which describe
the relative location of two attached axes in space.
These link parameters are: The link length (ai) and the
link twist (αi). (See appendix 11, 3.)

The remaining two parameters are described as
joint parameters, which describe the connection of any
link to its neighboring link. These are the joint offset (di)
and the joint angle (θi).

 Modeling the movement of the rigid body by the
theory of the helicoidal axis: a combination of an
amount of rotation about and an amount of translation
along a certain axis, hence the term helicoidal axis is
used in various fields such as computer vision and
biomechanics. The application of this theory in the field
of robotics is taking more and more space. We can
consider the motion of a joint segment as a series of
finite displacements. In this case the movement is
characterized by an angle of rotation about and an
amount of translation along an axis defined in space by
its position and its orientation. This axis is referred to as
the finite helicoidal axis (FHA), because of the
discretization of the movement into a series of
displacements. On the other hand and by taking the
continuity of the movement into account, this
movement will be characterized by a rotational speed
(angular velocity) about and translation speed along an
axis defined by the instantaneous position and
orientation in space. One speaks in this case of an
instantaneous helicoidal axis (IHA). The application of
the helicoidal theory with its two versions (FHA and
IHA) is used to describe and understand the joint
movement, and to study in biomechanics, for example,
the different positioning techniques of prothèses. Thus
there are several methods to estimate the helicoidal
axis from a set of points representing a rigid body. Any
displacement of a rigid body is a helicoidal motion
which may be decomposed into an angular rotational
movement about and a linear translational movement
along a certain axis in 3D space. The methods differ in
the way of mathematically representing these two

movements. These movements can be expressed
using rotation matrices and translation vectors,
homogeneous matrices [32-34] unit quaternions, dual
quaternions, The two representations; using (3x3)
matrices or (4x4) homogeneous matrices and dual
quaternions will be simultaneously used for all and
each examples or applications studied so that
comparisons for each case could be done.

2. DUAL QUATERNIONS

2.1. «Product Type» Dual Quaternions

The dual quaternions have two forms thus two
readings which are complementary and simultaneous:
The first is the << product type >> description:

!! = !! + !
!!.!!
!

 With: !! = cos !
!
,!. sin !

!
 =

cos !
!
, sin !

!
. !! , sin

!
!
. !! , sin

!
!
. !!

and !! = (0, !! ,!! ,!! = (0 , !)

Then, the transformation is:

!!= !! + !
!!.!!
!

 = cos !
!
,! sin !

!
 +

! 0, !
!

. cos !
!
,! sin !

!

!! = cos !
!
,! sin !

!
 + ! – !.!

!
sin !

!
, !"#

!
 sin !

!
+

!
!
cos !

!
 << product type >> (1)

2.2. «Dual Type» Dual Quaternions

Indeed a general transformation, screw type, can be
also described using dual angles and dual vectors and
have therefore the following form << Dual type >>:

!= cos !
!
, sin !

!
! = cos !

!
, sin !

!
! +

 ! − !
!
sin !

!
 , ! sin !

!
+ !

!
! cos !

!
 << !"#$!"#$ >> (2)

It is defined by the dual angle ! and the dual vector
! , the rotation being represented by the angle !
around the axis n = (nx, ny nz) of norm 1, and a
translation d along the same vector n.

The vector m = (mx, my, mz) is the moment of the
vector n about the origin of reference (O, x, y, z); it is
named the moment of the axis n, with: ! = ! + ! d
with d being the amplitude of the translation along the
dual vector ! = n +! m with m = p x n (the green
vector see Figure 1) that defines the vector according
to Plücker coordinates, p, (the blue vecor), being the
vector that gives the position of n, (the red vector),
using the vector OO1 (see Figure 1).

The parameters of the transformation, the angle !,
the axis of rotation n, the magnitude of the translation d
and the moment m are the four characteristics of all,
any and every 3D rigid body transformation (4x4)
matrix, a screw motion or a helicoidal movement of any
kind (or type).

10 Journal of Rehabilitation Robotics, 2018, Vol. 6 Gouasmi et al.

Note that this form resembles that used for classics
quaternions; using the dual angle and the dual unitary
vector instead of the classical ones.

And as a matter of fact: The screw displacement is
the dual angle ! = ! + ! d, along the screw axis
defined by the dual vector ! or ! or in our case ! = n
+! m; such that we will obtain (respecting the rules of
derivation and multiplication of dual numbers), dual
vectors, quaternions and dual quaternions (see
appendix 10,2. and eq (24)):

! = cos !
!
, sin !

!
! = [cos !

!
 − ! !

!
sin !

!
, (sin !

!
 + !

!
!
 cos !

!
) (n +! m)] = cos !

!
 −! !

!
sin !

!
, n sin !

!
 +! (n

!
!
cos !

!
 + sin !

!
 m) = (cos !

!
, n sin !

!
) + !(− !

!
sin !

!
, sin !

!
 m

+ n !
!
cos !

!
) (2)

The geometric interpretation of these quantities is
related to the screw-type motion. The angle ! is the
angle of rotation around n, the vector unit n represents
the direction of the rotation axis. The element d is the
translation or the displacement amplitude along the
vector n, m being the vector moment of the vector axis
n relative to the origin of the axes. The vector m is an
unambiguous description of the position of an axis in
space, in accordance with the properties of Plückér
coordinates defining lines in space.

This form gives another interesting use: Whereas
the classics quaternions can only represent rotations
whose axes go (or pass) through the origin O of the
coordinates system (O, x, y, z), the dual quaternions
can represent rotations about arbitrary axes in space,
translations as well as any combination of both these
two basic movements.

These two forms << product type >> eq (1) or
<< !"#$!"#$ >> !" (2) represent the same motion
that describe the same movement ‘the screw motion’:

3. EXAMPLE 1: ROTATIONS REPRESENTED BY
QUATERNIONS

Let’s apply two successive rotations to a rigid body:
the first one of amplitude !! =

!
!
 around the axis Ox

followed by a second rotation of the same
amplitude !! =

!
!
 around the Oy axis: Using

quaternions the first rotation will be written; since !!
!

= !
!

 then cos !!
!

 = sin !!
!

 = !
!

 !! = (!
!

, !
!

, 0, 0);

having !!
!

 = !
!
 then cos !!

!
 = sin !!

!
 = !

!
 The second

rotation will have the form: !! = (!
!

, 0, !
!

 , 0) The final
composition of the two movements will be given by the
quaternion ! such that: ! = !!. !! = (!

!
, 0, !

!
, 0) .

(!
!

, !
!

, 0, 0) = (!
!
, !
!
, !
!
, − !

!
) Using quaternion’s

definition (4) and properties: ! = ((!
!
, !

!
 (!
√!

, !
√!
 , −

!
√!

)) or ((!
!
 ,− !

!
 (− !

√!
,− !

√!
 , !
√!

))

It is then easy to extract both the amplitude and the
resulting axis of the rotation from the result q:

cos !
!
 = !

!
 and sin !

!
 = !

!
; wich implies the first

solution ! = + 120 º, around the unitary axis (n) =
!
√!

1
1
−1

or cos !
!
 = !

!
 and sin !

!
 = − !

!
; wich implies a second

solution ! = −120 º, around the unit axis (− n) =
!
√!

−1
−1
1

In fact the two solutions represent the same and
similar solution since for any q we have q (!, n) = q
(−!, −n)

Using our classical (3x3) rigid transformations we
get:

R21 = R2.R1 =
0 0 1
0 1 0
 −1 0 0

1 0 0
0 0 −1
0 1 0

 =

0 1 0
0 0 −1
−1 0 0

Here it is very important to note that unlike the
quaternion method we cannot extract the needed
results easily and straightforwardly but we must follow
a long and sometimes complicated process
(determinant, trace, antisimmetry, angle and axis of
rotations signs, axis/angle (or conversions to Olinde
Rodrigues (Axe, Angle) parameters) …

Figure 1: Helicoidal or screw motion.

Dual Quaternions Robotics Journal of Rehabilitation Robotics, 2018, Vol. 6 11

Whichever used technique we will find: A rotation of

! = !!
! = 120 º around the unit axis n = !

√!

1
1
−1

To show the anticommutativity of the product let’s
do the inverse and start by the second rotation instead:

!! = !!. !! = (!
!

, !
!

, 0, 0). (!
!

, 0, !
!

, 0) = (!
!
, !
!
, !
!
, !
!
) =

((!
!
, !

!
 (!

√!
, !

√!
 , !

√!
)) = !! = ((!

!
, − !

!
 (− !

√!
, − !

√!
 ,

− !
√!

))

and that will imply !i = 120 º around the axis n = !
√!

1
1
1

 ,

or !i = − 120 º around the axis (– n) = !
√!

−
−1
1
−1

 ;

This of course will imply that: !!. !! ≠ !!. !!

Using matrices: Ri = R1 R2

=
1 0 0
0 0 −1
0 1 0

0 0 1
0 1 0
 −1 0 0

=
0 0 1
1 0 0
0 1 0

 ≠ R = R2 R1

wich implies:

A rotation of ! = !!
! =120 º around the unit axis n=

!
√!

1
1
1

 equivalent to a rotation of ! = − !!
! = −120 º

around the unit axis n = − !
√!

1
1
1

Using MATLAB (See Appendix 11, 1.) we can
calculate easily both the two quaternions
multiplications: q= n1 = q2.q1 and qi = n2 = q1.q2 and
the two equivalent products of matrices R21 = R2R1 and
Ri = R1 R2.

4. IMPORTANT NOTES: WHAT ABOUT
TRANSLATIONS?

We must recall that rotations act on translations, the
reverse being not true; in fact when multiplying by
blocks: For a rotation followed by a translation:
! !
0 1 ! !

0 1 = ! !
0 1 ; the rotation is not affected

by the translation.

While for a translation followed by a rotation:
! !
0 1

! !
0 1 = ! !!

0 1 ; the translation is affected by
the rotation.

When translations are performed first we can thus
assume that the translation vector of the resulting
matrix product; Rt act as the translation vector t of a
rotation followed by a translation. Or more generally
speaking considering two six degree of freedom
general rigid body transformations T1 followed by T2 we
will have:

T2 .T1 = !! !!
0 1

!! !!
0 1 = !!!! !!!! + !!

0 1 =
! !
0 1

The translation vector t of the product of the two
transformations is !

1 = !!!! + !! = !! 0
0 1

!!
1 +

!!
1

The same analysis as the last one could then be
done whatever the order and the number of the
successive transformations being performed over the
rigid body: The final result of the products of all the
undertaken rigid body transformations will be finally the
helicoidal, the helical or the screw motion given by the
(4x4) matrix:

[T] = Tn… Ti...T2 .T1 = ! !
0 1 (3)

with Ti representing either a rotation, a translation, a
rotation followed by a translation, a translation followed
by a rotation or even simply a no movement (ie: the 4x4
identity matrix I).

5. SCREW MOTION

Any screw motion would be given by the following
(4x4) matrix [T]:

! !
0 1

! (!,!) ! !
!!
!

0 1
! − !
0 1 =

!(!,!) ! !
!!
! + (! − !(!,!)!

0 1
 = [T] (3)

 The middle matrix is a screw about a line through
the origin; that is, a rotation around the axis n followed
by a translation along n. The outer matrices conjugate
the screw and serve to place the line at an arbitrary
position in space. The parameter p is the pitch of the
screw; it gives the distance advanced along the axis for
every complete turn, exactly like the pitch on the thread
of an ordinary nut or bolt. When the pitch is zero the
screw is a pure rotation, positive pitches correspond to
right hand threads and negative pitches to left handed
threads.

To show that a general rigid motion is a screw
motion, we must show how to put a general
transformation into the form derived above. The unit
vector in the direction of the line n is easy since it must
be the eigenvector of the rotation matrix corresponding
to the unit eigenvalue. (This fails if R = I, that is if the
motion is a pure translation). The vector u is more
difficult to find since it is the position vector of any point
on the rotation axis. However we can uniquely specify
u by requiring that it is normal to the rotation axis. So
we impose the extra restriction that n.u = 0. So to put
the general matrix ! !

0 1 into the above form we must

solve the following system of linear equations: ! !
!!
! +

(! − !)! = t Now n.Ru = n.u = 0, since the rotation is
about n. So we can dot the above equation with n to
give: 0 = n.(t − ! !

!!
!) this enables us to find the pitch:

p = !!
!
!. t All we need to do now is to solve the

equation system: (! − !)! = (t – (!. t) ! ; This is

12 Journal of Rehabilitation Robotics, 2018, Vol. 6 Gouasmi et al.

possible even though det (! − !) = 0, since the
equations will be consistent.

This entire analysis established through this long
paragraph concerning the helicoidal motion or rigid
(4x4) transformation matrix [T] is contained in only one
line enclosed in its counterpart dual quaternion ! of
the form:

! = cos !
!
, sin !

!
! = !!. .!! . .!!.!!= cos !

!
, sin !

!
.! + !

− !
!
sin !

!
 , ! sin !

!
+ !

!
.! cos !

!
 or eq (2) ≡ eq (3)

These equations are best represented by Figure 2a
and b.

a

b

Figure 2:

6. EXAMPLE 2: GENERAL MOVEMENT OR A
SCREW MOTION

Let’s apply two successive screw motions to a rigid
body: the first one around the Oy axis of amplitude !! =
!
!
 and of pitch (p = !!

!
 t = 4) followed by a second one

around the axis Ox and of the same amplitude !! =
 !
!
 and same pitch p = 4 corresponding to a translation

of 1 unit along the two chosen axes:

T2. T1 =
1 0 0 1
0
0 01

−1
0

0
0

0 0 0 1

0 0 1 0
0
−1

1
0

0
0

1
0

0 0 0 1
 =

0 0 1 1
1
0

0
1

0
0

0
1

0 0 0 1
 (4)

The rotation part of the product corresponds to that
of the precedent example of successive rotations Ri =

R1 R2 with amplitude ! = !!
! = 120 º around the unit

axis n = !
√!

1
1
1

; its translation part being t =
1
0
1

We can find its pitch p = !!
!

 (n. t) = !!!!
!

 !
√!

1
1
1

.
1
0
1

 =

!
√!

 = 2√3

The axis of rotation will keep its same original

direction n = !
√!

1
1
1

, it will go through a new centre C

given by the shifting vector u which could be found by
the linear equations system: (I – R) u = t – ! !

!!
 n

−
1 0 −1
1 1 0
0 −1 1

!!
!!
!!

 =
1
0
1

 − !!
!.!!

 !
√!

!
√!

!
√!
!
√!

 =
1
0
1
− !

√!

!
√!

!
√!
!
√!

= −

 !
!
!
!
!
!

The vector translation T (or t) of the movement
1
0
1

is the sum of the two main perpendicular vectors T1 +
T2 such as T1 is to be chosen parallel to n while the
rest T2 is the translation vector part responsible for the
shifting of the axis to its final position through the new
center C as such we have:

T1 =

!
!

!
!
!
!

 and T2 = −

!
!

!
!
!
!

; T1 being the translation

part parallel to n while T2 being the perpendicular one.

The solutions to the system of linear equations are:

!! − !! = !
!
; −!!+ !! = − !

!
; and − !!+ !! = !

!
 (5)

Choosing the centre C to belong to the plane (y-z);
!! = 0 or (Cx = 0) would imply the two coordinates
representing the point C intersection of the shifted
axis n with the (y-z) plane to be:

Cy = −
 !
!
 and Cz =−

 !
!
.

For the (z-x) plane; !! = 0 or (Cy = 0): Cz =
 !
!
 and

Cx = !
!
.

And finally considering the (x-y) plane; !! = 0 or
(Cz = 0): Cx = !

!
 and Cy = −

 !
!

So that to confirm these results; we can finally
check the following conjugation matrices:

Dual Quaternions Robotics Journal of Rehabilitation Robotics, 2018, Vol. 6 13

0 0 1 0

1
0

0
1

0
0

!!
!
!!
!

0 0 0 1

0 0 1 !
!

1
0

0
1

0
0

 !
!
 !
!

0 0 0 1

0 0 1 0

1
0

0
1

0
0

 !
!
 !
!

0 0 0 1

=

0 0 1 1
1
0

0
1

0
0

0
1

0 0 0 1
 ≡ (4)

Or,

0 0 1 !
!

1
0

0
1

0
0

0
!
!

0 0 0 1

0 0 1 !
!

1
0

0
1

0
0

 !
!
 !
!

0 0 0 1

0 0 1 !!
!

1
0

0
1

0
0

0
!!
!

0 0 0 1

 =

0 0 1 1
1
0

0
1

0
0

0
1

0 0 0 1
 ≡ (4)

Or finally;

0 0 1 !
!

1
0

0
1

0
0

!!
!
0

0 0 0 1

0 0 1 !
!

1
0

0
1

0
0

 !
!
 !
!

0 0 0 1

0 0 1 !!
!

1
0

0
1

0
0

!
!
0

0 0 0 1

 =

0 0 1 1
1
0

0
1

0
0

0
1

0 0 0 1
 ≡ (4)

Whenever necessary, Matlab was implemented,
throughout the study, concerning all kinds of products
or multiplication of quaternions or matrices

7. THE SAME GENERAL EXAMPLE USING DUAL
QUATERNIONS

! = ! + !!! = !! + !
!
!!! + !!! + !!! ⨂!! = ! + ! !"

!

The two transformations T1 and T2 are basic
centered helicoidal movements through the origin O of
the axes that can be written:

For the first movement around and along Oy:
!! = !! +

!
!
 !!! = !! = (c, 0, s, 0) + !

!
 (− s!!, 0, c !!, 0) =

(cos !
!
, 0, sin !

!
, 0) + !

!
 (− sin !

!
.! , 0, cos !

!
.!, 0) = (!

!
,

0, !
!

, 0) + !
!
 (− !

!
, 0, !

!
, 0) followed by the second

movement around and along Ox : !! = !! +
!
!
 !!! =

!! = (c, !, 0, 0) + !
!
 (− s!!, c !!, 0, 0) = (cos !

!
, sin !

!
, 0,

0) + !
!
 (− sin !

!
.! , cos !

!
.!, 0, 0) = (!

!
, !

!
, 0, 0) +!

!

(− !
!

, !
!

, 0, 0)

The dual quaternion product of the two screw
movements is:

!!. !! = (!! +
!
!
 !!!).(!! +

!
!
 !!!) = !!. !! + !

!
 (!!. !!! +

!!!. !!) = [(!
!

, !
!

, 0, 0) + !
!
 (− !

!
, !

!
, 0 .0)]. [(!

!
, 0, !

!
,

0) + !
!
 (− !

!
, 0, !

!
, 0)] = (!

!
, !
!

, 0, 0).(!
!

, 0, !
!

, 0) + !
!

[(!
!

, !
!

, 0, 0).(− !
!

, 0, !
!

, 0) + (− !
!

, !
!

, 0.0). (!
!

, 0, !
!

,

0)] = (!
!
,(!
!
, !
!
, !
!
)) + !

!
 [(− !

!
, (− !

!
, !
!
, !
!
)) + (− !

!
, (!

!
, −

!
!
. !
!
))] = (!

!
, !
!
(!

!
, !

!
, !

!
)) + !

!
 (−1, (0, 0, 1)) (6)

 Another way of doing it: We could get this same
result starting from the (4x4) rigid transformation eq (4)
matrix defined before: A rotation of amplitude ! = !!

! =

120 º around the unit axis n = !
√!

1
1
1

 followed by a

translation t =
1
0
1

 such that:

! = ! + !!! = !! + !
!
!!! + !!! + !!! ⨂!! = ! + ! !"

!

= (!
!
, !
!
(!

!
, !

!
, !

!
)) + !

!
 [(0, 1, 0, 1) (!

!
, (!

!
, !
!
, !
!
))]= (!

!
,

!
!
(!

!
, !

!
, !

!
)) + !

!
 [(−1, (0, 0, 0)) + (0, (!

!
, 0, !

!
)) + (0,

(− !
!
, 0, !

!
))] = (!

!
, !

!
(!

!
, !

!
, !

!
)) + !

!
 (−1, (0, 0, 1))

 (6)

At this stage we know the complete integrality of
informations concerning this movement thanks to our
magic and powerful calculated dual quaternion: The
rotation part, as seen before, having amplitude ! = !!

! =

120 º around the unit axis n; n = !
√!

1
1
1

; the dual part

will provide us gratefully with the translation along the

axis of rotation; using eq (2): ! − !
!
sin !

!
, ! sin !

!
+

!
!
! cos !

!
= !

!
 (−1, (0, 0, 1)) = ! (− !

!
, (0, 0, !

!
))

We thus have the scalar part: − !
!
sin !

!
 = − !

!
!
!

 =

− !
!
 implying that d = !

!
 = ! !

!
 and pitch p = 2√3

We can also have the vector part: ! sin !
!
+

!
!
! cos !

!
 = (0, 0, !

!
) which implies:

m!
!
!
+ !

!
!
√!
 !
!
 = m!

!
!
+ !

!
 = 0

m!
!
!
+ !

!
!
√!
 !
!
 = m!

!
!
+ !

!
 = 0

m!
!
!
+ !

!
!
√!
 !
!
 = m!

!
!
+ !

!
 = !

!

We can then deduce the vector moment m =

!!
!√!

!!
!√!
!
!√!

Finally we can have the right position of the shifted
axis u that have the same direction as the rotation axis

14 Journal of Rehabilitation Robotics, 2018, Vol. 6 Gouasmi et al.

n by defining the coordinates ux, uy and uz of a point or
a center C belonging to it so that: m = u Λ n

Or

!!
!√!

!!
!√!
!
!√!

 =
u!
u!
u!

 Λ !
√!

1
1
1

 = !
√!

u! − u!
u! − u!
u! − u!

 implying

that: u! − u! = !!
!

; u! − u! = !!
!

 and u! − u! = !
!

Which confirm the same obtained results eq (5)
using the (4x4) rigid transformation matrix:

!! − !! = !
!
; −!!+ !! = − !

!
; and − !!+ !! = !

!
 (5)

8. THE 3R PLANAR MANIPULATOR

The planar manipulator is constituted of the three
successive links (arms) (Figure 3) of lengths !! , !!
and !! that are rotating about their different axes,
parallel to Oz: The vector dual quaternion !! ,
representing the coordinates of the end effector, to be
manipulated is !!= 1 + ! ((!! + !! + !!), 0, 0)

The result of the three manipulations would be
elegantly given by the product of the dual quaternions
in the following order; this could be done either by the
operation:

!!
! = !! !! !! !!!!∗ !!∗ !!∗ = (!! !! !!) !! !!∗ !!∗ !!∗ =

 Or the operation !! !! !! !!!!∗ !!∗ !!∗ =
!! (!! !! !!!! ∗) !!∗ !!∗ (7)

Let us begin by the first operation concerning the
rotation of amplitude !! around the axis C3z of the third
link a3 represented by the central DQ to somehow
deploy outward these multiplications: !! !!!!∗

To find the dual quaternion !! we will need the
conjugation technique given by the treble multiplication
TR!!!=(T)(R)(−T); Since the rotation is around C3z;
The coordinates of C3 are: ((!! + !!) , 0, 0)t, the
rotation is: R3 = (cos !!

!
, sin !!

!
0, 0, 1) and the

translation is: T3 = 1 + !
!
 (!! + !!, 0, 0) or 1 + !

!
 t3

!! = T3 R3 !!!! = [1 + !
!

 (!! + !! , 0, 0)]

[(cos !!
!
, sin !!

!
0, 0, 1)][1 − !

!
 (!! + !!, 0, 0)] or

[1 + !
!
 t3] [R3] [1 − !

!
 t3] = [1 + !

!
 t3] [R3 − !

!
 R3 t3] =

R3 +
!
!
(t3R3 – R3 t3) or similarly;

[R3 + !
!
 t3R3] [1 − !

!
 t3] = R3 +

!
!
(t3R3 – R3 t3)

To simplify the writings, let’s adopt C3 and S3 in
place of cos (θ3 / 2) and sin (θ3 / 2) respectively:

R3= [!!, 0,0, !!] , t3R3= [0, ((!! + !!) ,
0,0)][!!, 0, 0, !!]=[0,!!(!! + !!), – !!(!! + !!), 0]

and R3 t3 = [!!, 0, 0, !!] [0 , ((!! + !!) , 0, 0)] =
[0,!!(!! + !!), !!(!! + !!), 0]

!! = R3 + !
!
(t3 R3 – R3 t3) = [!!, 0,0, !!] + !

!

[0,0, – 2!!(!! + !!), 0] (8)

Important note: As a matter of fact nor do we need
the Denavit-Hartenberg parameters ‘avoiding to be lost
in the maze of numerous parameters choices’ neither
do we need the conjugation technique;

We already have this dual quaternion !! from
definition (2);

!! = ! == cos !
!
, sin !

!
! = cos !

!
, sin !

!
! +

 ! − !
!
sin !

!
 , ! sin !

!
+ !

!
! cos !

!
 << !"#$!"#$ >> (2)

Noting that this manipulation concerns the shifting
of the Oz axis the quantity (!! + !!) along the
x-direction and since there is no translation along the
shifted axis C!z, so replacing ! = 0 in eq ! ,will give:

!! = cos !
!
, sin !

!
! = [!!, 0,0, !!] + ! 0 , ! !!

Finding the moment ! of the vector (!! + !!)!
with respect to the axis of rotation k will give us !!;

! =
!! + !!

0
0

 Λ
0
0
1

 = −
0

(!! + !!)
0

 and thus

!! = [!!, 0,0, !!] + ! 0 , 0,−(!! + !!)!! ,0 (9)

Exactly the same result but elegantly and with very
much less hassle!

We can then have:

Figure 3: Manipulator RRR and its home position.

Dual Quaternions Robotics Journal of Rehabilitation Robotics, 2018, Vol. 6 15

!! !!!!∗ = [(!!, 0, 0, ! 3) + ! (0,– ! 3(!! + !!), 0)] [(1+!
((!! + !! + !!), 0, 0))] [(!3, 0, 0,– !3)+! (0,– !3(!! + !!),
0)] =

Performing properly the products and using the
fondamental trigonometric properties we can find the
vector result of this first transformation: 1+ ! (!! +
!! + !! cos !!, !!sin !!, 0)

Finally, the first movement of our manipulator can
be represented by the Figure 4:

For the second rotation of angle θ2 concerning the
second link a2, about the axis C2z and using the same
procedure we can write the dual quaternion !! : !! =
[(!2, 0, 0, !2) + ! (0, – !2!!, 0)]

To be applied to the found precedent result vector:
1+ ! (!! + !!+ !! cos !!, !! sin !!, 0) = 1+ ! (!, !, 0)

We will have;

[(!2, 0, 0, !2) +! (0, – !2!!, 0)][1 + ! (!, !, 0)] [(!2, 0,
0, – ! 2) + ! (0, – ! 2 !! , 0)]=1+ ! ((1 − cos !!) !! −
sin !!! + cos !!!, − !! sin !!+ cos !!! + sin !! !, 0) =

And finally giving x and y their precedent values:

!, !, 0 t = (!! + !!+!! cos !!, !! sin !!, 0)t

The coordinates of the resulting vector after the
transformation will be:

!, !, 0 t = (!! + !! cos !! + !!cos (!! + !!),
!!sin !! + !! sin(!! + !!), 0)t; See Figure 5:

The last and final movement is a pure rotation (!!)
around the axis Oz applied to the precedent result
vector:

!! = (!1, 0, 0, !1)[1+ ! (!, !, 0)] (!1, 0, 0, −!1) = 1+ ! (−
sin !!! + cos !!!, cos !!! + sin !! !, 0)

Finally and replacing x et y by their precedent
values:

!, !, 0 t = (!! + !! cos !! + !!cos (!! + !!),
!!sin !! + !! sin (!! + !!), 0)t

This will give us the final position of the vector
(representing the end effector) result after the three
successive rotations:

x = !!cos !! + !! cos !! + !! + !! cos (!! + !! + !!),

y = !!sin !! + !! sin !! + !! + !! sin (!! + !! + !!)
and

z = 0

Thus, one can easily confirm all the results obtained
for this example using either the D.Q method or the
classical Denavit and Hartenberg parameters method
(See 10.3.2.) or the matrix conjugation technique T.
M .T-1.

Figure 4: Arm a3 rotated θ3 radians around C3z axis.

Figure 5: Arm a2 rotated θ2 radians around C2z axis.

Figure 6: Arm a1 rotated θ1 radians around C1z (or Oz) axis.

16 Journal of Rehabilitation Robotics, 2018, Vol. 6 Gouasmi et al.

Nevertheless it is nothing but pure common sense
to find these direct 3R manipulator positions by drawing
the successive positions of the links (components) of
the RRR manipulator.

9. CONCLUSION

 We hope that the reader should not get us wrong:
We never pretend that the D-H parameters method is
wrong or obsolete and that it should be a thing of the
past; recognising that this important classical method
was the precursor that enlightened the path to modern
robotics; we only say and insist that there exist through
the DQ parameters another short, free of singularities
and easy to work with method, when dealing with robot
direct kinematics.On the light of the obtained results
one has to say that the most perfect (not suffering
singularities of any kind), easiest and rapid way to
perform a 3D rigid transformation of any sort is to use
the dual quaternion that caracterises the movement.
Most of all we are free to use the 3D space, being sure
that no loss of degree of freedom or guimball lock of
any sort can never happen.Using a D-H parameters
method or any of its counterparts means a choice of
different sort of embarassing and somehow awkward
three axes frames to be created and then allocated to
each arm/ link; ‘providing’ our robot or mecanism with
different direction axes and angles with very much
complicated choice of signs (concerning the directions
and the angles alike) to be chosen subject to some
rules depending on the chosen method and model of
robot.

Choosing to use dual quaternions we only need to
know the constants or values that concern the
construction geomety of a given or chosen robot
(directions of rotations, distances, lengths of links...) to
evaluate its kinematics without any threat to be lost in
the maze or jungle of choices. Most of all, it will prevent
us from using the only other existing method, or one of
its options, which is that of the Denavit and Hartenberg
parameters which mainly consists of: 1) Choosing 3D
frames attached to each link upon certain conditions
/conventions, 2) Schematic of the numbering of bodies
and joints in a robotic manipulator, following the
convention for attaching reference frames to the bodies,
this will help to create: 3) A table for exact definition of
the four parameters, ai, αi, di, and θi , that locate one
frame relative to another, 4) The (4x4) rigid
transformation matrix that will have the given form: !!!!! .
(See 11.3)

This chapter provided a taste of the potential
advantages of dual-quaternions, and one can only
imagine the further future possibilities that they can
offer. For example, there is a deeper investigation of
the mathematical properties of dual-quaternions (e.g.,
zero divisions). There is also the concept of
dual-dual-quaternions (i.e., dual numbers within dual
numbers) and calculus for multi-parametric objects for
the reader to pursue if he desires.

This Dual Quaternions Kinematics method could be
easily generalized to all kinds of existing or/and future

robots providing their given general geometric
characteristics to be known.

We should emphasize on the fact that Matlab
software was used, throughout this chapter and
whenever necessary, concerning all kinds of products
or multiplication of quaternions or rigid transformation
matrices.

Finally we hope all efforts should be conjugated to
create a common MATLAB platform to be used for the
manipulation of Quaternions and / or Dual Quaternions
as well as conversions from or into 3D or 4D rigid body
matrices.

10. APPENDIX

10.1. Quaternion-Matlab Implementation Class

>> % See paragraph 3; Example 1: Rotations
represented by Quaternions >> % A first rotation of
angle π/2 around the x-axis ,q1 , followed by a rotation
of angle π/2 around the y-axis , q2 will result in a
rotation given by the product n1 = q2.q1 :

>> q1 =[cos(pi/4) sin(pi/4) 0 0];

q2 =[cos(pi/4) 0 sin(pi/4) 0];

>> n1 = quatmultiply (q2,q1)

n1 = 0.5000 0.5000 0.5000 -0.5000

>> % If the order is inversed the result will be given by
the quaternion n2 = q1.q2

>> n2 = quatmultiply (q1,q2)

n2 = 0.5000 0.5000 0.5000 0.5000

>> % Using 3*3 matrices ; if the rotation R1 is
performed first the rotation product is R2*R1:

R1 = [1 0 0;0 0 -1;0 1 0];

R2 = [0 0 1; 0 1 0;-1 0 0];

prod1 = R2*R1

prod1 =

0 1 0

0 0 -1

-1 0 0

>> % if the order is inversed the multiplication will be
R1*R2:

prod2 = R1*R2

prod2 =

0 0 1

1 0 0

0 1 0

Dual Quaternions Robotics Journal of Rehabilitation Robotics, 2018, Vol. 6 17

10.2. Quaternions and Dual Quaternions (DQ)

10.2.1. Quaternions or Rotation Representation

Quaternions were first discovered and described by
the Irish mathematician Sir Rowan Hamilton in1843.
Indeed quaternion’s representation and axis-angle
representation are very similar.

Both are represented by the four dimensional
vectors. Quaternions also implicitly represent the
rotation of a rigid body about an axis. It also provides
better means of key frame interpolation and doesn’t
suffer from singularity problems.

The definition of a quaternion can be given as (s, m)
or (s, ! x, ! y, ! z) where m is a 3D vector, so
quaternions are like imaginary (complex) numbers with
the real scalar part s and the imaginary vector part m.

Thus it can be also written as: s + !x i + !y j + !z k.

There are conversion methods between
quaternions, axis-angle and rotation matrix.

Common operations such as addition, inner product
etc can be defined over quaternions.

Given the definition of !! and !! :

!! = !! + !x1 ! + !y1 ! + !z1 ! or !! = (!!, !!)

!! = !! + !x2 ! + !y2 ! + !z2 ! or !! = (!!, !!)

Addition operation is defined as:

 !! + !! = (!! + !!, !! + !!) = (!! + !!) + (!x1 +
!x2)i + (!y1 + !y2)j + (!z1 + !z2)k

dot (scalar, inner): product operation(.) as:

!!. !! = !!. !! + !!. !!

Quaternion multiplication is non commutative, but it
is associative.

Multiplication identity element is defined as : (1, (0,
0, 0))

We can also perform the multiplication in the
imaginary number domain using the definitions:

!! = !! = !! = －1; ! . ! = ! , ! . !	 = ! , ! . !	 = ! ;
!. ! = － !, !. ! = － !, !.! = － !

Equations (A1) to (A12) state the definitions, rules
and properties of dual quaternion algebra.

Quaternion multiplication (⨂)is defined as:

 !!⨂!! = (!! . !! – !! . !! , !! . !! + !! . !! + !!
∧!!) (10)

Each quaternion has a conjugate !∗ and an
inverse (except zero quaternion) defined by:

!∗ = (s, – m) (11)

and an inverse !!! = (!
!
)!!∗ ; (! ≠ 0) Where ! 2 = s

2 + !x
2 + !y

2 + !z
2 = ! ⨂ !∗ = !∗⨂ !

Rotations are defined by unit quaternions.Unit
quaternions must satisfy ! = 1. Since multiplication
of two unit quaternions will be a unit quaternion, N
rotations can be combined into one unit quaternion qR
= qR1 .qR2. qR3 qRN

It is also possible to rotate a vector directly by using
quaternion multiplication. To do this, we must define a
3D vector V	 = (vx, vy, vz) that we want to rotate in
quaternion definition as qv = (0, v) = 0 + vx i+ vy j+ vz k.

The rotated vector V ′ = (vx ′, vy ′, vz ′) can be defined
as qv’ = (0, v ′) = 0 + vx ′i + vy ′j + vz ′k

Noting that, in quaternion rotation !!! = !∗ (For
unit quaternion). So, rotation of qv by quaternion q can
be calculated as:

qv’ = q ⨂ qv ⨂ !!! = q ⨂ qv ⨂ !∗ (12)

And, assuming another quaternion rotation p, two
rotations can be applied to the vector V such as:

qv’ = p ⨂(q ⨂ qv ⨂ !!!) ⨂ !!! = (p ⨂q)⨂ qv ⨂ (!!!
⨂ !!!) = C ⨂ qv ⨂ !!! (13)

providing that quaternion C = (p ⨂ q) is a combinaison
of the precedent quaternions q and p .

The equation implies that vector V is first rotated by
the rotation represented by q followed by the rotation p.

A quaternion q that defines a rotation about
(around) the axis n denoted by the unit vector (nx, ny,
nz) of an angle ! could be written as:

q = cos !
!
 + sin !

!
 (nxi + ny j + nz k) (14)

This same quaternion represents a rotation of
amplitude (− !) around the opposite axis (−n)

10.2.2. Dual Quaternions

Dual Quaternions (DQ) were proposed by William
Kingdom Clifford in 1873.They are an extension of
quaternions. They represent both rotations and
translations whose composition is defined as a rigid
transformation.

They are represented by the following eight
dimensional vector:

! = (! , !) = (s , !x	 , !y, !z	 , ! !!, !!! , !!! , !!!) = (! ,
! , ! , !) (15)

Such that: ! = !	 +	 !!!	 =	 s + !x i + !y j + !z k
+ ! (! !! + !!!+ !!! + !!!)	

18 Journal of Rehabilitation Robotics, 2018, Vol. 6 Gouasmi et al.

Dual quaternion multiplication is defined by:

!1⨂ !2 = !1⨂ !2 + ! (!1⨂ ! !! + ! !!⨂ !2) (16)

With !! = 0; ! being the second order nilpotent
dual factor.

The dual conjugate (analogous to complex
conjugate) is denoted by:

! = !	 -	 !!! (17)

This conjugate operator can lead to the definition of
the inverse of ! which is:

!!! = !
!
 = !

!
!
!
 = !

!
 − ! !!

!!
; which means that a pure

dual number (!": ! = 0) does not have an inverse)

! = =	 ! ⨂ !!! = (! + !!!)(
!
!
 − ! !!

!!
) = !

!
 − ! !!!

!!
 +

!!!
!

 = !
!
 − ! !!

!
 + !!!

!
 = 1− 0 = 1

A second conjugation operator is defined for DQs. It
is the classical quaternion conjugation and is denoted
by: !∗	 =	 !∗	 + !!!∗	

Where conjugation of dual and non-dual quaternion
parts satisfies eq (11).

Combining these two conjugation operators will lead
to the formalization of DQ transformation on 3D points.
Use of both conjugations on !	 can be denoted !∗ .
Using definitions (11), (15) and (17) we finally have:

!∗ = (s ,−!x ,−!y,−!z , − ! !!, !!! , !!! , !!!) (18)

It is well know that we can use dual quaternions to
represent a general transformation subject to the
following constraints:

The DQ screw motion operator !:	 = (!, !!) must
be of unit magnitude: ¦!¦	 = (! + !!!)2	 = 1

This requirement means two distinct conditions or
constraints:

s 2 + !x
2 + !y

2 + !z
2 = 1 and

s ! !! + !x !!! + !y !!! + !z !!! = 0 (19)

Which imposed on the eight (8) parameters of a
general DQ, effectively reduce the number of degree of
freedom (8 － 2) = 6; equivalent to the degree of
freedom of any free rigid body in 3-D space

10.2.3. Dual Quaternions or General 3D Rigid
Transformation Representation

While equation (14) defines completely and
unambiguously (without any singularity like guimbal
lock and other loss of degree of freedom) all 3D
rotations in the physical space, dual quaternions can
represent translations;

A DQ defined as: !! = 1 + !
!
	 !!! + !!! + !!! 	

corresponds to the translation vector ! = (!!, !! , !!)
t

Which could symbolically be noted T; so !! =
1+ ! !

!

The translation T on the vector !	 can be computed
by: !!! = !! ⨂!! ⨂!!∗

So fortunately using def (A9), we have: !!∗ = !! =
1+ ! !

!
,	 then	 !!! = !! ⨂!! ⨂!!∗ = !! ⨂!! ⨂!! = [1+ !

!
	

!!! + !!! + !!!]	 ⨂	 [1+ !	 !!! + !!! + !!!]⨂[1 +
 !
!
 !!! + !!! + !!!]	 =1+ ! 	 [!! + !!)! + (!! + !!)! +

(!! + !!)!]	

Which correspond to the transformed vector: !′ =
!! + !!)! + (!! + !!)! + (!! + !!)!

10.2.4. Combining Rotations and Translations

Assuming: ! and then !,	 two DQ transformations
applied successively and in that order to a DQ position
vector !! ; Their combined DQ transformation !	
applied to !! gives:

 !!! = !⨂(! ⨂ !! ⨂!∗) ⨂ !∗ = (! ⨂ !) ⨂ !! ⨂ (!∗⨂
!∗) = ! ⨂ !! ⨂ !∗ (20)

It is very important to notice that the most inner
transformation of the equation is applied first with an
inside to outside manner.

In eq (20), ! is the first transformation followed by
the second one !.

The successive composition or combination of unit
DQ rotation !! = R followed by a unit DQ translation
!! = 1+ !

!
 !!! + !!! + !!!

will give: !! ⨂ !! = (1+ !
!
 !!! + !!! + !!!) ⨂ qR =

qR + !
!
 !!! + !!! + !!! ⨂ qR = R + ! !"

!
 (21)

Its inverse being: (R + ! !"
!
)!! = !∗ − !∗!

!

If the translation is applied first:

!! ⨂ !! = !!⨂(1 +
!
!
 !!! + !!! + !!!) = qR +

!!⨂
!
!
 !!! + !!! + !!! qR = R + ! !"

!
 (22)

Its inverse being: (R + ! !"
!
)!! = !∗ − !!∗

!

10.2.5. Several Transformations

Suppose that the vector V in its dual quaternion
form !! = 1 + ! ! is under a sequence of rigid
transformations represented by the dual quaternions
!1, !2, . . . , !n. The resulting vector is encapsulated in
the dual quaternion:

Dual Quaternions Robotics Journal of Rehabilitation Robotics, 2018, Vol. 6 19

1+ ! ! ′ = !n ⨂ (!n−1 ⨂ ….⨂ (!1 ⨂ (1+ ! !) ⨂ !∗1)
⨂ …..⨂ !∗ n−1) ⨂ !∗n (23)

= (!n ⨂…⨂!1) ⨂ (1+ ! !) ⨂ (!∗1 ⨂…. ⨂ !∗n)

We denote the product dual quaternion as ! =
!n ⨂…⨂!1. The effect is equivalent to a single rigid
transformation represented by !; namely,

1+ ! ! ′ = ! ⨂ (1+ ! !) ⨂ !∗.

Using dual numbers and plucker coordinates and
introducing the following dual angle and dual vector we
can write:

!	 = !	 + !" and

!	 = ! + !"

It can be easily shown that:

cos ! ! !"
!

 = cos !
!
 −! !

!
sin !

!
 and (24)

sin ! ! !"
!

 = sin !
!
+ ! !

!
cos !

!

10.3.1. Parameters of Denavit and Hartenberg :

The Denavit and Hartenberg Convention [35-38], is
a systematic method. It allows the passage between
adjacent joints of a robotics system. It relates to the
open kinematic chains where the joint possesses only
one degree of freedom, and the adjacent surfaces
remain in contact. For this aspect the use of hinges or
slides is indispensable. The choice of the frames for
the links facilitates the calculation of the DH
homogeneous matrices and makes it possible to
rapidly express information of the terminal element
towards the base or the reverse.

The steps for this technique are as follows:

1. Numbering of the constituent segments of the
manipulator arm from the base to the terminal
element. The zero referential is associated with
the base of it, and the order n to the terminal
element (end effector);

2. Definition of the main axes of each segment : • If
zi and zi-1 do not intersect we choose xi so as to
be the parallel with the axis perpendicular to zi
and zi-1. • If zi and zi-1 are collinear, xi is chosen in
the plane perpendicular to zi-1 .

3. Fix the four geometric parameters: di , θi, ai , α!
(see Figure 7) for each joint such as:

• di coordinate of the origin Oi on the axis zi-1 For a
slide di is a variable and for a hinge di is a
constant.

• θi is the angle obtained by screwing xi-1 to xi
around the axis zi-1. For a slide !! is a constant
and for a hinge !! is a variable.

• ai is the distance between the axes zi and zi-1
measured on the axis xi negative from its origin
up to the intersection with the axis zi-1.

• α1 is the angle between zi et zi-1 obtained by
screwing zi-1 to zi around xi.

Finally, the homogeneous DH displacement matrix
[!!!!!] which binds together the rotation and the
translation is formed. Its left upper part defines the
rotation matrix !!!!! and on its right the translation
vector

!!!!! : !!!!! !!!!!

0 0 0 1
 (25)

With !!!!! =
!"# !! −!"# α! !"# !! !"# α! !"# !!
!"# !! !"# α! !"# !! −!"# α! !"# !!
0 !"# α! !"# α!

 (26)

And !!!!! =
 !!!"# !!
!!!"# !!
!!

 (27)

Figure 7 represents the Denavit and Hartenberg
parameters for a two successive frames (xi-1, yi-1 , zi-1)
and (xi, yi , zi).

And finally the (4x4) rigid transformation matrix will
have the form:

Figure 7: Coordinate systems and parameters of Denavit and Hartenberg.

20 Journal of Rehabilitation Robotics, 2018, Vol. 6 Gouasmi et al.

 !!!!!
!"# !! −!"# α! !"# !! !"# α! !"# !! !!!"# !!
sin !!
0

!"#α! !"# !!
sin α!

−!"#α! !"# !!
!"# α!

!! sin !!
!!

0 0 0 1

 (28)

10.3.2. D-H kinematics of the Planar RRR Robot

Null values must be taken for the parameters: di = 0
and α! = 0 in Figure 7 and matrix (28) to give:

The appropriate transformations for the first three

considered articulations are: !!! =
!! −!! 0 !!!!
!! !! 0 !!!!
0 0 1 0

0 0 0 1

,

!!! =

!! −!! 0 !!!!
!! !! 0 !!!!
0 0 1 0

0 0 0 1

 !!! = !!!!!! =

!!" −!!" 0 !!!! + !!!!"
!!" !!" 0 !!!! + !!!!"
0 0 1 0

0 0 0 1

and finally !!! =

!! −!! 0 !!!!
!! !! 0 !!!!
0 0 1 0

0 0 0 1

 !!! = !!!!!! !!! =
!!"# −!!"# 0 !!!! + !!!!" + !!!!"#
!!"# !!"# 0 !!!! + !!!!" +!!!!"#
0 0 1 0

0 0 0 1

The last column represents the position coordinates
x and y of the end effector:

x = !!!! + !!!!" + !!!!"#; y = !!!! + !!!!" +!!!!"#

REFERENCES

[1] Hamilton WR. On quaternions; or on a new system of
imaginaries in algebra. London, Edinburgh, and Dublin.

[2] McDonald J. Teaching Quaternions is not Complex. Comp
Graphics Forum 2010; 29(8): 2447-2455.
https://doi.org/10.1111/j.1467-8659.2010.01756.x

[3] Chou JCK, Kamel M. Quaternions approach to solve the
kinematic equation of rotation, of a sensor mounted rob.
manip. In: Proceedings of the IEEE Int. Conf. Rob.s and
automation (ICRA), Philadelphia 1988; pp. 656-662.

[4] Gouasmi M, Ouali M, Brahim F. Rob. Kin. using dual quat. Int
Jourl of Rob and Autom 2012; 1(1): 13-30.

[5] Clifford WK. Preliminary sketch of bi-quaternions.
Proceedings of the London Mathematical 1882.

[6] Perez A. Dual Quaternion Synthesis of Constrained Robotic
Systems, Ph.D. Dissertation, Department of Mechanical and
Aerospace Engineering, University of California, Irvine 2003.

[7] Perez A, McCarthy JM. Dual Qua. Synth. of Constr. Rob.
Syst. Journal of Mechanical Design 2003; in press.

[8] Kavan L, Collins S, Žára J, O’Sullivan C. Geometric skinning
with approximate dual quaternion blending. ACM
Transactions on Graphics (TOG) 2008; 27(4): 105.
https://doi.org/10.1145/1409625.1409627

[9] Ivo FZ, Ivo H. Spher. skin. with dual quat and Q. Tangents.
ACM SIGGRAPH Talks, 2011; 27: 4503.

[10] Selig J. Rat. Int. of r-b. m. Adv. in the Theory of Control, Sign.
and Syst. with Phys. Mod. 2011; 213-224.

[11] Vasilakis A, Fudos I. Skeleton-based rigid skinning for
character animation, in Proc. of the Fourth International
Conference on Computer Graphics Theory and Applications,
2009; pp. 302-308.

[12] Kuang Y, Mao A, Li G, Xiong Y. A strategy of real-time
animation of clothed body movement, in Multimedia
Technology (ICMT), 2011 International Conference on 2011;
pp. 4793-4797.

[13] Pham HL, Perdereau V, Adorno BV, Fraisse P. “osition and
orientation control of robot manipulators using dual
quaternion feedback, in Intelligent Robots and Systems
(IROS), 2010 IEEE/RS J Int Conf 2010; pp. 658-663.

[14] Schilling M. Univer. manip body models - dual quaternion rep.
in lay. and dyn. MMCs. Autonomous Robots, 2011.

[15] Ge Q, Varshney A, Menon JP, Chang CF. Double
quaternions for motion interpolation, in Proceedings of the
ASME Design Engineering Technical Conference 1998.

[16] Lin Y, Wang H, Chiang Y. Estim. of real. orientation using
dual. quat, Sys. Sci. and, 2010; 2: 413-416.

[17] Perez A, McCarthy JM. Dual quat synthesis of constr. rob.
systs, Jou. of Mech. Des 2004; 126: 425.
https://doi.org/10.1115/1.1737378

[18] van den Bergen G. Dual Numbers: Simple Math, Easy C++
Coding, and Lots of Tricks, GDC Europe, 2009. [Online].
Available: www.gdcvault.com/play/10103/Dual-Numbers-
Simple-Math-Easy.

[19] Amanpreet, Singh, Ashish, Singla. Kinematic Modeling of
Robotic. Manip. The Nat. Acad of Sciences 2016.

[20] Chasles M. Note sur les propriétés générales du système de
deux corps semblables entr'eux. Bulletin des Sciences
Mathématiques, Astronomiques, Physiques et Chimiques (in
French). 1830; 14: 321-326.

[21] Louis Poinsot. Théorie nouvelle de la rotation des corps,
Paris, Bachelier, 1851; p. 170.

[22] Whittaker ET. A Treatise on Analytical Dynamics of Particles
and Rigid Bodies, 1904; p. 4, at Google Books

[23] Ball RS. The Theory of Screws. Cambridge, U.K., Cambridge
Univ. Press, 1900.

[24] Murray RM, Li Z, Sastry SS. A Math. Intro. to Robot Manip.
Boca. Raton, FL: CRC Press, 1993.

[25] Denavit J, Hartenberg RS. A Kin. Not. for Low-pair Mech.s
Based on Matr. ASME Jour. of App. Mechs 1955; 22:
215-221.

[26] Selig JM. Introductory robotics. Prentice hall international
(UK) Ltd, 1992.

[27] Selig JM. Geometrical fundamentals of Robotics, Springer,
second edition, 2004.

[28] Selig JM. Lie groups and Lie algebras in robotics. Course
report, south bank university, London.

[29] Yang AT, Freudenstein F. App. of Dual-Num. Quat. Alg. to
the Ana of Spa. Mec.” ASME Jour. of Ap. Mec., 1964; pp.
300-308.

[30] Bottema O, Roth B. Theoretical Kinematics, Dover
Publications, New York 1979.

[31] McCarthy JM. Introduction to Theoretical Kinematics. The
MIT. Press, Cambridge, MA. 1990.

[32] Ge QJ, Ravani B. Geom. Cons. of Bezier Motions. ASME
Jour of Mech. Des 1994; 116: 749-755.

[33] Perez A, McCarthy JM. Dimen.Synth.of Spa RR rob. Advan.
in Rob. Kin., Piran-Portoroz, Slovenia 2000.

[34] Marsden JE, Ratiu TS. Introduction to Mechanics and
Symmetry. Springer Verlag, New York, NY, sec.ed. 1999.
https://doi.org/10.1007/978-0-387-21792-5

[35] Oliveira VM. Estudo e controle de robôs bracejadores
subatuados. Ph.D. thesis, Escola de Engenharia,
Departamento de Engenharia Elétrica, Universidade Federal
do Rio Grande do Sul 2008.

[36] Spong MW, Vidvasagar M. Robot Dynamics and Control
2004.

Dual Quaternions Robotics Journal of Rehabilitation Robotics, 2018, Vol. 6 21

[37] Klasing K. Parallelized sampling-based path planning for tree
structured rigid robots, Master’s thesis, Institute of Automatic
Control Engineering, Technische Universität München 2009.

[38] Khalil W, Dombre E. Modélisation, Identification et
Commande des robots, Hermès 2002.

Received on 26-05-2018 Accepted on 20-06-2018 Published on 02-08-2018

DOI: http://dx.doi.org/10.12970/2308-8354.2018.06.02

© 2018 Gouasmi et al.; Licensee Synergy Publishers.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction
in any medium, provided the work is properly cited.

