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Abstract: Kinematics analysis studies the relative motions, such as, first of all, the displacement in space of the end 
effector of a given robot, and thus its velocity and acceleration, associated with the links of the given robot that is usually 
designed so that it can position its end-effector with a three degree-of-freedom of translation and three 
degree-of-freedom of orientation within its workspace. This chapter presents mainly, on the light of both main concepts; 
the first being the screw motion or/ and dual quaternions kinematics while the second concerns the classical ‘Denavit 
and Hartenberg parameters method’ the direct kinematics of a planar manipulator.  
First of all, examples of basic solid movements such as rotations, translations, their combinations and general screw 
motions are studied using both (4x4) matrices rigid body transformations and dual quaternions so that the reader could 
compare and note the similarity of the results obtained using one or the other method. Both dual quaternions technique 
as well as its counterpart the classical ‘Denavit and Hartenberg parameters method’ are finally applied to a three degree 
of freedom (RRR) planar manipulator. Finally, we and the reader, can observe that the two methods confirm exactly one 
another by giving us the same results for each of the examples and applications considered, while noting that the fastest, 
simplest more straightforward and easiest to apply method, is undoubtedly the one using dual quaternions. As a result 
this work may as well act as a beginners guide to the practicality of using dual-quaternions to represent the rotations and 
translations ie: or any rigid motion in character-based hierarchies.  

We must emphasize the fact that the use of Matlab software and quaternions and / or dual quaternions in the processing 
of 3D rotations and/or screw movements is and will always be the most efficient, fast and accurate first choice. Dual 
quaternion direct kinematics method could be generalised, in the future, to more complicated spatial and/ or industrial 
robots as well as to articulated and multibody systems.  
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1. INTRODUCTION 

Many research students have a great deal of trouble 
understanding essentially what quaternions are [1-3] 
and how they can represent rotation. So when the 
subject of dual-quaternions is presented, it is usually 
not welcomed with open arms. Dual-quaternions are a 
break from the norm (i.e., matrices) which we hope to 
entice the reader into supporting willingly to represent 
their rigid transforms. The reader should walk away 
from this chapter with a clear understanding of what 
dual-quaternions are and how they can be used [4]. 
First we begin with a short recent and related work that 
emphasises the power of dual-quaternions: 

The dual-quaternion has been around since 1882 
[5-7] but has gained less attention compared to 
quaternions alone ; while the most recent work which 
has taken hold and has demonstrated the practicality of 
dual-quaternions, both in robotics and computer 
graphics can be resumed in: - Kavan [8] demonstrated 
the advantages of dual-quaternions in character 
skinning and blending. - Ivo [9] extended Kavan’s work 
with dual-quaternions and q-tangents as an alternative 
method for representing rigid transforms instead of 
matrices, and gives evidence that the results can be 
faster with accumulated transformations of joints if the 
inferences per vertex are large enough. - Selig [10] 
addressed the key problem in computer games. - 
Vasilakis [11] discussed skeleton-based rigid-skinning 
for character animation. -  Kuang [12] presented a  
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strategy for creating real-time animation of clothed 
body movement. -Pham [13] solved linked chain 
inverse kinematic (IK) problems using Jacobian matrix 
in the dual-quaternion space. -Malte [14] used a mean 
of multiple computational (MMC) model with 
dual-quaternions to model bodies. - Ge [15] 
demonstrated dual-quaternions to be an efficient and 
practical method for interpolating three-dimensional 
motions. -Yang -Hsing [16] calculated the relative 
orientation using dual-quaternions. - Perez [17] 
formulated dynamic constraints for articulated robotic 
systems using dual-quaternions. - Further reading on 
the subject of dual numbers and derivatives is 
presented by Gino [18]. 

In the last three decades, the field of robotics has 
widened its range of applications, due to recent 
developments in the major domains of robotics like 
kinematics, dynamics and control, which leads to the 
sudden growth of robotic applications in areas such as 
manufacturing, medical surgeries, defense, space 
vehicles, under-water explorations etc. 

To use robotic manipulators in real-life applications, 
the first step is to obtain the accurate kinematic model 
[19]. In this context, a lot of research has been carried 
out in the literature, which leads to the evolution of new 
modeling schemes along with the refinement of 
existing methodologies describing the kinematics of 
robotic manipulators. 

 Screw theory based solution methods have been 
widely used in many robotic applications .The elements 
of screw theory can be traced to the work of Chasles 
and Poinsot [20, 21], in the early 1800’s and Whittaker 
[22]. Using the theorems of Chasles and Poinsot as a 
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starting point, Robert S. Ball developed [23] a complete 
theory of screws which he published in 1900. 
Throughout the development of kinematics, numerous 
mathematic theories [24] and tools have been 
introduced and applied. The first pioneer effort for 
kinematic modeling of robotic manipulators was made 
by Denavit and Hartenberg in introducing a consistent 
and concise method to assign reference coordinate 
frames to serial manipulators, allowing the (4×4) 
homogeneous transformation matrices to be used (in 
1955) [25], followed by Lie groups and Lie Algebra by 
J.M Selig and others, [26-28]) and quaternions and 
dual quaternions introduced by Yang and Freudenstein 
(1964) [29], see also Bottema and Roth (1979) [30] and 
McCarthy (1990) [31]. The original D–H parameter 
method has many counterparts: Distal variant, proximal 
variant, …to name but a few. There even exist different 
options for these counterparts. 

 In this method, four parameters, popularly known 
as D–H parameters, are defined to provide the 
geometric description to serial mechanisms. Out of the 
four, two are known as link parameters, which describe 
the relative location of two attached axes in space. 
These link parameters are: The link length (ai) and the 
link twist (αi). (See appendix 11, 3.) 

The remaining two parameters are described as 
joint parameters, which describe the connection of any 
link to its neighboring link. These are the joint offset (di) 
and the joint angle (θi). 

 Modeling the movement of the rigid body by the 
theory of the helicoidal axis: a combination of an 
amount of rotation about and an amount of translation 
along a certain axis, hence the term helicoidal axis is 
used in various fields such as computer vision and 
biomechanics. The application of this theory in the field 
of robotics is taking more and more space. We can 
consider the motion of a joint segment as a series of 
finite displacements. In this case the movement is 
characterized by an angle of rotation about and an 
amount of translation along an axis defined in space by 
its position and its orientation. This axis is referred to as 
the finite helicoidal axis (FHA), because of the 
discretization of the movement into a series of 
displacements. On the other hand and by taking the 
continuity of the movement into account, this 
movement will be characterized by a rotational speed 
(angular velocity) about and translation speed along an 
axis defined by the instantaneous position and 
orientation in space. One speaks in this case of an 
instantaneous helicoidal axis (IHA). The application of 
the helicoidal theory with its two versions (FHA and 
IHA) is used to describe and understand the joint 
movement, and to study in biomechanics, for example, 
the different positioning techniques of prothèses. Thus 
there are several methods to estimate the helicoidal 
axis from a set of points representing a rigid body. Any 
displacement of a rigid body is a helicoidal motion 
which may be decomposed into an angular rotational 
movement about and a linear translational movement 
along a certain axis in 3D space. The methods differ in 
the way of mathematically representing these two 

movements. These movements can be expressed 
using rotation matrices and translation vectors, 
homogeneous matrices [32-34] unit quaternions, dual 
quaternions, .... The two representations; using (3x3) 
matrices or (4x4) homogeneous matrices and dual 
quaternions will be simultaneously used for all and 
each examples or applications studied so that 
comparisons for each case could be done. 

2. DUAL QUATERNIONS 

2.1. «Product Type» Dual Quaternions 

The dual quaternions have two forms thus two 
readings which are complementary and simultaneous: 
The first is the << product type >> description: 

!! = !! + !
!!.!!
!

 With: !!  = cos   !
!
,!. sin !

!
 = 

cos   !
!
, sin !

!
. !! , sin

!
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. !! , sin

!
!
. !!  

and !! = (0, !! ,!! ,!! = (0 , ! ) 
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2.2. «Dual Type» Dual Quaternions 

Indeed a general transformation, screw type, can be 
also described using dual angles and dual vectors and 
have therefore the following form << Dual type >>: 

!= cos   !
!
, sin !

!
!   =   cos   !

!
, sin !

!
!   +

  ! −   !
!
sin !

!
   , !  sin !
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!
  << !"#$  !"#$ >>     (2) 

It is defined by the dual angle !  and the dual vector 
! , the rotation being represented by the angle ! 
around the axis n = (nx, ny nz) of norm 1, and a 
translation d along the same vector n. 

The vector m = (mx, my, mz) is the moment of the 
vector n about the origin of reference (O, x, y, z); it is 
named the moment of the axis n, with: !  = ! + ! d 
with d being the amplitude of the translation along the 
dual vector ! = n +!  m with m = p x n (the green 
vector see Figure 1) that defines the vector according 
to Plücker coordinates, p, (the blue vecor), being the 
vector that gives the position of n, (the red vector), 
using the vector OO1 (see Figure 1).  

The parameters of the transformation, the angle !, 
the axis of rotation n, the magnitude of the translation d 
and the moment m are the four characteristics of all, 
any and every 3D rigid body transformation (4x4) 
matrix, a screw motion or a helicoidal movement of any 
kind (or type).  
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Note that this form resembles that used for classics 
quaternions; using the dual angle and the dual unitary 
vector instead of the classical ones.  

And as a matter of fact: The screw displacement is 
the dual angle !  = !  + !  d, along the screw axis 
defined by the dual vector ! or ! or in our case ! = n 
+!  m; such that we will obtain (respecting the rules of 
derivation and multiplication of dual numbers), dual 
vectors, quaternions and dual quaternions (see 
appendix 10,2. and eq (24)): 

! = cos   !
!
, sin !

!
!    = [cos !

!
 −  !   !

!
sin !

!
, ( sin !

!
 + ! 

!
!
  cos !

!
) ( n +!  m)] = cos !

!
 −!   !

!
sin !

!
, n   sin !

!
 +!  (n 

!
!
cos !

!
 + sin !

!
 m) = (cos !

!
, n  sin !

!
) + !(− !

!
sin !

!
, sin !

!
 m 

+ n !
!
cos !

!
)         (2) 

The geometric interpretation of these quantities is 
related to the screw-type motion. The angle ! is the 
angle of rotation around n, the vector unit n represents 
the direction of the rotation axis. The element d is the 
translation or the displacement amplitude along the 
vector n, m being the vector moment of the vector axis 
n relative to the origin of the axes. The vector m is an 
unambiguous description of the position of an axis in 
space, in accordance with the properties of Plückér 
coordinates defining lines in space. 

This form gives another interesting use: Whereas 
the classics quaternions can only represent rotations 
whose axes go (or pass) through the origin O of the 
coordinates system (O, x, y, z), the dual quaternions 
can represent rotations about arbitrary axes in space, 
translations as well as any combination of both these 
two basic movements.  

These two forms << product type >> eq (1) or 
<< !"#$  !"#$ >> !"   (2) represent the same motion 
that describe the same movement ‘the screw motion’:  

3. EXAMPLE 1: ROTATIONS REPRESENTED BY 
QUATERNIONS 

Let’s apply two successive rotations to a rigid body: 
the first one of amplitude    !! =

!
!
 around the axis Ox 

followed by a second rotation of the same 
amplitude   !! =   

!
!
   around the Oy axis: Using 

quaternions the first rotation will be written; since !!
!
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rotation will have the form:  !!  = ( !
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 , 0 ) The final 
composition of the two movements will be given by the 
quaternion ! such that: ! = !!. !! = ( !

!
, 0, !

!
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It is then easy to extract both the amplitude and the 
resulting axis of the rotation from the result q: 

cos !
!
   = !

!
 and sin !

!
   = !  

!
; wich implies    the first 

solution  ! = + 120 º, around the unitary axis (n) = 
!
√!

1  
1
−1

 

or cos !
!
  = !

!
 and sin !

!
  =  − !  

!
; wich implies  a second 

solution   !  =   −120 º, around the unit axis (−  n) = 
!
√!

−1  
−1
1

 

In fact the two solutions represent the same and 
similar solution since for any q we have q (!, n) = q 
(−!, −n) 

Using our classical (3x3) rigid transformations we 
get:  

R21 = R2.R1 =
0 0 1
0   1 0
  −1 0 0

1 0 0
0 0 −1
0 1   0

   =   

0 1 0
0   0 −1
−1 0 0

 

Here it is very important to note that unlike the 
quaternion method we cannot extract the needed 
results easily and straightforwardly but we must follow 
a long and sometimes complicated process 
(determinant, trace, antisimmetry, angle and axis of 
rotations signs, axis/angle (or conversions to Olinde 
Rodrigues (Axe, Angle) parameters) … 

 
Figure 1: Helicoidal or screw motion. 
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Whichever used technique we will find: A rotation of 
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To show the anticommutativity of the product let’s 
do the inverse and start by the second rotation instead: 
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and that will imply !i = 120 º around the axis n = !
√!

1  
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 , 

or !i = − 120 º around the axis (–  n) = !
√!

−
−1  
1
−1

 ; 

This of course will imply that:  !!. !! ≠   !!. !! 

Using matrices: Ri = R1 R2 

=
1 0 0
0 0 −1
0 1   0

  
0 0 1
0 1 0
  −1 0 0

=   
0 0 1
1   0 0
0 1 0

 ≠ R = R2 R1 

wich implies: 

A rotation of ! = !!
!  =120 º around the unit axis n= 

!
√!

1  
1
1

 equivalent to a rotation of ! = − !!
!  = −120 º 

around the unit axis n = − !
√!

1  
1
1

 

Using MATLAB (See Appendix 11, 1.) we can 
calculate easily both the two quaternions 
multiplications: q= n1 = q2.q1 and qi = n2 = q1.q2 and 
the two equivalent products of matrices R21 = R2R1 and 
Ri = R1 R2. 

4. IMPORTANT NOTES: WHAT ABOUT 
TRANSLATIONS? 

We must recall that rotations act on translations, the 
reverse being not true; in fact when multiplying by 
blocks: For a rotation followed by a translation: 
! !
0 1    ! !

0 1 = ! !
0 1 ;    the rotation is not affected 

by the translation. 

While for a translation followed by a rotation: 
! !
0 1

! !
0 1   =   ! !!

0 1 ;  the translation is affected by 
the rotation. 

When translations are performed first we can thus 
assume that the translation vector of the resulting 
matrix product; Rt act as the translation vector t of a 
rotation followed by a translation. Or more generally 
speaking considering two six degree of freedom 
general rigid body transformations T1 followed by T2 we 
will have:  

T2 .T1 = !! !!
0 1

!! !!
0 1 =  !!!! !!!! + !!

0 1  = 
! !
0 1  

The translation vector t of the product of the two 
transformations is !

1  = !!!! + !!  = !! 0
0 1

!!
1  + 

!!
1   

The same analysis as the last one could then be 
done whatever the order and the number of the 
successive transformations being performed over the 
rigid body: The final result of the products of all the 
undertaken rigid body transformations will be finally the 
helicoidal, the helical or the screw motion given by the 
(4x4) matrix: 

[T] = Tn… Ti...T2 .T1 = ! !
0 1        (3) 

with Ti representing either a rotation, a translation, a 
rotation followed by a translation, a translation followed 
by a rotation or even simply a no movement (ie: the 4x4 
identity matrix I). 

5. SCREW MOTION 

Any screw motion would be given by the following 
(4x4) matrix [T ]:  

! !
0 1

!  (!,!) !  !
!!
!

0 1
! −  !
0 1  = 

!(!,!) !  !
!!
! + (!   − !(!,!)!  

0 1
 = [T ]      (3) 

 The middle matrix is a screw about a line through 
the origin; that is, a rotation around the axis n followed 
by a translation along n. The outer matrices conjugate 
the screw and serve to place the line at an arbitrary 
position in space. The parameter p is the pitch of the 
screw; it gives the distance advanced along the axis for 
every complete turn, exactly like the pitch on the thread 
of an ordinary nut or bolt. When the pitch is zero the 
screw is a pure rotation, positive pitches correspond to 
right hand threads and negative pitches to left handed 
threads. 

To show that a general rigid motion is a screw 
motion, we must show how to put a general 
transformation into the form derived above. The unit 
vector in the direction of the line n is easy since it must 
be the eigenvector of the rotation matrix corresponding 
to the unit eigenvalue. (This fails if R = I, that is if the 
motion is a pure translation). The vector u is more 
difficult to find since it is the position vector of any point 
on the rotation axis. However we can uniquely specify 
u by requiring that it is normal to the rotation axis. So 
we impose the extra restriction that n.u = 0. So to put 
the general matrix   ! !

0 1  into the above form we must 

solve the following system of linear equations:  !  !
!!
! +

(!   − !)! = t Now n.Ru = n.u = 0, since the rotation is 
about n. So we can dot the above equation with n to 
give: 0 = n.( t − !  !

!!
!) this enables us to find the pitch: 

p = !!  
!  
!. t All we need to do now is to solve the 

equation system: (!   − !)!  = (t – (!.  t)   ! ; This is 
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possible even though det (!   − !)  = 0, since the 
equations will be consistent. 

This entire analysis established through this long 
paragraph concerning the helicoidal motion or rigid 
(4x4) transformation matrix [T] is contained in only one 
line enclosed in its counterpart dual quaternion ! of 
the form:  

!  =   cos   !
!
, sin !

!
!   =  !!. .!! . .!!.!!=   cos   !

!
, sin !

!
.!  + ! 

−   !
!
sin !

!
   , !  sin !

!
+ !

!
.!  cos !

!
    or eq (2) ≡   eq (3) 

These equations are best represented by Figure 2a 
and b. 

 
a 

 
b 

Figure 2: 

6. EXAMPLE 2: GENERAL MOVEMENT OR A 
SCREW MOTION 

Let’s apply two successive screw motions to a rigid 
body: the first one around the Oy axis of amplitude  !! =
!
!
 and of pitch (p = !!

!
 t = 4) followed by a second one 

around the axis Ox and of the same amplitude  !! =
  !
!
  and same pitch p = 4 corresponding to a translation 

of 1 unit along the two chosen axes:  

T2. T1 =   
1 0 0 1
0
0   01

−1
0

0
0

0 0 0 1

0 0 1 0
0
−1

1
0

0
0

1
0

0 0 0 1
 = 

0 0 1 1
1
0

0
1

0
0

0
1

0 0 0 1
         (4) 

The rotation part of the product corresponds to that 
of the precedent example of successive rotations Ri = 

R1 R2   with amplitude ! = !!
!  = 120 º around the unit 

axis n = !
√!

1  
1
1

; its translation part being t = 
1  
0
1

  

We can find its pitch p = !!
!

 (n. t) = !!!!
!

 !
√!

1  
1
1

.  
1  
0
1

 = 

!
√!

 =  2√3 

The axis of rotation will keep its same original 

direction n = !
√!

1  
1
1

, it will go through a new centre C 

given by the shifting vector u which could be found by 
the linear equations system: (I – R) u = t –   !  !

!!
 n  

−
1 0 −1
1 1 0
0 −1 1

!!  
!!
!!

 = 
1  
0
1

 − !!
!.!!

 !
√!

!
√!
  

!
√!
!
√!

 = 
1  
0
1
− !

√!

!
√!
  

!
√!
!
√!

 

= −

  !
!
!
!
!
!

 

The vector translation T (or t) of the movement 
1  
0
1

 

is the sum of the two main perpendicular vectors T1 + 
T2 such as T1 is to be chosen parallel to n while the 
rest T2 is the translation vector part responsible for the 
shifting of the axis to its final position through the new 
center C as such we have: 

T1 = 

!
!
  
!
!
!
!

 and T2 = −

!
!
  
!
!
!
!

; T1 being the translation 

part parallel to n while T2 being the perpendicular one. 

The solutions to the system of linear equations are:   

!! − !! =   !
!
; −!!+  !! = −   !

!
; and − !!+  !!  =   !

!
   (5) 

Choosing the centre C to belong to the plane (y-z); 
!! = 0 or (Cx = 0) would imply the two coordinates 
representing the point C intersection of the shifted 
axis n with the (y-z) plane to be:  

Cy =  −
  !
!
 and Cz =−

  !
!
.  

For the (z-x) plane;   !! = 0 or (Cy = 0): Cz =  
  !
!
 and 

Cx =   !
!
. 

And finally considering the (x-y) plane;    !! = 0 or 
(Cz = 0): Cx =   !

!
 and Cy =  −

  !
!
 

So that to confirm these results; we can finally 
check the following conjugation matrices: 
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0 0 1 0

1
0

0
1

0
0

!!
!
!!
!

0 0 0 1

0 0 1   !
!

1
0

0
1

0
0

  !
!
  !
!

0 0 0 1

0 0 1 0

1
0

0
1

0
0

  !
!
  !
!

0 0 0 1

=

0 0 1 1
1
0

0
1

0
0

0
1

0 0 0 1
  ≡        (4) 

Or, 

0 0 1   !
!

1
0

0
1

0
0

0
!
!

0 0 0 1

0 0 1   !
!

1
0

0
1

0
0

  !
!
  !
!

0 0 0 1

 

0 0 1 !!
!

1
0

0
1

0
0

0
!!
!

0 0 0 1

   = 

0 0 1 1
1
0

0
1

0
0

0
1

0 0 0 1
 ≡        (4) 

Or finally; 

0 0 1 !
!

1
0

0
1

0
0

!!
!
0

0 0 0 1

0 0 1   !
!

1
0

0
1

0
0

  !
!
  !
!

0 0 0 1

 

0 0 1 !!
!

1
0

0
1

0
0

!
!
0

0 0 0 1

   = 

0 0 1 1
1
0

0
1

0
0

0
1

0 0 0 1
 ≡        (4) 

Whenever necessary, Matlab was implemented, 
throughout the study, concerning all kinds of products 
or multiplication of quaternions or matrices  

7. THE SAME GENERAL EXAMPLE USING DUAL 
QUATERNIONS 

! = ! + !!! = !! + !
!
!!! + !!! + !!! ⨂!! = ! + ! !"

!
 

The two transformations T1 and T2 are basic 
centered helicoidal movements through the origin O of 
the axes that can be written:   

For the first movement around and along Oy: 
!! = !! +

!
!
  !!! = !!  = (c,  0, s, 0) +  !

!
 (−  s!!, 0, c  !!, 0) = 

(cos !
!
, 0, sin !

!  
, 0) +  !

!
 (−  sin !

!  
.!  , 0, cos !

!
.!, 0) = ( !

!
, 

0, !
!

, 0) + !
!
 (− !

!
, 0, !

!
, 0) followed by the second 

movement around and along Ox : !! = !! +
!
!
  !!! =

!!  = (c,  !, 0, 0) +  !
!
 (−  s!!, c  !!, 0, 0) = (cos !

!
, sin !

!  
, 0, 

0) +  !
!
 (−  sin !

!  
.!  , cos !

!
.!, 0, 0) = ( !

!
, !

!
, 0, 0) +!

!
 

(− !
!

, !
!

, 0, 0)  

The dual quaternion product of the two screw 
movements is: 

!!.  !! = (!! +
!
!
  !!!).(!! +

!
!
  !!!) = !!.  !! + !

!
 (!!. !!! + 

!!!. !!) =  [( !
!

,   !
!

, 0, 0) +  !
!
 (− !

!
, !

!
, 0 .0)]. [( !

!
, 0, !

!
, 

0) + !
!
 (− !

!
, 0, !

!
, 0)] =  ( !

!
,   !
!

, 0, 0).( !
!

, 0, !
!

, 0) +  !
!
 

[( !
!

,   !
!

, 0, 0).(− !
!

, 0, !
!

, 0) + (− !
!

, !
!

, 0.0). ( !
!

, 0, !
!

, 

0)] =  (!
!
,(  !
!
, !
!
, !
!
)) +  !

!
 [(− !

!
,  (− !

!
, !
!
, !
!
)) + (− !

!
, (!

!
, − 

!
!
.  !
!
))] =  (!

!
, !
!
(   !

!
, !

!
, !

!
)) +  !

!
 (−1,  (0, 0, 1))      (6) 

 Another way of doing it: We could get this same 
result starting from the (4x4) rigid transformation eq (4) 
matrix defined before: A rotation of amplitude ! = !!

!  = 

120 º around the unit axis n = !
√!

1  
1
1

 followed by a 

translation t = 
1  
0
1

 such that:  

! = ! + !!! = !! +  !
!
!!! + !!! + !!! ⨂!! = ! + ! !"

!
 

= (!
!
, !
!
(   !

!
, !

!
, !

!
)) +  !

!
 [(0, 1, 0, 1) (!

!
,  (  !

!
, !
!
, !
!
)) ]=  (!

!
, 

!
!
(   !

!
, !

!
, !

!
)) +  !

!
 [(−1, (0, 0, 0)) + (0, (!

!
, 0, !

!
)) + (0, 

(− !
!
, 0, !

!
))] =  (!

!
, !

!
(   !

!
, !

!
, !

!
)) +  !

!
 (−1,  (0, 0, 1))  

          (6) 

At this stage we know the complete integrality of 
informations concerning this movement thanks to our 
magic and powerful calculated dual quaternion: The 
rotation part, as seen before, having amplitude ! = !!

!  = 

120 º around the unit axis n; n = !
√!

1  
1
1

; the dual part 

will provide us gratefully with the translation along the 

axis of rotation; using eq (2): ! −   !
!
sin !

!
, !  sin !

!
+

!
!
!  cos !

!
=    !

!
 (−1,  (0, 0, 1)) =  ! (− !

!
,  (0, 0, !

!
)) 

We thus have the scalar part: −   !
!
sin !

!
 = −   !

!
!
!

 = 

− !
!
 implying that d = !

!
 = ! !

!
 and pitch p =  2√3 

We can also have the vector part: !  sin !
!
+

!
!
!  cos !

!
  = (0, 0, !

!
  ) which implies: 

m!   
!
!
+ !

!
!
√!
  !
!
 = m!   

!
!
+ !

!
  = 0 

m!   
!
!
+ !

!
!
√!
  !
!
 = m!   

!
!
+ !

!
  = 0 

m!   
!
!
+ !

!
!
√!
  !
!
 = m!   

!
!
+ !

!
  = !

!
  

We can then deduce the vector moment m = 

!!
!√!
  

!!
!√!
!
!√!

  

Finally we can have the right position of the shifted 
axis u that have the same direction as the rotation axis 



14  Journal of Rehabilitation Robotics, 2018, Vol. 6 Gouasmi et al. 

n by defining the coordinates ux, uy and uz of a point or 
a center C belonging to it so that: m = u Λ n 

Or 

!!
!√!
  

!!
!√!
!
!√!

   = 
u!  
u!
u!

 Λ !
√!

1  
1
1

 = !
√!

u! − u!  
u! − u!
u! − u!

 implying 

that:  u! − u! = !!
!

; u! − u! = !!
!

 and u! − u! = !
!
  

Which confirm the same obtained results eq (5) 
using the (4x4) rigid transformation matrix: 

!! − !! =   !
!
; −!!+  !! = −   !

!
; and − !!+  !!  =   !

!
  (5) 

8. THE 3R PLANAR MANIPULATOR 

The planar manipulator is constituted of the three 
successive links (arms) (Figure 3) of lengths !! ,  !! 
and !!  that are rotating about their different axes, 
parallel to Oz: The vector dual quaternion !! , 
representing the coordinates of the end effector, to be 
manipulated is   !!= 1 +  ! ((!! + !! + !!), 0, 0) 

The result of the three manipulations would be 
elegantly given by the product of the dual quaternions 
in the following order; this could be done either by the 
operation:  

!!
! = !!  !!  !!  !!!!∗    !!∗  !!∗  = (!!  !!  !!  ) !! !!∗    !!∗  !!∗     = 

 Or the operation !!  !!  !!  !!!!∗    !!∗  !!∗     = 
!!  (!!   !!  !!!!  ∗  )  !!∗   !!∗          (7) 

Let us begin by the first operation concerning the 
rotation of amplitude !!  around the axis C3z of the third 
link a3 represented by the central DQ to somehow 
deploy outward these multiplications: !!  !!!!∗   

To find the dual quaternion !!  we will need the 
conjugation technique given by the treble multiplication 
TR!!!=(T)(R)(−T); Since the rotation is around C3z; 
The coordinates of C3 are: ((!! + !!) , 0, 0)t, the 
rotation is: R3 = (cos !!

!
, sin !!

!
0, 0, 1 )  and the 

translation is: T3 = 1 + !
!
 (!! + !!, 0, 0 ) or 1 + !

!
 t3  

!!   = T3 R3 !!!!  = [1 + !
!

 (!! + !! , 0, 0)] 

[(cos !!
!
,   sin !!

!
0, 0, 1   )][1 −    !

!
  (!! + !!, 0, 0)] or 

[1 + !
!
 t3] [R3] [1 − !

!
 t3] = [1 + !

!
 t3] [R3 − !

!
 R3 t3] = 

R3 +  
!
!
(t3R3  –  R3 t3) or similarly; 

[R3 + !
!
 t3R3] [1 − !

!
 t3] = R3 +  

!
!
(t3R3  –  R3 t3)  

To simplify the writings, let’s adopt C3 and S3 in 
place of cos (θ3 / 2) and sin (θ3 / 2) respectively:  

R3= [!!, 0,0, !!   ] , t3R3= [0, ((!! + !!) , 
0,0)][!!, 0, 0, !! ]=[0,!!(!! + !!), – !!(!! + !!), 0]   

and R3 t3 =   [!!, 0, 0, !! ]  [0  , ((!! + !!  ) , 0, 0)] = 
[0,!!(!! + !!), !!(!! + !!), 0]  

!!   = R3 +   !
!
( t3 R3   –   R3 t3) =   [!!, 0,0, !! ]  +   !

!
 

[0,0, – 2!!(!! + !!), 0]        (8) 

Important note: As a matter of fact nor do we need 
the Denavit-Hartenberg parameters ‘avoiding to be lost 
in the maze of numerous parameters choices’ neither 
do we need the conjugation technique;  

We already have this dual quaternion !!     from 
definition (2);  

!!   = ! == cos   !
!
, sin !

!
!   =   cos   !

!
, sin !

!
!   +

  ! −   !
!
sin !

!
   , !  sin !

!
+ !

!
!  cos !

!
  << !"#$  !"#$ >>      (2) 

Noting that this manipulation concerns the shifting 
of the Oz axis the quantity (!! + !!)  along the 
x-direction and since there is no translation along the 
shifted axis C!z, so replacing ! = 0  in  eq   ! ,will  give: 

!!  = cos   !
!
, sin !

!
!   =  [!!, 0,0, !! ]  +  ! 0  , !  !!  

Finding the moment   !  of the vector (!! + !!)! 
with respect to the axis of rotation k will give us !!; 

! =
!! + !!  

0
0

 Λ 
0  
0
1

 = −
0  

(!! + !!)
0

   and thus 

!!  =  [!!, 0,0, !! ]  +  ! 0  , 0,−(!! + !!)!!  ,0        (9) 

Exactly the same result but elegantly and with very 
much less hassle! 

We can then have: 

 
Figure 3: Manipulator RRR and its home position. 
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!!  !!!!∗    = [(!!, 0, 0, ! 3) +   !  (  0,– ! 3(!! + !! ), 0)] [(1+! 
((!! + !! + !!), 0, 0))] [(!3, 0, 0,– !3 )+!  (0,– !3(!! + !!), 
0)] = 

Performing properly the products and using the 
fondamental trigonometric properties we can find the 
vector result of this first transformation: 1+ !  (!! +
!!  +  !! cos  !!,  !!sin !!,  0)  

Finally, the first movement of our manipulator can 
be represented by the Figure 4: 

For the second rotation of angle θ2 concerning the 
second link a2, about the axis C2z and using the same 
procedure we can write the dual quaternion !!  : !!  = 
[(!2, 0, 0,  !2) +  !  (0, – !2!!, 0)] 

To be applied to the found precedent result vector: 
1+ !  (!! + !!+  !! cos  !!,  !! sin !!,  0) = 1+ !  (!,  !, 0) 

We will have; 

[(!2, 0, 0,  !2) +!  (  0, – !2!!, 0)][1 + !  (!,  !,  0)] [(!2, 0, 
0, – ! 2) + !  ( 0, – ! 2 !! , 0)]=1+   !   ((1 −   cos   !! ) !! − 
sin  !!! +   cos  !!!,  −  !! sin  !!+ cos  !!!  + sin  !!  !, 0) = 

And finally giving x and y their precedent values: 

!, !, 0 t  = (!! + !!+!! cos  !!,  !! sin !!, 0)t 

The coordinates of the resulting vector after the 
transformation will be: 

!, !, 0   t = (!! +  !!  cos  !! +   !!cos  (!! +   !!), 
!!sin  !!   +   !!  sin(!!   +   !!), 0)t; See Figure 5: 

The last and final movement is a pure rotation (!!) 
around the axis Oz applied to the precedent result 
vector:  

!!  = (!1, 0, 0, !1)[1+  !  (!, !, 0)] (!1, 0, 0, −!1) = 1+  !  (− 
sin  !!! +   cos  !!!, cos  !!!  + sin  !!  !, 0)  

Finally and replacing x et y by their precedent 
values:  

!, !, 0 t = (!! +  !!  cos  !! +   !!cos  (!! +   !!), 
!!sin  !!   +   !!  sin  (!!   +   !!), 0)t 

This will give us the final position of the vector 
(representing the end effector) result after the three 
successive rotations: 

x = !!cos  !! +  !! cos !! +   !! +   !!  cos  (!! + !! +   !!), 

y = !!sin  !!  +   !! sin !! +   !! +   !!  sin  (!! + !! +   !! ) 
and 

z = 0 

Thus, one can easily confirm all the results obtained 
for this example using either the D.Q method or the 
classical Denavit and Hartenberg parameters method 
(See 10.3.2.) or the matrix conjugation technique T. 
M .T-1. 

 
Figure 4: Arm a3 rotated θ3 radians around C3z axis. 

 
Figure 5: Arm a2 rotated θ2 radians around C2z axis. 

 

Figure 6: Arm a1 rotated θ1 radians around C1z (or Oz) axis. 
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Nevertheless it is nothing but pure common sense 
to find these direct 3R manipulator positions by drawing 
the successive positions of the links (components) of 
the RRR manipulator.  

9. CONCLUSION 

 We hope that the reader should not get us wrong: 
We never pretend that the D-H parameters method is 
wrong or obsolete and that it should be a thing of the 
past; recognising that this important classical method 
was the precursor that enlightened the path to modern 
robotics; we only say and insist that there exist through 
the DQ parameters another short, free of singularities 
and easy to work with method, when dealing with robot 
direct kinematics.On the light of the obtained results 
one has to say that the most perfect (not suffering 
singularities of any kind), easiest and rapid way to 
perform a 3D rigid transformation of any sort is to use 
the dual quaternion that caracterises the movement. 
Most of all we are free to use the 3D space, being sure 
that no loss of degree of freedom or guimball lock of 
any sort can never happen.Using a D-H parameters 
method or any of its counterparts means a choice of 
different sort of embarassing and somehow awkward 
three axes frames to be created and then allocated to 
each arm/ link; ‘providing’ our robot or mecanism with 
different direction axes and angles with very much 
complicated choice of signs (concerning the directions 
and the angles alike) to be chosen subject to some 
rules depending on the chosen method and model of 
robot. 

Choosing to use dual quaternions we only need to 
know the constants or values that concern the 
construction geomety of a given or chosen robot 
(directions of rotations, distances, lengths of links...) to 
evaluate its kinematics without any threat to be lost in 
the maze or jungle of choices. Most of all, it will prevent 
us from using the only other existing method, or one of 
its options, which is that of the Denavit and Hartenberg 
parameters which mainly consists of: 1) Choosing 3D 
frames attached to each link upon certain conditions 
/conventions, 2) Schematic of the numbering of bodies 
and joints in a robotic manipulator, following the 
convention for attaching reference frames to the bodies, 
this will help to create: 3) A table for exact definition of 
the four parameters, ai, αi, di, and θi , that locate one 
frame relative to another, 4) The (4x4) rigid 
transformation matrix that will have the given form:  !!!!! . 
(See 11.3) 

This chapter provided a taste of the potential 
advantages of dual-quaternions, and one can only 
imagine the further future possibilities that they can 
offer. For example, there is a deeper investigation of 
the mathematical properties of dual-quaternions (e.g., 
zero divisions). There is also the concept of 
dual-dual-quaternions (i.e., dual numbers within dual 
numbers) and calculus for multi-parametric objects for 
the reader to pursue if he desires. 

This Dual Quaternions Kinematics method could be 
easily generalized to all kinds of existing or/and future 

robots providing their given general geometric 
characteristics to be known. 

We should emphasize on the fact that Matlab 
software was used, throughout this chapter and 
whenever necessary, concerning all kinds of products 
or multiplication of quaternions or rigid transformation 
matrices. 

Finally we hope all efforts should be conjugated to 
create a common MATLAB platform to be used for the 
manipulation of Quaternions and / or Dual Quaternions 
as well as conversions from or into 3D or 4D rigid body 
matrices.  

10. APPENDIX  

10.1. Quaternion-Matlab Implementation Class 

>> % See paragraph 3; Example 1: Rotations 
represented by Quaternions >> % A first rotation of 
angle π/2 around the x-axis ,q1 , followed by a rotation 
of angle π/2 around the y-axis , q2 will result in a 
rotation given by the product n1 = q2.q1 : 

>> q1 =[ cos(pi/4) sin(pi/4) 0 0 ]; 

q2 =[cos(pi/4) 0 sin(pi/4) 0 ]; 

>> n1 = quatmultiply (q2,q1)  

n1 = 0.5000 0.5000 0.5000 -0.5000 

>> % If the order is inversed the result will be given by 
the quaternion n2 = q1.q2 

>> n2 = quatmultiply (q1,q2) 

n2 = 0.5000 0.5000 0.5000 0.5000 

>> % Using 3*3 matrices ; if the rotation R1 is 
performed first the rotation product is R2*R1: 

R1 = [1 0 0;0 0 -1;0 1 0 ]; 

R2 = [ 0 0 1; 0 1 0;-1 0 0]; 

prod1 = R2*R1 

prod1 = 

0 1 0 

0 0 -1 

-1 0 0 

>> % if the order is inversed the multiplication will be 
R1*R2: 

prod2 = R1*R2  

prod2 = 

0 0 1 

1 0 0 

0 1 0 
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10.2. Quaternions and Dual Quaternions (DQ) 

10.2.1. Quaternions or Rotation Representation  

Quaternions were first discovered and described by 
the Irish mathematician Sir Rowan Hamilton in1843. 
Indeed quaternion’s representation and axis-angle 
representation are very similar. 

Both are represented by the four dimensional 
vectors. Quaternions also implicitly represent the 
rotation of a rigid body about an axis. It also provides 
better means of key frame interpolation and doesn’t 
suffer from singularity problems. 

The definition of a quaternion can be given as (s, m) 
or (s, ! x, ! y, ! z) where m is a 3D vector, so 
quaternions are like imaginary (complex) numbers with 
the real scalar part s and the imaginary vector part m. 

Thus it can be also written as: s + !x i + !y j + !z k. 

There are conversion methods between 
quaternions, axis-angle and rotation matrix. 

Common operations such as addition, inner product 
etc can be defined over quaternions.   

Given the definition of !!  and !!  :   

!! = !! +  !x1 ! +  !y1 ! +  !z1 ! or !! = (!!,  !!) 

!! = !! + !x2 ! +  !y2 ! +  !z2 ! or !! = (!!,  !!) 

Addition operation is defined as: 

  !! + !! = (!! + !!, !! +  !!) = (!! + !!) + (!x1 + 
!x2)i + (!y1 + !y2)j + (!z1 + !z2)k 

dot (scalar, inner): product operation( .) as: 

!!. !! = !!. !! +  !!.  !! 

Quaternion multiplication is non commutative, but it 
is associative.  

Multiplication identity element is defined as : (1, (0, 
0, 0)) 

We can also perform the multiplication in the 
imaginary number domain using the definitions: 

!!  = !!  = !!  = －1; ! .   !  = ! , ! . !	 = ! , ! . !	 = ! ; 
!. !  = －  !,  !. ! = －  !, !.! = －  ! 

Equations (A1) to (A12) state the definitions, rules 
and properties of dual quaternion algebra. 

Quaternion multiplication (⨂)is defined as: 

  !!⨂!!  = (!! . !!  –   !! .   !! , !! .   !!  + !! .   !!  +   !! 
∧!!)        (10) 

Each quaternion has a conjugate !∗  and an 
inverse (except zero quaternion) defined by:  

!∗ = (s, – m)       (11)   

and an inverse !!!  = (   !
!
)!!∗ ; (! ≠ 0) Where ! 2 = s 

2 +  !x 
2 + !y 

2 +  !z 
2 = ! ⨂  !∗ = !∗⨂  ! 

Rotations are defined by unit quaternions.Unit 
quaternions must satisfy !  = 1. Since multiplication 
of two unit quaternions will be a unit quaternion, N 
rotations can be combined into one unit quaternion qR 
= qR1 .qR2. qR3 .... qRN 

It is also possible to rotate a vector directly by using 
quaternion multiplication. To do this, we must define a 
3D vector V	 = (vx, vy, vz) that we want to rotate in 
quaternion definition as qv = (0, v) = 0 + vx i+ vy j+ vz k. 

The rotated vector V ′ = (vx ′, vy ′, vz ′) can be defined 
as qv’ = (0, v ′) = 0 + vx ′i + vy ′j + vz ′k 

Noting that, in quaternion rotation !!!  = !∗  (For 
unit quaternion). So, rotation of qv by quaternion q can 
be calculated as:  

qv’ = q ⨂ qv ⨂  !!! = q  ⨂ qv  ⨂  !∗    (12) 

And, assuming another quaternion rotation p, two 
rotations can be applied to the vector V such as: 

qv’ = p ⨂(q ⨂ qv ⨂  !!!) ⨂ !!! = (p ⨂q )⨂ qv ⨂  (!!! 
⨂ !!! ) = C ⨂ qv ⨂ !!!     (13) 

providing that quaternion C = (p ⨂ q) is a combinaison 
of the precedent quaternions q and p . 

The equation implies that vector V is first rotated by 
the rotation represented by q followed by the rotation p. 

A quaternion q that defines a rotation about 
(around) the axis n denoted by the unit vector (nx, ny, 
nz) of an angle ! could be written as: 

q =  cos !
!
 +  sin !

!
 (nxi + ny j + nz k)    (14) 

This same quaternion represents a rotation of 
amplitude (−  !) around the opposite axis (−n) 

10.2.2. Dual Quaternions 

Dual Quaternions (DQ) were proposed by William 
Kingdom Clifford in 1873.They are an extension of 
quaternions. They represent both rotations and 
translations whose composition is defined as a rigid 
transformation. 

They are represented by the following eight 
dimensional vector:  

!    =  (  !  , !  )  = (s ,  !x	 ,  !y,  !z	 ,  !  !!, !!! ,  !!! , !!!)  = (  !  , 
!  , !  , !  )        (15) 

Such that: !    = !	 +	 !!!	 =	 s + !x i + !y j + !z k 
+  !  (!  !! + !!!+  !!! + !!!)	 
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Dual quaternion multiplication is defined by: 

!1⨂  !2 = !1⨂  !2 + ! (!1⨂  !  !! + !  !!⨂  !2)   (16) 

With !!  = 0; ! being the second order nilpotent 
dual factor. 

The dual conjugate (analogous to complex 
conjugate) is denoted by: 

! = !	 -	 !!!       (17) 

This conjugate operator can lead to the definition of 
the inverse of ! which is: 

!!! = !
!
 = !

!
!
!
 = !

!
 −  ! !!

!!
; which means that a pure 

dual number (!": !  = 0) does not have an inverse) 

!    = =	 !  ⨂  !!!  = (!  +  !!!)(  
!
!
 −  ! !!

!!
 ) = !

!
 −  ! !!!

!!
 + 

!!!
!

 = !
!
 −  ! !!

!
 + !!!

!
 = 1− 0 = 1 

A second conjugation operator is defined for DQs. It 
is the classical quaternion conjugation and is denoted 
by: !∗	 =	   !∗	 +  !!!∗	  

Where conjugation of dual and non-dual quaternion 
parts satisfies eq (11). 

Combining these two conjugation operators will lead 
to the formalization of DQ transformation on 3D points. 
Use of both conjugations on !	 can be denoted !∗ . 
Using definitions (11), (15) and (17) we finally have: 

!∗  = (s ,−!x ,−!y,−!z ,  −  !  !!, !!!  ,  !!!  , !!!)    (18) 

It is well know that we can use dual quaternions to 
represent a general transformation subject to the 
following constraints: 

The DQ screw motion operator !:	 = (!, !!) must 
be of unit magnitude: ¦!¦	 = (!  +  !!!)2	 = 1  

This requirement means two distinct conditions or 
constraints: 

s 2 + !x
2 + !y

2 + !z
2 = 1 and  

s !  !!  + !x !!! + !y !!! + !z !!!  = 0    (19) 

Which imposed on the eight (8) parameters of a 
general DQ, effectively reduce the number of degree of 
freedom (8 － 2) = 6; equivalent to the degree of 
freedom of any free rigid body in 3-D space 

10.2.3. Dual Quaternions or General 3D Rigid 
Transformation Representation 

While equation (14) defines completely and 
unambiguously (without any singularity like guimbal 
lock and other loss of degree of freedom) all 3D 
rotations in the physical space, dual quaternions can 
represent translations; 

A DQ defined as: !!      = 1 +   !
!
	 !!! +   !!! + !!!   	 

corresponds to the translation vector ! = (!!,  !! , !!)
t 

Which could symbolically be noted T; so !!      = 
1+  !   !

!
 

The translation T on the vector !	 can be computed 
by: !!! = !!   ⨂!!  ⨂!!∗   

So fortunately using def (A9), we have: !!∗  = !!   = 
1+  !   !

!
,	 then	 !!! = !!   ⨂!!  ⨂!!∗  = !!   ⨂!!  ⨂!! = [1+  !

!
	 

!!! +   !!! + !!!   ]	 ⨂	 [1+  !	 !!! +   !!! + !!!   ]⨂[1 +
  !
!
   !!! +   !!! + !!!   ]	 =1+   ! 	 [ !! + !!)! +   (!! + !!)! +

(!! + !!)!   ]	 

Which correspond to the transformed vector: !′ = 
!! + !!)! +   (!! + !!)! + (!! + !!)!    

10.2.4. Combining Rotations and Translations 

Assuming: !  and then !,	 two DQ transformations 
applied successively and in that order to a DQ position 
vector !! ; Their combined DQ transformation !	 
applied to  !! gives: 

  !!! = !⨂(!  ⨂  !!  ⨂!∗)  ⨂ !∗  = (!  ⨂ !)  ⨂ !!  ⨂ (!∗⨂ 
!∗) = ! ⨂ !! ⨂ !∗      (20) 

It is very important to notice that the most inner 
transformation of the equation is applied first with an 
inside to outside manner.  

In eq (20),  ! is the first transformation followed by 
the second one !. 

The successive composition or combination of unit 
DQ rotation !! = R followed by a unit DQ translation 
!!     = 1+  !

!
 !!! +   !!! + !!!     

will give: !!   ⨂ !!  = (1+  !
!
 !!! +   !!! + !!!   )  ⨂ qR = 

qR + !
!
 !!! +   !!! + !!!   ⨂ qR = R + ! !"

!
   (21) 

Its inverse being: (R + ! !"
!
)!! =   !∗ −   !∗!

!
 

If the translation is applied first: 

!!   ⨂  !!  = !!⨂(1 +   
!
!
   !!! +   !!! + !!!   )   = qR + 

!!⨂   
!
!
   !!! +   !!! + !!!    qR = R + ! !"

!
    (22) 

Its inverse being: (R + ! !"
!
)!! =   !∗ −   !!∗

!
  

10.2.5. Several Transformations 

Suppose that the vector V in its dual quaternion 
form !!  = 1 +   !  !  is under a sequence of rigid 
transformations represented by the dual quaternions 
!1, !2, . . . , !n. The resulting vector is encapsulated in 
the dual quaternion: 
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1+  !  !  ′ = !n ⨂ (!n−1 ⨂ ….⨂ (!1 ⨂ (1+  !  !) ⨂ !∗1) 
⨂ …..⨂ !∗ n−1) ⨂ !∗n      (23) 

= (!n  ⨂…⨂!1 ) ⨂ (1+  !  !)  ⨂ (!∗1 ⨂…. ⨂ !∗n) 

We denote the product dual quaternion as !  = 
!n  ⨂…⨂!1. The effect is equivalent to a single rigid 
transformation represented by !; namely, 

1+  !  !  ′ = !  ⨂ (1+  !  !)  ⨂ !∗.  

Using dual numbers and plucker coordinates and 
introducing the following dual angle and dual vector we 
can write: 

!	 = !	 + !" and 

!	 =  ! + !" 

It can be easily shown that:  

cos  !  !  !"  
!

 = cos !  
!
 −!   !  

!
sin   !  

!
 and    (24) 

sin  !  !  !"  
!

 = sin !  
!
+ !   !  

!
cos   !  

!
  

10.3.1. Parameters of Denavit and Hartenberg : 

The Denavit and Hartenberg Convention [35-38], is 
a systematic method. It allows the passage between 
adjacent joints of a robotics system. It relates to the 
open kinematic chains where the joint possesses only 
one degree of freedom, and the adjacent surfaces 
remain in contact. For this aspect the use of hinges or 
slides is indispensable. The choice of the frames for 
the links facilitates the calculation of the DH 
homogeneous matrices and makes it possible to 
rapidly express information of the terminal element 
towards the base or the reverse.  

The steps for this technique are as follows: 

1. Numbering of the constituent segments of the 
manipulator arm from the base to the terminal 
element. The zero referential is associated with 
the base of it, and the order n to the terminal 
element (end effector); 

2. Definition of the main axes of each segment : • If 
zi and zi-1 do not intersect we choose xi so as to 
be the parallel with the axis perpendicular to zi 
and zi-1. • If zi and zi-1 are collinear, xi is chosen in 
the plane perpendicular to zi-1 . 

3. Fix the four geometric parameters: di , θi, ai  , α! 
(see Figure 7) for each joint such as: 

• di coordinate of the origin Oi on the axis zi-1 For a 
slide di is a variable and for a hinge di is a 
constant. 

• θi is the angle obtained by screwing xi-1 to xi 
around the axis zi-1. For a slide   !! is a constant 
and for a hinge   !! is a variable. 

• ai is the distance between the axes zi and zi-1 
measured on the axis xi negative from its origin 
up to the intersection with the axis zi-1. 

• α1 is the angle between zi et zi-1 obtained by 
screwing zi-1 to zi around xi. 

Finally, the homogeneous DH displacement matrix 
[ !!!!! ]   which binds together the rotation and the 
translation is formed. Its left upper part defines the 
rotation matrix !!!!!   and on its right the translation 
vector 

!!!!! : !!!!! !!!!!

0  0  0 1
      (25) 

With !!!!!  = 
!"#  !! −!"#  α!   !"#  !! !"#  α!   !"#  !!
!"#  !! !"#  α!   !"#  !! −!"#  α!   !"#  !!
0 !"#  α! !"#  α!

    (26) 

And !!!!!  =
  !!!"#  !!
!!!"#  !!
!!   

      (27) 

Figure 7 represents the Denavit and Hartenberg 
parameters for a two successive frames (xi-1, yi-1 , zi-1 ) 
and (xi, yi , zi ). 

And finally the (4x4) rigid transformation matrix will 
have the form: 

 
Figure 7: Coordinate systems and parameters of Denavit and Hartenberg. 
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  !!!!!
!"#  !! −!"#  α!   !"#  !! !"#  α!   !"#  !! !!!"#  !!
sin !!
0

!"#α!   !"#  !!
sin α!

−!"#α!   !"#  !!
!"#  α!

!! sin !!
!!

0 0   0 1

   (28) 

10.3.2. D-H kinematics of the Planar RRR Robot 

Null values must be taken for the parameters: di = 0 
and   α! = 0 in Figure 7 and matrix (28) to give: 

The appropriate transformations for the first three 

considered articulations are: !!!   =
!! −!!  0 !!!!
!! !!  0 !!!!
0 0  1 0

0  0  0  1

,  

!!! = 

!! −!!  0 !!!!
!! !!  0 !!!!
0 0  1 0

0  0  0  1

 !!! = !!!!!! = 

!!" −!!"  0 !!!! + !!!!"
!!" !!"  0 !!!! + !!!!"
0 0  1   0

0  0  0  1  

  

and finally !!! = 

!! −!!  0 !!!!
!! !!  0 !!!!
0 0  1 0

0  0  0  1

   

 

  !!!   = !!!!!!  !!! =
!!"# −!!"#  0 !!!! + !!!!" + !!!!"#
!!"# !!"#  0 !!!! + !!!!"  +!!!!"#
0 0  1 0

0  0  0  1

 

The last column represents the position coordinates 
x and y of the end effector: 

x = !!!! + !!!!" + !!!!"#; y = !!!! + !!!!"  +!!!!"# 
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