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Abstract Adequacy of approximation of ellipsoidal parti-
cles composed of a set of sub-spheres for numerical Dis-
crete Element Method (DEM) simulations is examined. The
algorithm of adaptive hierarchical multi-sphere (MS) model
is suggested for composing elliptical particles. Numerical
simulation of the piling problem is used as a test problem
for evaluating the adequacy of MS model approximation in
comparison to the model of smooth ellipses for multipar-
ticle system. The accuracy of MS approximation with the
increasing number of sub-spheres is examined in detail by
comparison of macroscopic and microscopic parameters of
granular dynamics. It was determined that the data on macro-
scopic parameters yielded by the MS model tend to converge
to those of the smooth ellipsoid with the increasing number
of the constituent sub-spheres, and the MS model approxi-
mates the smooth perfect ellipsoid with a reasonable number
of sub-spheres within the limits of the appropriate tolerance.
It can be concluded that a multi-sphere model remains a real-
istic and relatively simple particle model applicable to DEM
simulations of the behaviour of the real smooth and rough
elliptically shaped particles.
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1 Introduction

Particulate or granular materials present a huge class of mate-
rials widely used in chemical, pharmaceutical, food and other
industries. Proper understanding of mechanical behaviour of
granular materials is of major importance for both funda-
mental developments and industrial applications. Despite the
increased interest in this topic and many years of experience,
the problems still remain, since experimental investigation of
granular assemblies is extremely difficult. Therefore, appli-
cation of numerical simulations provides a feasible alterna-
tive to physical experiments.

The discrete element method (DEM) pioneered by Cundall
[1] became recognized as a tool for simulating particulate
matter after the publication of the work by Cundall and Strack
[2]. The DEM concept offers the unique approach capturing
various particle shapes and physical models by a discrete set
of quantities. Fundamentals of DEM, as well as some partic-
ular models and important details of simulation technique,
may be found in [3–16].

From the computational point of view DEM may be
regarded as a computational technology for modelling the
motion of contacting particles as deforming bodies. The main
disadvantages of the DEM technique, in comparison with
the well-known continuum methods, are related to compu-
tational capabilities which are limited by a huge number
of particles and a short time interval of simulations. A lot
of effort was put forward to increase computational effi-
ciency by improving particular computational procedures.
It should be emphasised that DEM is a very complex tech-
nology and besides computational efficiency there is a lot
of issues to be regarded to ensure the physical reality of
computations. One of these problems is to deal efficiently
with non-spherical shapes and to understand their behav-
iour.
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Representation of the particle shape is one of the key chal-
lenges of DEM simulations; however most of the investiga-
tions were limited to the simplest shapes such as circular discs
in two-dimensions, as introduced in [2], or spheres in three
dimensions. Diversity of real particle shapes requires the
development of more sophisticated particle models beyond
spherical approximation. The description of complicated
non-spherical shapes is based on two quite different
approaches: a single-particle approach and a multi-particle
approach. Discussions on possible shapes are given by
Latham and Munjiza [17], Wellman et al [18] and Krugel-
Emden et al. [19]. The single particle approach considers a
particle as a single body of complicated geometry. Accord-
ing to Wellman et al. [18], particle types can be classified
into non-smooth (or discrete) particles containing vertices,
and smooth (or continuous) described by implicit or explicit
continuous functions. In the most cases, smooth particles
preserve convex shapes.

Elliptical particles (ellipses and ellipsoids) are probably
the most widely used non-spherical smooth shapes because
various types of granular matter particles are of these shapes.
According to Rothenburg and Bathurst [20], the character-
istics of granular material are better represented by systems
of ellipsoidal particles rather than by systems of spherical
particles. Various aspects of the development of the 2D ellip-
tical particle are presented by Ting [21,22], Ting et al. [23],
Wang and Liang [24] and Džiugys and Peters [6,25]. For
discussions on the development and implementation of 3D
contacting ellipsoids, see Lin and Ng [26,27], Ouadfel and
Rothenburg [28], Wang et al. [29], Ng [30], Donev et al. [31].
Generalization of smooth particles in terms of supperellip-
soid is presented in latest works of Wellman et al. [16,18]
and references therein.

In order to save computational expenditure, various sim-
plified semi-analytical approaches were elaborated for the
development of non-spherical smooth convex particles. Allen
and Tildesley [3] discussed the use of spherocylinders, each
of which is composed of a cylinder with hemi-spherical ends
of the same radius as the main body, for molecular dynam-
ics simulations. Applications of spherocylinders to simulate
granular materials are presented by Langston et al. [32] and
Pournin et al. [33]. Li et al. [34] focused on the use of
sphero-disc shaped particles. There, the 3D disc particles
are modelled by intersection of two spheres. Description of
an ellipsoid by a four-arch (Wang et al. [29], Johnson et al.
[35]) may be assigned to this category as well.

In the context of DEM, the multi-particle approach is basi-
cally restricted to multi-sphere (MS) models where a single
particle is represented by a composition of the connected
spheres. General approach to representation and description
of rotation of axi-symmetrical non-spherical particles by
rigidly connected multi-spheres is presented by Favier et al.
[36] and Jensen et al. [37]. Multi-sphere particles are imple-

mented into commercial software PFC [38] and EDEM
[39].

Several reported applications of multi-sphere models,
referred to as a clump, were already examined for different
purposes and various shapes. Applications include three-par-
ticle clusters (Jensen et al. [37]), irregularly shaped railway
ballast particles (Lu and McDowel [40]), agricultural axi-
symmetric particles with high aspect ratio (Abbaspour-Fard
[41]), variously shaped clay grains (Kock and Huhn [42]),
tablet-shaped particles (Song et al. [43]).

There have been several attempts to use multi-spherical
particles for modelling ellipsoids. Probably, the simplest 3D
model of ellipsoidal particles presented by a cluster of four
identical inscribed spheres was considered by Vu-Quoc et al.
[44]. The 2D model of elliptical particles composed of identi-
cal discs was studied by Emeriault and Claquin [45]. Packing
of arbitrary shaped multi-sphere objects including ellipsoids
with a general advancing front technique was considered by
Löhner and Ońate [46].

Multi-sphere composite particle models may be classified
as non-convex non-smooth particles, therefore, several dis-
tinguished features including physical effects and computa-
tional aspects should be taken into account. Consequently, the
most serious issue, however, related to MS approach is that
knowledge on the validity of this approach is rather scarce.
It is supposed that increasing the number of sub-spheres to
form an elliptical particle should yield the smooth particle in
the limit. To be able to solve problems using MS particles,
e.g., the one shown in Fig. 1, it is important to answer the most
important questions—is it possible to describe the ellipsoi-
dal particle by MS model, how many sub-spheres are needed
for the description, or to know what differences, compared
to the exact solution, may occur when a limited number of
sub-spheres is used. On the other hand, with the increasing
number of sub-spheres, a significant increase of computa-
tional expenses is expected.

Another significant property of MS particles is a possi-
bility to have more than one contact point during the same
collision at the same time moment, while single convex par-
ticles may have only one. The net effect of such multiple
contacts is still not fully understood, and, while it is com-
monly recognized that behaviour of a single particle and a
multi-shape particle may considerably differ, the systematic
numerical studies of MS approximation are however limited.
Dependence of damping of multi-particle system on number
of cavities was found by Saeki [47]. Similar effects in terms
of differences between smooth (binary) and rough (multiple)
surface contacts are considered by Leszczyński [48]. Song
et al. [43] and Krugel-Emden et al. [19] studied the single tab-
let shaped and spherical particles, respectively, approximated
with a varying number of sub-spheres. It was concluded that
differences in dynamics behaviour of a single particle and
a multi-particle may be a source of errors, and further stud-
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Fig. 1 Piling via the hopper discharge by multi-sphere ellipsoids: a 3D model, b 2D approach

ies are required to determine optimal approximations and to
check the multi-sphere method for its capabilities to simulate
larger particle assemblies.

It should be clear; however, that any precise mathemati-
cal description of a smooth particle provides only an excep-
tional case that does not necessarily match the real particles
that are characterized, as a rule, by irregular shapes. Detailed
advanced experimental measurements allow to quantify par-
ticle shapes by applying various indicators. Shukumaran and
Ashmaway [49] suggested normalized shape and angular-
ity factors to evaluate deviation of the real shape from the
circular shape. Robinson and Friedman [50] used alterna-
tive shape factors, sphericity and circularity. Roughness as
an indicator of particle shape is applied for interpretation of
experimental results and MS models (Krugel-Emden et al.
[19]). Angularity as microscopic characteristic of polygo-
nal particles is used by Nouguier-Lehon et al. [51]. Rough-
ness and sphericity were also used to characterise sedimen-
tal particles by Kock and Huhn [42]. Influence of various
shapes factors are studied experimentally [42,47,48]. DEM
analysis of many particle systems is basically restricted to
two-dimensional non-convex MS particles [42] or polygons
[51].

It could be stated; however, that adequacy of the MS
approximation for other shapes by applying DEM is still
problematic and requires further investigation. This paper
addresses the multi-sphere model of ellipsoids and its appli-
cation. The approximation of smooth ellipsoidal particles
by MS particle model is demonstrated by solving a 2D pil-
ing problem by 3D particles. Since a purely 3D model of a
MS particle is used for the present investigation, conclusions
could be applicable to 3D problems.

The first purpose of this paper is to clarify the adequacy
of approximation and the effort required for the description
of the smooth ellipsoid and, second, to show that the per-
formed study may serve as a basis for future applications
of the 3D MS particles for problems with rough ellipsoidal
shape.

The paper is arranged as follows. The models of multi-
sphere ellipsoidal particle are briefly described in Sect. 2. The
DEM methodology with particular emphasis on description
of motion and inter-particle forces is presented in Sect. 3.
The solution of a piling problem and numerical results with
discussion on adequacy of MS approximation are presented
in Sect. 4. Computational efficiency determined by solving
benchmark tests is considered in Sect. 5, while conclusions
are given in Sect. 6.

2 Multi-sphere ellipsoidal particle

MS-model presents a technique for defining ellipsoid
geometry by an arbitrary number of inscribed spheres. The
three-dimensional ellipsoid may be described in the local
particle fixed Cartesian coordinates Oxyz (Fig. 2). The local
coordinate system is attached to the mass centre and rig-
idly connected to the particle. Assuming axial symmetry
with respect to axis Ox , the geometry of the ellipsoidal par-
ticle i is defined by the major and minor half-lengths of
the principal axes a and b, respectively; more precisely, by
aspect ratio s = a/b. Hereafter, subscript i will be omit-
ted for the sake of simplicity. The position of an arbitrary
point within the particle may be presented by vector x =
{x, y, z}T .
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Fig. 2 Axi-symmetric
three-dimensional ellipsoid:
a geometry, b MS model

(a) (b)

Consequently, the ellipsoid equation reads as follows:

f (x, y, z) =
( x

a

)2 +
( y

b

)2 +
( z

b

)2 − 1 = 0. (1)

In order to solve the equations of motion, a position of the
gravity centre, the mass, and the principal mass moments of
inertia should be defined for the particle under consideration.
The gravity centre of an ellipsoid coincides with its geomet-
rical centre. The cross-sectional area A in the plane Oxy and
the volume V of an ellipsoid are determined by

Aell = πab, Vell = 4

3
πab2, (2)

According to the MS model, the ellipsoid (Fig. 2b) is com-
posed of N spheres, or sub-spheres, where N is an odd num-
ber. Sub-spheres are rigidly fixed with respect to each other
and are located on the symmetry axis Ox .

The construction of the MS particle may be considered
in two dimensions and is limited to the half of the ellipsoid
along a positive semi-axis 0 ≤ x ≤ a (Fig. 3a). This region is
occupied by n sub-spheres, where N = 2n + 1. Sub-spheres
are denoted by subscript k, where k = 0 for the central largest
sub-sphere, while the remaining sub-spheres are denoted as
k = 1, 2, . . . , n. Each of the sub-spheres is characterized by
its centre coordinate xk , variable inter-sphere distance dk and
variable radius Rk . It is obvious that for the central sub-sphere
x0 = 0, R0 = Rmax = b. The length of the inter-sphere seg-
ment is dk = xk − xk−1. Considering the above relation, the
sub-sphere centre may be characterized in terms of segment
lengths dk as xk = ∑k

j=1 d j .
Sub-spheres present the inscribed approximation of the

ellipsoid; therefore, each of sub-spheres remains tangent to
the ellipsoidal surface (Fig. 3a). At the point of tangency
denoted hereafter by tk , ordinates of the ellipse yell(xtk)

defined by (1) and the sub-sphere k defined by (xtk − xk)
2 +

ytk = R2
k , as well as their first derivatives, should be equal.

Differentiation of surface equations and elimination of dy/dx

yields the tangent point position tk as

xtk = xk
a2

a2 − b2 . (3)

Sequential elimination of y and inserting the position (3)
yields the radius of the inscribed sub-sphere Rk as follows:

R2
k = b2

a2 − b2

(
a2 − b2 − x2

k

)
. (4)

It should be noted that the tangent point should remain
within the ellipse, therefore, the expressions (3) and (4) are
valid upon the condition xtk ≤ a. The limit case xtk = a
indicates the location xn of the smallest sub-sphere n and its
radius Rn in this way:

xn = a − Rn, Rn = Rmin = b2

a
. (5)

By assembling the sub-spheres in the ellipsoid, we obtain,
in fact, a combination of n spherical segments with their cen-
tres aligned along the positive semi-axis of the ellipsoid. It
is necessary that the sub-spheres overlap, therefore, the total
length of the segment is as follows:

n∑
k=1

dk = a − Rmin. (6)

If this condition is not fulfilled, which is possible in the
case of a small number of sub-spheres and higher aspect
ratios, it is necessary to increase N .

Positioning of the inner sub-spheres is based on the
assumption that inter-sphere distances vary proportionally
to the ellipsoid shape, therefore

yk−1 (xk−1)

dk
= yk (xk)

dk+1

From here, the recurrent relationship for distances between
the neighbouring sub-spheres may be established in the fol-
lowing way

dk+1 = dk
yk (xk)

yk−1 (xk−1)
. (7)
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(a) (b)

Fig. 3 Multi-sphere model of ellipsoid: a section geometry; b cut-off-spheres

Here, a position of the point on the surface of the ellipse
yk (xk) is obtained by substituting the coordinates of the
sphere centre by solving Eq. (1). It is obvious that, for the
central sub-sphere, y0 = b. Substituting expressions (7) into
Eq. (6) yields a non-linear equation with respect to the length
of the first segment d1:

d1 +
n∑

k=2

dk (d1) = a − Rmin. (8)

After solving this equation numerically, the lengths of
the remaining segments dk (k = 2, . . . , n) are obtained by
sequential application of (7). The final geometry of the MS
particle is defined by calculating the sub-sphere overlap and
composition of cut-off-spheres as illustrated in Fig. 3b. Par-
ticular geometry of the cut-off spheres is defined by segment
lengths ak and ak+1 and overlap radii rk and rk+1 of kth
spherical segment.

The section area and volume of the MS particle are defined
as the sum of areas and volumes of N sub-sphere segments,
respectively. Consequently, the area Ak and volume Vk of the
cut-off sub-sphere k(k = 1, . . . , n − 1) is defined as the area
and the volume of the spherical segment, while for the end
sub-sphere k = n, they are defined as those for the spherical
cap, respectively:

Ak = R2
k

(
π − cos−1

(
ak1

Rk

)
− cos−1

(
ak2

Rk

))

+ak1rk−1 + ak2rk, (9)

Vk = 1

6
πlk

(
3r2

k−1 + 3r2
k + l2

k

)
. (10)

The above relations (1–12) serve as the basis for the
description of MS ellipsoidal particle implemented in DEM.

Four ellipsoidal particles with various aspect ratios s =
1.5, s = 2.35, s = 5.0 and s = 10.0 approximated by dif-
ferent numbers of sub-spheres are studied. The side view of
the MS ellipsoids is presented in Fig. 4.

The purely geometric effect of the MS approximation in
two dimensions may be evaluated by a relative cross-section
area which is the ratio of the approximated MS cross-section
area AMS to the one of smooth ellipse Aell. Another micro-
scopic characteristic is the relative perimeter of cross-section
defined in a similar way as the ratio perimeter of MS cross-
section area PMS to the one of smooth ellipse.

The variation of the relative cross-sectional area upon the
number of sub-spheres N is presented in Fig. 5a, while the
variation of the relative perimeter is shown in Fig. 5b. These
graphs indicate the effect of purely geometric microscopic
approximation that can influence the macroscopic behaviour.
They provide a rough idea about the required number of sub-
spheres considerably affected by the aspect ratio. For the par-
ticles with aspects ratio s = 2.35, 1% tolerance of the section
area will be achieved with 13 spheres, while the equivalent
volume tolerance will be achieved with 15 spheres.

3 DEM methodology

The DEM methodology considered in this paper is aimed
at simulating the dynamic behaviour of non-cohesive fric-
tional visco-elastic dry granular matter. From the modelling
point of view, granular matter is a system of the finite number
of deformable bodies with the given geometry and material
properties. As the particles move, they impact each other
and undergo deformations. Evaluation of particles motion
and contacts calculation is the most important items of the
DEM methodology.

3.1 Motion of the particle

The motion of the particle as a rigid body described in the
framework of classical mechanics naturally consists of two
types of motion. Although a description of translational
motion is independent of the particle shape, this is not the
case for rotational motion. Generally, the free body motion
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Fig. 4 Sectional geometry of multi-sphere model for ellipsoids with various aspect ratios s and number of sub-spheres N: a s=1.5, N=3, b s=1.5,
N=7, c s=1.5, N=13, d s=2.35, N=5, e s=2.35, N=9, f s=2.35, N=17, g s=5.0, N=11, h s=5.0, N=17, i s=5.0, N=33, j s=10, N=23, k s=10, N=37, l
s=10, N=55

(a) (b)

Fig. 5 Variation of the relative cross section area (a) and perimeter (b) depending on the number of sub-spheres for various aspect ratios

framework used in the multi-body dynamics may be applied
to describe the particle rotation (see [52]). The motion may
be described in the global (space-fixed) and local (particle-
fixed) Cartesian reference frame. A position of an arbitrary
point in the global coordinates is defined by its position vector
X = {X1, X2, X3}T . The translational behaviour of arbitrary
particle i is characterized by a small number of global param-
eters: positions Xi , velocitiesẊi and accelerations Ẍi of the
mass centre, as well as the resultant force vector Fi acting on
the particle. The motion of particle i obeys the Newton’s sec-
ond law and is formulated for the mass centre of the particle
as

mi Ẍi (t) = Fi (t) . (11)

The equations describing the rotational motion, or Euler
equations, are derived by assuming conservation of angu-

lar momentum for particle i and may be considered in the
same way. The rotation is governed by three independent
rotational degrees of freedom defined by vector θi (t) =
{θi1 (t), θi2 (t), θi3 (t)}T . Contrary to translational motion,
definition of rotational degrees of freedom is not unique,
and there exist different possibilities of their definition. Con-
ventionally, the rotational degrees of freedom are related
to rotation angles. In the most useful case of Euler angles
φ, θ , ψ , vector of angular variables reads as θi (t) = {ϕi (t),
θi (t), ψi (t)}T . It would be desirable, however, to deal with
explicitly defined rotational variables of the particle. Angu-
lar velocities of the particle defined by vectorwi (t) = {wi1,

wi2, wi3}T may be related to θi (t) by nonlinear rotational
Jacobi matrix

[HRi (θi , t)] : wi (t) = [HRi (θi , t)]
[
θ̇i (t)

]
. (12)
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Finally, taking into account the properties of the inertia
tensor of ellipsoid, Euler equations read as

Iminẇi = Ti1

Imaxẇi2 − (Imax − Imin) wi1wi3 = Ti2

Imaxẇi3 + (Imax − Imin) wi2wi1 = Ti3

, (13)

where Ti = {Ti1, Ti2, Ti3}T is vector of the external torque
with respect to the particle mass centre. Inertia properties are
defined by two principal moments Imin = I1 and Imax =
I2 = I3.

A detailed expression of equations of motion (13) depends
on a particular choice of rotation variables. In order to avoid
degeneracy of angular variables, the method of quaternions
[3,6] was applied hereafter.

The numerical solutions of differential equations (11-13)
for each particle i at the time t + �t (where �t is the time
step) is performed by using 5th order Gear’s predictor-cor-
rector [3,6] scheme featuring better tolerance [53].

3.2 Inter-particle contact

Generally, the evaluation of a binary contact comprises sev-
eral tasks such as contact detection, calculation of the contact
point coordinates, geometry of the overlap, normal and tan-
gential kinematical vectors and, finally, inter-particle forces.
It is the most CPU time consuming procedure; therefore,
considerable effort is given to develop efficient algorithms.

Probably the most comprehensive performance study of
the two mostly used tree-based and cell-based contact detec-
tion algorithms is given by Han et al. [15]. This as well
as majority other studies are restricted by various limita-
tions, therefore, universal evaluation still remains problem-
atic. There is a large scatter in reported values of relative time
spent for contact detection. Depending on various particular
factors such as static configuration, specified domain and
particle geometry, etc., it may comprise from 5% [15] up to
70% [54]. Consideration of contact point detection depends
on each particular shape. Modelling of contact detection for
smooth particles such as ellipsoids and superellipsoids is
generally possible by iteratively solving sets of non-linear
equations [6,18]. Contact detection for discrete particles such
as convex polyhedral is related to increased amount of data
related to irregular discrete geometry and particular interac-
tion mechanisms [54].

Detection of multiple contacts for non-convex particles
is even more complicated while a specific approach would
be desired. Application of level set technique is elaborated
for smooth contacts [55,56] or fast multipole method or ray
crossing technique [57] for non-convex polygons.

The main advantage of the MS method is that contact
detection and force calculation can be based on the simple
algorithms valid for discs or spheres. Therefore, for the con-

tact search we used cell-based method, which was exten-
sively used in other codes and applications [58,59].

Description of inter-particle contact required for evalu-
ation of contact forces Fi and torques T i in equations (11)
and (13) presents an important part of the DEM methodology.
This methodology will be further illustrated by considering
a general approach. Contact geometry for elliptical particles
is illustrated in Fig. 6a, while that for spherical particles is
given in Fig. 6b.

Let us consider two contacting particles i and j with their
radii-vectors Xi and X j , the centres of gravity Oi and O j ,
the translational velocities vi ≡ Ẋi and v j ≡ Ẋ j and the
rotational velocities wi and w j . Vector xi j of the relative
position points from the centre of gravity of particle i to that
of particle j

xi j = Xi − X j . (14)

The particle deformation due to collision is assumed to be
approximated by the overlap area of the particles. The con-
tact point Ci j is defined to be in the centre of the overlap area
with the position vector Xci j . The depth of the overlap is hi j ,
provided that it is much smaller than the particle size.

The vectors at the particle contact point can be separated
into the components normal and tangential to the contact sur-
face denoted by the superscripts n and t , respectively. The
normal direction of the contact surface is defined by the unit
vector ni j extending through the centre of the overlap area.
The unit vector ti j of the tangential contact direction is per-
pendicular to ni j .

The vectors dci j and dcji point from the centres of the
particles to the contact point Ci j

dci j = Xci j − Xi , dcji = Xci j − X j . (15)

The relative velocity of the contact point is defined as

vi j = vci j − vcji , (16)

where

vci j = vi + wi × dci j , vcji = v j + w j × dcji (17)

are the velocities of the particles i and j at the contact point.
For a contact with partial slip, the particles may slip rel-

atively to each other along the distance δt
i j in the tangential

direction:

δt
i j =

∣∣∣∣
∫
vt

i j (t) dt

∣∣∣∣ . (18)

In this case, δt
i j is allowed to increase until the tangential

force exceeds the limit imposed by static friction.
Formally, the inter-particle geometry and kinematics

described by (14)–(18) do not depend on the particle shape.
For the spherical particles, the position of the contact point
Ci j is on the line connecting the particle centres. Therefore,
the normal contact direction ni j always coincides with this
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Fig. 6 Geometry of the contact of elliptical (a) and spherical (b) particles

line, while the overlap size hi j is defined by considering the
distance between the centres of the spheres.

Another important geometrical parameter of the contact
is the reduced radius Ri j of the particles i and j at the contact
point. Generally, it is defined as follows:

Ri j = 1

2
√

AB
, (19)

where A and B are related to the radii of the particle shape
curvatures.

For spherical particles in the contact with the radii Ri and
R j , we have:

Ri j = Ri R j

Ri + R j
. (20)

The details for explicit evaluation of the contact parameters,
such as contact point Ci j , the depth of the overlap hi j , the
reduced radius Ri j , etc. for spherical and elliptical particles
may be found in Džiugys and Peters [6,25].

The analysis of elliptical particles exhibits, however, con-
siderable differences. Various analytical methods of contact
detection for two- and three- dimensional elliptical particles
are considered in [6].

For the present simulation, the particle shapes were defined
as rotation ellipsoids (a > b = c) with the main semi-axis
a lying on xy plane. As a result, the overlaps of the 3D par-
ticle shapes may be evaluated as overlaps of the 2D ellipses
which are projections of ellipsoidal shapes on xy plane with
the same values of semi-axes a and b. Therefore, methods for
evaluation of the overlap between two-dimensional ellipses
are applicable for the evaluation of contacts between three-
dimensional ellipsoids in the present simulation. We used an
iterative method developed by Džiugys and Peters [25].

3.3 Particle forces

In the framework of current investigation, force vector
Fi in (11) and torque Ti in (13) present the sum of grav-
ity and contact forces and torques, acting on the particle i ,
respectively:

Fi = Fi,contact + Fi,gravi t y =
Kci∑
j=1

Fi j + mi g, (21)

Ti = Ti,contact =
Kci∑
j=1

dci j × Fi j . (22)

where g is vector of gravity acceleration, while j ( j =
1, . . . , Kcj ) indicates contacting neighbour particles while
Kci presents a number of contact points for particle i , includ-
ing contacts with the boundary.

The force (21) between two particles may be decomposed
into normal and tangential components Fi j = Fn

i j + Ft
i j . The

presented visco-elastic inter-particle contact model depicted
in Fig. 7 includes a combination of elasticity, damping and
friction force effects. Physical elasticity properties of particle
i are defined by the elastic modulus E of the particle mate-
rial, Poisson’s ratio ν and shear modulus G. Inter-particle
contact is defined by stiffness coefficients kn

i j and kt
i j , damp-

ing coefficients ηn and ηt and dynamic friction coefficient
µ.

When overlap parameters are known, contact forces act-
ing between two particles may be evaluated explicitly. For
Hertz contact model, the forces are expressed as

Fn
i j = 2

3
· E(

1 − ν2
)
√

Ri j h3
i j ni j − ηnmi jv

n
i j , (23)
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Fig. 7 Inter-particle contact model and its parameters

Ft
i j=−ti j min

(∣∣∣∣∣−
8

3
· G

√
Ri j hi j

(2−ν) δt
i j−ηt mi jv

t
i j

∣∣∣∣∣ , µ
∣∣∣Fn

i j

∣∣∣
)
,

(24)

where mi j = mi m j
mi +m j

is reduced mass; vn
i j and vt

i j are normal
and tangential components of relative velocity of the collid-
ing particles.

3.4 Evaluation of contact parameters for multi-sphere
ellipsoids

Application of basic expressions (21)–(22) to the evaluation
of contact forces and torques for multi-multi-particle ellip-
soids are somewhat different from the single-particle case.
Generally, the contact detection of MS particles (Favier et al.,
[36]) uses the simplest methodology of contacting spheres.
However, two distinct features should be taken into account
and, therefore, the above expressions have to be slightly mod-
ified.

Firstly, not only a single conventional contact but multiple
contacts between the interacting ellipsoids may occur. Conse-
quently, the contacting points for each constituent sub-sphere
i j ( j = 1, K ) of particle i is indicated by k(k = 1, Nci j ). The
sum of

∑
j Nci j may include multiple contacts.

Secondly, the directions of contact forces obtained by
(23)–(24) for contacting sub-spheres are defined with respect
to separate sphere centres characterised by vectors xik but
not with respect to the ellipsoid centre Xi . Consequently, the
sphere torques T i jk should be transferred to the centre of the
ellipsoid.

Fig. 8 Multi-sphere particles in the neighbouring cells

Finally, the resultant contact force and torque is defined
by the following expressions:

Fi,contact =
Kci∑
j=1

Nci j∑
k=1

Fi jk,

Ti,contact =
Kci∑
j=1

Nci j∑
k=1

(
xik + dci jk

) × Fi jk, (25)

where Fi jk is the resulting contact force acting upon the sub-
sphere k.

To eliminate the effect of multiple contacts correction of
forces (25) is suggested in [19]. In our case, effect multiple
contacts is exposed below by comparison with smooth ellip-
soid.

In order to evaluate forces Fi according to equation (25)
acting on the particles all contacts between the particles and
their neighbours must be detected. In order to reduce the num-
ber of all particle pair combinations, a cell based algorithm
is used. A three-dimensional domain of the granular media is
divided into cubic cells of the size equal to the diameter of the
largest sub-sphere (Fig. 8). The contacts are checked between
the sub-spheres of particles in the neighbouring cells.

The developed 3D multi-sphere particle was implemented
into the original code DEMMAT [60,61] and the 3D rota-
tional ellipsoid in the plane was implemented into the code
DEMCPP [62].

4 Application to the piling problem

Generally, investigation of a piling problem provides fun-
damentals for understanding the microscopic mechanics of
granular media and the particle models. In particular, the pil-
ing technique is used for evaluating the angle of repose as
one of the characteristics of granular material. Recently, the
piling problem has been extensively explored in DEM sim-
ulations of the experimental data. The review of the earliest
contributions based on the computer simulations is given by
Herrmann and Luding [4] and references therein. The cur-
rent situation in experiments and numerical simulations with
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spherical particles is presented by Li et al. [63]. Simulation of
piling process using non-spherical composite particles com-
posed of five spheres is considered by Buchholtz and Pöschel
[64], while different shapes were considered by Robinson
and Friedman [50].

4.1 Description of the piling problem and basic data

The two-dimensional one-side piling of three-dimensional
ellipsoidal particles was simulated by the DEM to illustrate
the use of MS approach in approximation of the smooth ellip-
soidal particles. The limitation to a two-dimensional problem
was motivated by the simplicity and better transparency of
simulation results in order to discover the essential properties
of the MS model.

The particles are sequentially dropped and fall down under
the action of gravity into the domain below bounded by the
left vertical and bottom walls (Fig. 9a). The vertical wall on
the one side provides the pile symmetry axis, restricting the
particle motion, while the opposite side remains open, allow-
ing the particles to fall off the pile and to form the pile slope.
The particles are dropped from the fixed height y0 = 150 mm
above the bottom plane. In order to ensure sufficient random-
ness, the horizontal positioning of an individual particle cen-
tre is related to the largest particle size a, varying randomly in
the range between x1 = a+10−5 mm and x2 = x1+0.1 mm.
Initially, the particles were oriented in the plane, while the
initial orientation angle θ0 was introduced randomly in the
range between −π and π . The particles are dropped at a
constant rate, i.e. at equal time intervals�tgen = 0.04 s. This
time interval ensures the contactless motion of the falling
particles.

A set consisting of K = 1,000 mono-sized 3D ellipsoidal
particles was used for simulation of a piling problem. The
size of the ellipsoid is defined by two values of semi-axis,
a = 2.7 mm and b = c = 1.15 mm, as shown in Fig. 2a,
while its shape is defined by the aspect ratio s = 2.35.

The particle properties are summarised in Table 1. Two
principle moments of inertia of the particle obtained using
the prescribed mass m and formulas for ellipsoids were used
in all our simulations independently on the number of sub-
spheres. Modulus of elasticity E is similar to that of the rice
grains with moisture content of 20% [65].

4.2 Simulation and numerical results

Two kinds of numerical simulations were performed which
were based, first, on using smooth ellipsoidal particles, and,
second, on using MS ellipsoidal particles. Simulations based
on using smooth ellipsoidal particles serve as an “exact” ref-
erence and are applied to the evaluation of the MS models.

The process of dropping the particles lasted for 40 s for all
the simulations, and, in order to reach the equilibrium state,

(a)

(b)

Fig. 9 A schematic view of piling: a dropping of particles, b evaluation
of repose angle

Table 1 Main parameters of the particle material

Parameter Symbol Value

Mass, kg m 2 × 10−5

Maximal inertia moment, kg m2 Imax 3.445 × 10−11

Minimal inertia moment, kg m2 Imin 1.058 × 10−11

Elasticity modulus, Pa E 183 × 106

Poisson’s ratio ν 0.20

Shear modulus, Pa G 76.5 × 106

Friction coefficient µ 0.3

Normal viscous damping coefficient, 1/s ηn 100.0

Tangential viscous damping coefficient, 1/s ηt 100.0

the DEM simulations were extended for the additional 10 s
after the last particle was dropped. The constant time step
�t = 2 • 10−6 s was used in simulations.

It was previously known that a piling problem is an unsta-
ble phenomenon rather sensitive to initial random factors
[4,64]. In order to capture the effect of scattering, the experi-
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Fig. 10 Final shapes of the pile simulated by smooth elliptical parti-
cles: a 
min = 20.8o, b 
max = 24.4o

ments were repeated 15 times for smooth ellipsoids and, due
to a large amount of computations, five times for MS parti-
cles for each different number of sub-spheres. The angle of
repose, porosity and coordination number were examined to
evaluate the adequacy of the MS approximation.

4.2.1 Angle of repose

The earlier investigations on particle piling have shown that
the profile of the pile is globally close to the straight line [64].
It was also observed that the repose angle defined as a slope
may locally vary along the wedge. Moreover, a considerable
difference may occur at the top and at the bottom. In order
to estimate the angle of repose Φ, a surface curve was fitted
to the straight line by the least squares method (Fig. 9b). To
avoid the influence of the tails near the top and the bottom,
only the middle segment AB of the pile was considered for
the evaluation of the slope.

In the case of piling smooth ellipsoidal particles, it was
found that the repose angle varied in the range from 24.4o

to 20.8o. Finally, the average value Φav = 22.7o of the
repose angle with the average uncertainty margin �Φ =
±1.8o(±8%) was obtained. The resulting piles yielding the
extreme values of the repose angle are shown in Fig. 10.

A series of six simulations were performed in order to
investigate the approximation effects. MS particles with a
constant number of sub-spheres were used in each series.
MS particles consisting of 5, 7, 9, 13 and 17 sub-spheres
(Fig. 4) were constructed according to Eqs. (3–8). Addition-

Fig. 11 Final shapes of the pile simulated by MS particles: a N = 5,

 = 26.6o, b N = 17, 
 = 22.1o

ally, a particle consisting of 3 sub-spheres was constructed
with the radius of the largest central sub-sphere equal to
Rmax = b and the radii of the two remaining side sub-spheres
equal to r = (a − b)/2. Since the MS ellipsoids retain the
same mass and inertia moments for all the approximations,
the differences in behaviour of different MS particles depend
on the shape approximation degree. The resulting piles of
particles consisting of 5 and 17 sub-spheres and the obtained
repose angle are presented in Fig. 11.

The entire picture of the simulation results of the repose
angle
 including both smooth ellipsoid and MS particles is
shown in Fig. 12. Hereafter, the notation “ellipse” is used to
indicate the results obtained by using a smooth ellipsoid, and
the notation “MS” to indicate the results of the MS approxi-
mation. The repose angle obtained using a smooth particle is
depicted by a constant line along with the uncertainty mar-
gins.

The results of the MS simulations for different numbers
of sub-spheres are depicted by a descending curve showing
a significantly larger angle of repose than that obtained for
smooth particles. This curve is characterized by the uncer-
tainty margins varying in the range from ±1.39% to ±0.57%.
The analysis of the average values indicates that the differ-
ence between the highest average valueΦ = 29.1o obtained
for 3 sub-spheres and that of Φ = 23.3o obtained for 17
sub-spheres comprises up to 25% drop-off.

The graph shows that only 13 and 17 sub-spheres fall
within the uncertainty margin yielding 3.7 and 2.0% differ-
ence, respectively, compared to the smooth ellipsoid case.
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Fig. 12 Variation of repose angle for various numbers of sub-spheres

The above results indicate that generally the repose angle
obtained by the MS approximation converges to that obtained
from the smooth ellipse simulation. Here, the observed dif-
ference may be considered an acceptable tolerance. Con-
sequently, a simple examination of uncertainties leads to a
formal observation that 13 subspheres present a rational
approximation limit sufficient to approximate a smooth
particle.

Simple comparison of variations of the repose angle
(Fig. 12) and relative volume or area (Fig. 5) against the
number of sub-spheres indicates similar convergence ten-
dencies for both curves. However, two specific discrepancies
were also detected. First, the changes in the repose angle with
the increasing number of sub-spheres exhibit a break of the
tendency slope of the curve form at 9 sub-spheres and, sec-
ond, they show a slower convergence rate compared to purely
geometric convergence of the volume or area. The conver-
gence of the multi-sphere model does not merely reflect only
influence of the geometrical shape deviation, but probably
depends on other effects.

4.2.2 Porosity

In order to better understand the complexity of the MS model,
the porosity and coordination number of the resulting parti-
cle pile are examined in addition to the repose angle. The
two-dimensional porosity is defined as the ratio of the area
of empty space between the particles to the total area of the
pile. Thorough examination of particle positions has shown
that the overlap between the particles due to deformations is
negligible, being of the order of 0.02%, and can be ignored.
Porosity of the piling is obtained by summation of the sec-
tion areas of all particles in the final state. The section areas
of the MS particles can be calculated in two different ways:
treating a particle either as a composition of sub-spheres,

denoted as before by “MS”, or as a smooth ellipse, denoted
as “MS ellipse”. The cross-section areas of the particles cal-
culated according to these approaches are given by (9) or (2),
respectively.

The average values and uncertainty margins of porosity
are displayed in Fig. 13a. The porosity values obtained by
simulating smooth elliptical particles (“ellipse”) and by the
multi-sphere approach (“MS”) exhibit tendencies similar to
those characteristic of the repose angle. The smooth particle
model (“ellipse”) yields the porosity value p = 0.13 with a
relatively small uncertainty margin �p = ±4.0%.

The analysis of the average porosity values obtained by the
purely “MS” approach shows fast monotonic convergences
which may be explained by the difference between the cross-
section areas of the MS and smooth ellipsoidal particles. The
average porosity decreases from the highest value p = 0.25
obtained for 3 sub-spheres to p = 0.14 obtained for 17 sub-
spheres, not reaching however the uncertainty margin of the
ellipsoid case.

The “MS ellipse” approach yields different results. As
expected, this approach shows a smaller final difference.
However, another effect was identified when analysing this
curve. A small number of sub-spheres, e.g. 3 or 5, allows con-
siderable deformation-free overlap of smooth ellipses (“MS
ellipse”). As a consequence, the overlap of the particles
becomes larger, thereby reducing the empty volume. Due
to this, the latter is considerably smaller than the volume
given by the MS model. This effect vanishes as the number
of sub-spheres increases up to N = 7. The above results most
likely indicate the particular limit of the minimal number of
sub-spheres required to be taken into account when using the
MS ellipse approximation.

Qualitative illustration of both cases is presented in Fig.
14 by zooming in the final positions of the simulated parti-
cles consisting of different numbers of sub-spheres. As can
be seen from the pictures, the differences between coarse and
fine approximations of the particle shape result in different
character of overlap, which is significant for a small number
of sub-spheres.

4.2.3 Coordination number

Similar to porosity, the variation of the coordination number
(average number of contacts per particle) calculated using
the two approaches is examined. The conventional “MS par-
ticle-particle” approach defines the coordination number as
the number of contacts Ncp between different composite par-
ticles (not between the constituent sub-spheres!) divided by
the number of particles. The “MS sphere-sphere” approach
defines the coordination number as the total number of con-
tacts Ncs between the sub-spheres divided by the number
of particles. The calculation of the coordination number is
shown in Fig. 14b. Here, particle i is in contact with four
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(a) (b)

Fig. 13 Comparison of multi-sphere and elliptical models for various numbers of sub-spheres: a porosity: b coordination number

neighbouring particles, thus Ncp = 4, while the number of
real contacts between the sub-spheres is Ncs = 6 as denoted
in the figure.

The results obtained by using both approaches are pre-
sented in Fig. 13b. Here, it is shown that the average value
of the coordination number for a smooth particle is equal
to Zel = 3.90, with the uncertainty margin of ±2.5%. The
behaviour of coordination number Z pp, evaluated by “MS
particle-particle” approach, shows practically perfect con-
vergence of MS model with 17 sub-spheres, while nine sub-
spheres are sufficient to reach the tolerance comparable to
the uncertainty margin.

The results obtained for coordination number Zss , evalu-
ated by the “MS sphere-sphere” approach, suggest another
effect, namely, Zss increases as the number of sub-spheres
increases up to N ≥ 7 and theoretically Zss should increase
up to infinity by increasing to infinity number of sub-spheres.

4.2.4 Discussion

The above results may be analyzed from other point of view
regarding to deviations of MS model. The difference of MS
particle shape from the smooth ellipsoidal one may be treated
as a roughness of surface of MS particle, which may be quan-
tified by several parameters. Firstly, roughness may be eval-
uated on the base area shape factor s f A defined as relative
deviation of cross-section area of MS particle AM S from one
of smooth particle Aell:

s f A = |AM S − Aell |
Aell

. (26)

Secondly, particles roughness may be evaluated by perim-
eter shape factor s fP defined as relative deviation of perim-
eter of MS particle shape cross-section area PM S from one
of smooth particle Pell:

s fP = |PM S − Pell |
Pell

(27)

Dependency of relative of repose angle
rel on the param-
eters of shape factors s f A and s fP (Fig. 15) might be classified
in two categories: the case of small number of sub-spheres
is N ≤ 9 and the case of N ≥ 9. On our opinion, the depen-
dency 
rel in case of N ≤ 9 is defined by interlocking of
particles due to observed deep artificial overlap (with respect
to ellipse) of MS particles. More artificial overlap due to less
number of sub-spheres (minimum is 3) gives stronger inter-
locking, and, as a result, angle of repose is higher. Extrapo-
lating this tendency would yield clear divergence of the MS
model (in the limit of N → ∞) from a smooth ellipse. This
tendency changes when N = 9. The dependency of N ≥ 9
case is defined by the same interlocking due to artificial over-
lap, but which may be treated as an additional “artificial”
friction due to roughness which has tendency to converge
to zero as the number of sub-spheres N tends to infinity. As
a result, the angle of repose of MS particles converges to
angle of repose of smooth particles, too, as the number of
sub-spheres N tends to infinity.

In summary, the idea of approximating a real ellipse, even
with a large number of sub-spheres, appears to be fictitious
in handling realistic problems. On the other hand, it shows
another perspective – the MS model could be a promising
approach to handling non-smooth real particle shapes, for
which a perfect ellipsoid is just an idealization.

5 Computational efficiency

The application of the developed MS model to simulation
of non-spherical particles might face serious difficulties due
to the increase of computational expenses. Investigation of
computational efficiency of the MS ellipsoids may be sepa-
rated into two tasks—estimation of computational overhead
brought about by the increasing number of sub-spheres and
comparing it with the computational efficiency observed in
the case of elliptical particles.

The first task is performed by conducting numerical exper-
iments. It is already known that the most time-consuming
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Fig. 14 Mutual positions of particles for different approximations: a ellipse, b MS particle with N = 5 sub-spheres

(a) (b)

Fig. 15 Dependency of relative repose angle (a) and porosity (b) on the MS shape factors

DEM procedure is contact evaluation comprising neighbour
search and calculation of contact forces. Therefore, the
benchmark problem must involve the contacts between the
particles continuously changing their positions.

The following procedure was chosen for the efficiency
test. A rectangular box filled with 1000 particles was consid-
ered. The particles are put in motion by a one-side wall, mov-
ing towards the inside of the box (Fig. 16a). All the particles
are involved into the motion and the particles’ positions are
changing continuously during the entire simulation period.
The motion of the wall continue until t = 0.5 s since the start.
The properties and shapes of the particles are the same as
those used in the piling problem.

A series of runs with a varying number of sub-spheres were
performed by applying the DEMMAT code [61] to test the
efficiency of the MS approach. It is obvious that modelling
of pure spherical particles is most efficient due to simplic-
ity of the algorithm; therefore, the latter case was used as
the reference. The efficiency was evaluated by means of the
measured relative CPU time CPUrel , i.e. the CPU time spent
for the test problem divided by the CPU time spent for purely
spherical particles.

Fig. 16 Particle efficiency test by the compacting problem

A relative CPU time used for simulation of ellipsoidal
particles was longer by a factor of 4.1 than that spent for
simulation of spherical particles. As stated above, two-dimen-
sional algorithm was used to resolve contacts between ellip-
tical particles, while 3D algorithm was used for MS particles.
Therefore, we are not able to directly compare computational
efficiency of MS approach with that of real 3D ellipsoids. As
could be seen from [6], the algorithm for 3D ellipsoids is
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Fig. 17 Particle efficiency test: amount of the relative CPU time
CPUrel spent for various numbers of sub-spheres N

more complicated than that used for 2D ellipses. Therefore,
it should considerably increase the required CPU time.

The result obtained for the efficiency for MS model of
various numbers of sub-spheres is presented in Fig. 17. As
stated in [61], the MS algorithm used for spherical particles
consisting only of one sub-sphere increases the CPU time by
a factor of 1.58 compared to the case of the algorithm using
purely spherical particles. As it can be seen from Fig. 17, the
use of three sub-spheres for an ellipsoidal particle increases
the CPU time by a factor of 3.3, while in the case of 17 sub-
spheres, the increase of the CPU time is by a factor of 22,
compared to the case of purely spherical particles.

Looking for reasons of such increase, the variation of num-
ber of potential contacts Npc for MS particles with various
numbers of sub-spheres is extracted and shown in Fig. 18
and compared with number of potential contacts for smooth
ellipses which is equal to 19.8. It could be observed that
computational expenses mimic number of potential contacts
and this may be a reason for nonlinear increase of obtained
computational time.

6 Conclusions

Adequacy of multi-sphere (MS) approximation of ellipti-
cal particles in DEM simulations was investigated. For this
purposes, the multi-sphere (MS) model with the controlled
variable number of sub-spheres N for the approximation of
the ellipsoidal particle was developed. The MS and smooth
ellipse models were investigated by two-dimensional piling
of a set of three-dimensional mono-sized ellipsoids with the
fixed aspect ratio s = 2.35. Adequacy of the MS model was
evaluated by considering macroscopic parameters of granu-
lar dynamics, such as the angle of repose and porosity, as well
as microscopic parameter, such as the coordination number.

Fig. 18 Particle efficiency test: number of potential contacts Npc for
various numbers of sub-spheres N

The following conclusions may be drawn on the basis of
the results obtained in this research:

– The piling problem is sensitive to random imperfections
imposed by the piling data and numerical errors, and there
is a scatter of the results. It follows that the macroscopic
and microscopic parameters must be evaluated only in
terms of the average values and uncertainty margins.

– In general, the adaptive multi-sphere model with increas-
ing number of sub-spheres exhibits a clear tendency to
converge to a smooth ellipsoid when applied to mac-
roscopic parameters. The model error may be roughly
evaluated in terms of shape factors.

– The increase in the number of sub-spheres yields the
increase of multiple inter-particle contacts, thereby influ-
encing the behaviour of macroscopic parameters. There-
fore, the application of the MS model to microscopic
analysis of particulates will require the data about the
roughness of real particles.

– The observed artificial overlap of MS (compared to the
case of an ellipse) influencing macroscopic behaviour
may be classified into two categories: the case of a small
number of sub-spheres (N ≤ 9) may be interpreted as
particles’ interlocking, and the case N ≥ 9 may be simply
interpreted as a decrease of roughness when the number
of sub-spheres increases.

– In summary, a multi-sphere model remains a realistic and
relatively simple particle model applicable to DEM sim-
ulations of the behaviour of the real smooth and rough
elliptically shaped particles. A reasonable number of sub-
spheres should be chosen, however, as a compromise
between the acceptable tolerance and computational
expenses. More precise recommendations depend on the
particular aspect ratio of the ellipsoid and detailed char-
acterisation of particle shape.
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