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Abstract. The article deals with development of a tumor in the cylindrical
space. A model with two parameters – lymphocytes and tumor cells –
described in [1] is taken as a base of the research. Some generalization
of the model is done. The research, results of which are described in [2, 3],
was continued. The relationship between the surface and volumetric tumor
cells of classical forms is obtained. It turns out, that evenin general case the
trivial stationary point is of a saddle type.

The article particularly deals with the development of a cylindrical tumor.
It is considered, that lymphocytes and the medical intervention (chemothe-
rapy or irradiation) keeps down the cell fission of the tumor.Some special
parameter is introduced to indicate the influence of the medical cure. In
respect of that parameter the bifurcation values of the system are surveyed
using the theory of [1, 4]. Some results of the survey are tested with the help
of the software package MAPLE.

Keywords: immune system, tumor cells, cylindrical surrounding, Hopf
bifurcation.

1 Model

Let us consider the interaction of two kinds of cells – tumor cells and lympho-

cytes. Assume, that it takes place only on the surface of the tumor. Lympho-

cytes multiply without any delay. Denote:

L – a number of free lymphocytes on the tumor surface,

A – a number of tumor cells inside the tumor and on its surface,
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AS – a number of tumor cells on the tumor surface,

ĀS – a number of tumor cells on the tumor surface, which are not

connected to the lymphocytes,

Ā – a number of tumor cells inside the tumor and on its surface,

which are not connected to the lymphocytes.

The system of two differential equations is constructed. The variablesL

andA are treated as the main variables. The other variables can be expressed

via the main ones under the following assumptions:

1. Consider functionf as a connection of tumor cells on the tumor surface

AS and all the tumor cellsA:

AS = f(A). (1)

The function itself will be analyzed a bit later.

2. Consider the relation between the number of the connected tumor cells

AS − Ā (the connection takes place only on the surface of the tumor) and

the number of free tumor surface cells to be defined as:

AS − ĀS = ĀSF (L). (2)

The functionF corresponds here the influence of lymphocytes to the

connection of tumor cells. Let’s say, that

F (0) = 0 and F ′(L) > 0.

3. The multiplication speed of the lymphocytes is influenced by two fac-

tors: the decline speed of the lymphocytesg(L),
(
g(L) < 0, g(L)′ < 0,

g(0) = 0
)

and the growth stimulation speed of the lymphocytesĀSΦ(L).

Then

L = g(L) + ĀSΦ(L). (3)

4. The multiplication speed of the tumor cells consists of the growth speed

of the tumor cellsG(Ā) in absence of lymphocytes
(
G(0) = 0, G(A) ≥
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0
)

and the influence of lymphocytes on the tumor cells on its surface

αĀSΦ1(L). It means, that

A = G(Ā) − αĀSΦ1(L). (4)

The assumptions (1), (2) and the equation of the balance of the cells

A = Ā + AS − ĀS result:

ĀS =
f(A)

1 + F (L)
, Ā = A −

f(A)F (L)

1 + F (L)
. (5)

After embedding (5) into the system of equations (3), (4) we obtain:




L̇ = g(L) +
f(A)Φ(L)

1 + F (L)
,

Ȧ = G

(
A −

f(A)F (L)

1 + F (L)

)
− α

f(A)Φ1(L)

1 + F (L)
+ H(L, t).

(6)

In the model [1] we haveg(L) = −λ1L, G(A) = λ2A, f(A) = k1A
2/3.

Φ(L) = α1L(1 − L/LM ), H(L, t) = 0, Φ1(L) = α2L, F (L) = k2L. Let’s

consider in the future, thatΦ(L) = Φ1(L).

The influence of medical cure is reflected by the term

H(L, t) = −γ(L)sin2ωt.

Hereω – frequency of the medical cure. The termγ(L) defines the efficiency

of the medical cure. Next try to make some analysis of the second equation

from the system (6) after striking an average by the active timet.

1

T

T∫

0

. . . dt, T =
2π

ω
.

It means, that in some sense the influence of the medical cure or irradiation

will be taken into account:




L̇ = g(L) +
f(A)Φ(L)

1 + F (L)
,

Ȧ = G

(
A −

f(A)F (L)

1 + F (L)

)
− α

f(A)Φ(L)

1 + F (L)
−

γ(L)

2
.

(7)
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2 The trivial stationary point

The conditionsg(0) = 0, f(0) = 0, G(0) = 0 andγ(0) = 0 show, that the

system (7) has a trivial stationary point. Consider, that the type of the point is

determined by the linear part of the system (7):

W (L, A)=




g′ + H ′

L H ′

A

G′ ·
f(A)F ′(L)

(
F (L) + 1

)2
−αH ′

L−
γ′

2
G′ ·

(
1−

f ′(A)F (L)

1 + F (L)

)
−αH ′

A


 ,

where

H(L, A) =
f(A)Φ(L)

1 + F (L)
, Φ′

L =
∂Φ

∂L
, Φ′

A =
∂Φ

∂A
.

The characteristic equation of it can be written asdet[W−λe]=λ2+σλ+∆=0.

∆(0, 0) = g′G′ < 0 causes, that the stationary point will be of a saddle type.

The lineL = 0
(

if Φ(0) = 0
)

is the solution of the system (7), for which

A > 0, i.e. the axis OA is the separatriss of the saddle, along which the

solutions of the system recede from the point(0, 0). In the other words, in the

surrounding of the point the tumor cells multiply most actively.

3 Function f(A) in the case, when the tumor growth speed is
different in various directions

Let’s compare two cases.

Case 1. The shape of the tumor is close to the rectangular parallelepiped

with the sidesa0 and b0 (when t = 0) and the heighth0. Suppose at the

moment of the growth of the tumora = a0t
α, b = b0t

β, h = h0t
γ . If ks –

the number of tumor cells in the area unit andkv – the number of tumor cells

in the volume unit, then

AS = 2kS(a0b0t
α+β + b0h0t

β+γ + a0h0t
γ+α),

A = kva0b0h0t
α+β+γ .
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After elimination oft we obtain:

AS = f(A) = aA
α+β

α+β+γ + bA
β+γ

α+β+γ + cA
α+γ

α+β+γ ,

a =
2ksa0b0

(kva0b0h0)
α+β

α+β+γ

, b =
2ksb0h0

(kva0b0h0)
β+γ

α+β+γ

,

c =
2ksa0h0

(kva0b0h0)
α+γ

α+β+γ

.

If the growth of the tumor is equal in every direction (α = β = γ), then

f(A) = (a + b + c)A2/3. If the tumor grows only in the directionh, (α =

β = 0), thenf(A) = a + (b + c)A. Whenγ = 0 andα = C, we have

f(A) = aA + (b + c)A1/2.

Case 2. The shape of the tumor is cylinder. Suppose, its radius varies like

r = r0t
α, and its heighth = h0t

β . Then we have

AS = f(A) = ãA
α+β
2α+β + b̃A

2α
2α+β , where

ã =
2πksa0h0

(πkva2
0
h0)

α+β
2α+β

, b̃ =
2πksa

2
0

(πkva2
0
h0)

2α
2α+β

.

Whenα = β, i.e. the growth of the tumor is equal in the directionsR and

H, thenf(A) = (ã + b̃)A2/3. If the tumor grows in theh direction (α = 0),

thenf(A) = ãA + b̃. When the tumor grows in theR direction (β = 0), then

f(A) = ãA1/2 + b̃A.

The tumor growth in the cylindrical surroundingf(A) = aA + b basically

corresponds its one direction growth in the case of rectangular parallelepiped.

That’s why the wide spectrum of tumor growth cases will be overwhelmed by

the analysis of the liner functionf .

4 Development of a tumor in the cylindrical surrounding

Blood vessels, guts or the interior of a bone have a shape, which is close tothe

cylinder. This consideration let us give the problem some practical approach.

At the same time, whenf(A) = aA + b, (i.e. f(A) – linear function) we deal

with wider spectrum of surfaces, than cylinders (Section 4).
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Supposeg(L) = −l1L, G(A) = l2A, γ(L) = 2εL. Then we have a

system:





L̇ = −l1L +
(aA + b)Φ(L)

1 + F (L)
,

Ȧ = −εL + l2A −
(aA + b)

1 + F (L)

(
l2F (L) + αΦ(L)

)
.

(8)

Let’s concretize the connection functionsΦ(L) = L, F (L) = kL. The num-

ber of parameters can be reduced by introducing the following replacements:

x = kL, y = A. Denoteε/k = e, (l2k + α)/k = c. Then the following

system can be obtained





ẋ = −l1x + (ay + b)
x

1 + x
,

ẏ = −ex + l2y − (ay + b) c
x

1 + x
.

(9)

The system (9) has either two stationary values(0, 0) and(x0, y0) or one of

them(0, 0). Here

x0 =
l1l2 − bl2

ea + l1ca − l1l2
, y0 =

(e + l1c)(l1 − b)

ea + l1ca − l1l2
. (10)

They are positive, when

a)

{
l1 > b,

ea + l1ca − l1l2 > 0,
or b)

{
l1 < b,

εa + l1ca − l1l2 < 0.
(11)

Let’s make the characteristic equation of (9) at the point(x0, y0):

λ2 + σλ + ∆ = 0, (12)

σ = l1 − l2 −
ay0 + b

(1 + x0)2
+

acx0

1 + x0

, (13)

∆ = −l1l2 −
ay0 + b

(1 + x0)2
l2 +

l1acx0 + eax0

1 + x0

. (14)

At the point(0, 0) the∆ = l2(b − l1) has a type of a saddle, whenb < l1. If

b > l1 , thenσ < 0, this stationary point is an unstable focus or a node. This

result is different from that in the Section 2, because here we havef(0) 6= 0.
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At the nontrivial stationary point (14)

∆ =
x0

1 + x0

(−l1l2 + l1ac + ea).

Therefore in the case b) of (11) this point will be of a saddle type. Let’s analyze

it in a more detailed way in the case a) of (11). In this case the stationary point

(0, 0) is of a saddle type (becausel1 > b). Let’s observe the system change,

which depends on the parametere. Suppose all the other parameters are fixed.

Physiologically it means, that the influence of medical cure on the tumor will

be observed.

5 Bifurcation value of the parameter e

Let’s apply the theorem about Hopf bifurcation [1] to the system (9). Consider

e as a variable parameter. The real part of the root of the characteristic equation

(12) can be written as

Reλ1,2(e) = −
σ

2
.

The bifurcation valuee0 can be found from

Reλ1,2(e) = 0 ⇐⇒ e0 =
l21 − bl1 + bl2 − abc

a
.

It should be kept in mind here, that the roots are complex. In that case

l1 − l2 + ac > 0 should be satisfied. The condition

d

de
Reλ1,2

∣∣
l=l0

> 0.

is satisfied, whenl1 > b, because

d

de
Reλ1,2(e) =

l2a(l1 − b)(ac + l1)

2(ea + l1ca − bl2)2
.

Let’s move the stationary point(x0, y0) into the origin of coordinates by intro-

ducing the replacementx = x1 + x0, y = y1 + y0. Then (9) turns into




ẋ1 = −l1x − l1x0 +
(ay1 + ay0 + b)(x1 + x0)

1 + x1 + x0

,

ẏ1 = −ex1 − ex0 + l2y1 + l2y0 −
c (ay1 + ay0 + b)(x1 + x0)

1 + x1 + x0

.

(15)
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In order to satisfy the last condition of the theorem that the stationary point

(0, 0) of the system (15) is asymptotically stable whene = e0, the theory of

indices will be applied. Denote the linear part of the system (15) at the point

(0, 0) asA and turn the system into canonic form:

M−1AM = B, (16)

B=

[
0 ω0

−ω0 0

]
, ω0Imλ1,2

∣∣
e=e0

=(l1 − b)

√
l2(−l2 + ac + l1)

(l1 − b)(l2 + ac)
.

From the system of equations (16) the matrixM can be found:

M =

[
−ω0 a11

0 a21

]
,

wherea11 anda21 – the coefficients of the matrixA:

a11 = −l1 +
b + ay0

(1 + x0)2
, a21 = −e0 −

(b + ay0)c

(1 + x0)2
.

After the change of variables in the system (15)
(

x1

y1

)
= M

(
x2

y2

)

we can result:

ẋ2 =

(
a11e0

a21

− l1

)
x2 +

(
1

ω0

−
a11c0

a21ω0

+
l2
ω0

)
a11y2

+
l1
ω0

x0 −
e0x0a11

a21ω0

+
a11l2y0

a21ω0

−
(aa21y2 + ay0 + b)(−ω0x2 + a11y2 + x0)

1 − ω0x2 + a11y2 + x0

·

(
1

ω0

+
a11c

a21ω0

)
,

ẏ2 =
e0ω0

a21

x2 +

(
l2 −

e0a11

a21

)
y2 −

e0x0

a21

+
l2y0

a21

−
c (aa21y2 + ay0 + b)(−ω0x2 + a11y2 + x0)

(1 − ω0x2 + a11y2 + x0)a21

.

(17)

The stationary point(0, 0) is stable for those parameter values, for which the

index

I =ω0(Y
1
111 + Y 1

122 + Y 2
112 + Y 2

222)

+ (Y 1
11Y

2
11 − Y 1

11Y
2
12 + Y 2

11Y
2
12 + Y 2

22Y
2
12 − Y 1

22Y
1
12 − Y 1

22Y
2
22)

(18)
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is negative. The upper index in the formula (18) indicates, from which of

the two equations (17) the left side is taken. The lower indices indicate the

exponent and quantity of partial derivatives (1 means the derivative by x2, 2

– the derivative byy2). All the partial derivatives are calculated at the point

(0, 0). Those quite long calculations are done by using the software package

MAPLE. With help of this package the general expression (18) was obtained

and also some particular cases were analyzed. One of them is given below.

The value of the indexI is negative for the parametersl1 =3, l2 =1, a=2,

b = 2, c = 0.1. It can be also calculated, that in this case the parameter

e0 = 2.3 is Hopf bifurcation value.

With help of MAPLE was also checked, that the stationary point(0, 0) is a

stable focus, whene < e0 (for example,e = 2.28). Whene > e0 (for example

e = 2.31), it turns into unstable focus. Physiologically it means, that the

system (9) has a stable position(x0, y0), whene > e0. In this case the growth

of the tumor is stopped by lymphocytes and the medical cure. After extension

of influence of the medical cure (the parametere) the stable equilibrium is lost

and the tumor starts “oscillate”. Because of those “oscillations” the tumor can

disappear or the patient can dye.
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3. Kavaliauskas A. “Imuniṅes sistemos tyrimas kokybiniais metodais”,LMD
konferencijos darbai, 42, p. 651–655, 2002

4. Kuznetsov Y.A.Elements of applied bifurcation theory, Springer-Verlag, New
York Inc., p. 515, 1995

63


