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Abstract 

The average shear wave velocity of the uppermost 30 m of earth (Vs30) is widely used in seismic geotechnical engineering 

and soil-structure interaction studies. In this regard, any given subsurface profile is assigned to a specific site class 

according to its average shear wave velocity. However, in a real-world scenario, entirely different velocity models could 

be considered in the same class type due to their identical average velocities. The objective of the present study is to 

underline some of the risks associated with solely using Vs30 as a classification tool. To do so, three imaginary soil profiles 

that are quite different in nature, but all with the same average Vs were considered and were subjected to the same 

earthquake excitation. Seismic records acquired at the ground surface demonstrated that the three sites have different 

ground motion amplifications. Then, the different ground responses were used to excite a five-story structure. Results 

confirmed that even sites from the same class can indeed exhibit different responses under identical seismic excitations. 

Our results demonstrated that caution should be practiced when large-contrast velocity models are involved as such profiles 

are prone to pronounced ground motion amplification. This study, which serves as link between soil dynamics and 

structural dynamics, warns practitioners about the risks associated with oversimplifying the subsurface profile. Such 

oversimplifications can potentially undermine the safety of existing or future structures. 
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1. Introduction 

Stiffness properties of near-surface earthen materials have proven to have a great influence on seismic wave 

propagation. Specifically, the nature of ground motions at a given site is heavily influenced by the shallowest parts of 

the subsurface [1-2]. This is the underlying reason that explains why most of the geotechnical and environmental 

engineering applications focus on the shallowest 30 meters of subsurface [3] and therefore, a proper characterization of 

the near-surface is critically important. In this regard, shear-wave velocity (Vs) is among the parameters that is widely 

used as a proxy to soil stiffness. The vertical Vs profile for a given site can be estimated using a variety of different 

methods including conventional geotechnical subsurface investigations. Examples of geotechnical testing methods that 

have been used for such application are standard penetration testing (SPT) or cone penetration testing (CPT). Typically, 

results from the geotechnical tests are correlated to shear-wave velocity by using empirical relations available in the 

literature [4-6]. However, it has been shown that such indirect calculations are vulnerable to a large degree of uncertainty 

[7]. Therefore, one method to overcome the uncertainties associated with geotechnical testing techniques is to perform 

geophysical testing methods such as borehole seismic testing [8, 9], surface wave testing [10-12], and seismic refraction 

and reflection [13, 14].  
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Many building codes around the globe now rely on the average shear wave velocity of the upper 30 m (Vs30) for 

seismic site classification and also for estimating the site-dependent response spectra. Vs30 has also been widely adopted 

in seismic microzonation studies [15-17]. This parameter was first introduced in the US 1994 National Earthquake 

Hazard Reduction Program (NEHRP) Building Code and can be determined using equation (1). In this equation d i and 

Vsi represent the thickness and Vs of the ith layer (layers stretching from the ground surface to a depth of 30 meters). The 

NEHRP has provided a definition for site classes as listed in Table 1 [18].  

Vs30 =
30 m

∑
di

Vsi

n
i=1

 (1) 

Table 1. NEHRP site classification using Vs30 [18] 

Soil Profile Type Vs (m/s) 

A Hard rock > 1500 

B Rock 760-1500 

C Very dense soil/soft rock 360-760 

D Stiff soil 180-360 

E Soft soil < 180 

F Special soil requiring site-specific evaluation  

Arguably, several different subsurface profiles can be found in the nature that possess the same Vs30 and thus, all will 

be considered in the same class. However, such profiles can vary significantly from one to another that can change their 

ground motion responses. Despite the wide use of Vs30 and some of its strong advocates, there has been some questions 

and concerns regarding the reliability of Vs30. The studies by Wald et al. (2011) and Godfrey et al. (2015) highlighted 

that Vs30 might not properly capture the behavior of sharp Vs contrast sites which can lead to underestimation of NEHRP 

amplification factors obtained from Vs [19-20]. Some of the recent studies have shown that there is considerable 

uncertainty introduced into ground motion prediction equations due to the use of simple site classes as the decision 

criteria for amplification factor choice [21]. Moreover, Vs30 lacks any information pertaining to frequency dependence 

[19]. Others also have raised doubts as to whether Vs30 is a reliable tool in seismic amplification studies since seismic 

amplification is evidently too complex to be lumped up in a single synthetic parameter measured over the top 30 meters 

of the ground [22-25].  

To the best of authors’ knowledge, the majority of the published literature is based on results from field surveys and 

experimental setups and little work has been undertaken in a pure numerical context to explore the hazards of over-

relying on Vs30. Using a computational framework, the purpose of the present study is therefore to demonstrate the 

potential risks associated with using Vs30 as a single seismic classification tool.  

2. Methods 

As mentioned earlier, the present study is a combination of soil dynamics and structural dynamics. We developed 

three imaginary soil profiles, all with similar Vs30, and subjected them to identical earthquake excitations. The one-

dimensional, equivalent linear ground response analysis program ProShake 2.0 was utilized to study the ground response 

at each site. The program offers a variety of options for soil model. For the purpose of this study, the well-known model 

by Seed and Idriss (1970) which contains modulus reduction and damping curves for sands was used [26].  

Next, the ground responses recorded at the ground surface were used to excite a multi-degree-of-freedom structure, 

and the differences in the structural response were observed and recorded. A MATLAB code written by [27] was 

employed to carry out a linear time history analysis of the five-degrees-of-freedom (MDOF) structure. The code solves 

modal differential equations of motion of a given MDOF structure by using numerical computational techniques such 

as Newmark’s β method and Wilson-θ method. Figure 1 is a flowchart that summarizes the above-mentioned steps.  

 

 

 

 

Figure 1. Analysis steps taken in the present study 
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3. Soil Profiles and Input Ground Motion  

The three fictitious Vs profiles that have been examined in this study are shown in Figure 2. All these velocity models 

have an average shear wave velocity of 300 m/s and therefore, they are all classified as type D soil (stiff soil) according 

to NEHRP code. Profile 1 consists of a uniform layer of Vs=300 m/s. This profile is basically used as a benchmark 

model. Profile 2 is a two-layer model in which a strong impedance contrast exists between the two layers. Profile 3 is 

made of 10 layers, each 3 m-thick, and represents a gradual increase in stiffness. VP profiles were determined assuming 

a constant Poisson’s ratio of 0.33. As for the density of layers, the empirical relation by Ludwig et al. (1970) was used 

to estimate density values [28]. The density values were then constrained by a lower bound of 1400 kg/m3 meaning that 

densities below this threshold were increased to 1400 kg/m3. A detailed list of properties from these velocity models is 

summarized in Table 2.  

Using ProShake, all the sites were subjected to the excitation from 1940 El Centro earthquake (Figure 3). The input 

excitation was introduced at a depth of 30 m in all the three profiles, and thus, only the upper 30 m of subsurface is 

involved in the ground motion response analysis.  

 

                       (a) (b)                 (c) 

Figure 2. Profiles used in the study (a) a constant Vs (b) a large-contract profile (c) a gradually increasing Vs profile 

Table 2. Soil profiles used in the current study 

Profile # Depth (m) Vs (m/s) Vp (m/s) ρ (kg/m3) 

Profile 1 0-inf 300 600 1500 

Profile 2 
0-10 130 260 1400 

10-inf 865 1730 1900 

Profile 3 

0-3 150 300 1400 

3-6 195 390 1400 

6-9 240 480 1400 

9-12 285 570 1500 

12-15 330 660 1500 

15-18 375 750 1500 

18-21 420 840 1600 

21-24 465 930 1600 

24-27 510 1020 1600 

27-inf 555 1110 1700 
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Figure 3. (a) Acceleration time history and (b) response of the 1940 El Centro earthquake  

4. Ground Motion Responses and Structural Response 

Figures 4 to 6 plot the time histories of acceleration, velocity, and displacements acquired at the ground surface at 

each site, respectively. As clear on these figures, site effects have led to different responses in each case. According to 

the acceleration and velocity time histories, profile 3 has had the largest amplification effect on the input motion while 

profile 1 has shown the least amplifying effect. The magnitude of peak acceleration, peak velocity and peak displacement 

at each site is summarized in Table 3. A quick comparison according to Table 3 confirms that the peak acceleration at 

site 3 is about 2.40 times than the observed peak acceleration at site 1. This trend is consistently observed for velocity 

time histories as well where the site with a gradual increase in stiffness showed a more amplification effect on velocity 

compared to the other two profiles.  

Moreover, the acceleration response from profile 2 (Figure 4) shows that high-frequency components of the input 

signal (i.e., noise) have been filtered out, and response from this site looks smoother than those of the other two sites. 

This is not surprising; first, as a widely-accepted belief, high-frequency components are substantially more attenuated 

than components with lower frequencies, and second, soft soils tend to be more attenuative than stiff soils (e.g., [29-

31]). Profile 2 is a soft-over-stiff arrangement, and the upper soft part attenuated high frequency components.   

Figure 7-a compares the acceleration response spectra at these sites. First, note that profiles 2 and 3 both have 

increased the expected acceleration response over a wide range of periods compared to the benchmark profile (profile 

1). Second, comparing to the benchmark model, profile 3 amplified the expected accelerations but did not change the 

shape and frequency content of the input motion. On the other hand, profile 2 has changed both the shape and the 

frequency content of the input motion and has shifted the dominant frequency values to lower frequencies (i.e., longer 

periods). This observation confirms the speculation that was made earlier that profile 2 tends to filter out the high 

frequency components and shifts the dominant frequency to a lower range.  

Table 3. Ground motion parameters of three profiles 

Profile 

Number 

Peak 

Acceleration (g) 

Peak 

Velocity (m/sec) 

Peak 

Displacement (m) 

Predominant 

Period (sec) 

1 0.269 0.287 0.109 0.683 

2 0.505 0.485 0.125 0.862 

3 0.642 0.556 0.113 0.463 

(a) 

(b) 
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Figure 4. Acceleration time history from the ground motion response 

 

Figure 5. Velocity time history from the ground motion response 

 

 

Figure 6. Displacement time history from the ground motion response 
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(a) (b) 

Figure 7. a) Acceleration response spectrum at the ground level; b) 5-DOF structure of the current study 

The next step is to investigate how each ground motion response affects an existing structure. In general, the vibration 

of a multiple-degrees-of-freedom (MDOF) structure subjected to an external (here an earthquake) loading follows the 

motion presented in Equation 2: 

Mü + Cu̇ + Ku = −Müg (2) 

Where M, C, and K are global mass matrix, damping matrix, and stiffness matrix, respectively, and u is a vector 

containing the displacements of stories 1 to, n (n being the number of DOFs). �̇� and �̈� denote the first and second order 

derivatives of displacement with respect to time. For a structure with 5 degrees of freedom (Figure 7b), the mass and 

stiffness matrices are determined using Equations 3 and 4. In Equation 3, mi denotes the mass of the ith story (here all 

equal to m0), and in equation (4), ki is the stiffness of the ith floor.  

M =

[
 
 
 
 
m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m4 0
0 0 0 0 m5]

 
 
 
 

 (3) 

K =

[
 
 
 
 
k1 + k2 −k2 0 0 0

−k2 k2 + k3 −k3 0 0
0 −k3 k3 + k4 −k4 0
0 0 −k4 k4 + k5 −k5

0 0 0 −k5 k5 ]
 
 
 
 

 (4) 

The acceleration time histories from Figure 4 were used to excite the 5-story building using the MATLAB script 

described in the “Methods” section. The contribution of the first 5 modes of displacement were considered in the modal 

analysis and the displacement time histories of each story for different subsurface scenarios are depicted in Figure 8. 

The structure is assumed to have a 5% damping ratio. Examining Figure 8 reveals several interesting remarks. First, 

expectedly, the displacements tend to increase with floor level in all the cases meaning that higher stories experience 

larger displacements. Second, profiles 2 and 3 (especially 2) have significantly amplified the displacements occurred at 

stories 3 and above. To illustrate more, note that the displacements at the 5th floor in profile 1 are comparable to those 

of the 2nd floor in profiles 2 and 3. This shows that identical structures built over soil profiles with the same Vs30 are 

likely to experience very different maximum displacements due to the inherent dissimilar subsurface profiles. Finally, 

although profile 3 yielded the largest PGA at the ground surface level (Table 3), but the structural displacements of 

profile 2 were significantly larger than those of profiles 1 and 3. A deeper inspection showed that the predominant 

frequency bandwidth of the input motion at site 2 was more in-line with the natural frequencies of the structure especially 

with the 1st natural frequency (~ 0.8 Hz) which typically dominates the structural response. Therefore, profile 2 despite 

having a smaller PGA at the base, imposed a larger displacement on every single story of the structure.  

Results of the present study suggest that one can easily underestimate the true peak ground motion parameters that 

may occur at a site by only relying on the average velocity model, and by not looking at the site-specific conditions such 

as existence of layers of extremely soft material. Such negligence can lead to devastating damages to the current 

structures or the structures to be built. Therefore, although Vs30 provides a promising recommendation for seismic site 

classification, but experts are strongly encouraged to perform detailed ground motion amplification and response 

analysis on a case-by-case basis rather than exclusively relying on the Vs30 value. 
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5. Conclusion 

The average shear-wave velocity of the uppermost 30 meters of earth has found a wide-spread use in the civil 

engineering field particularly as it relates to seismic site classification, ground motion response, soil-structure 

interaction, and liquefaction assessments. However, some concerns arise if one only relies on a single parameter to 

characterize an entire site. Different sites can be considered in the same seismic class due to their similar “average” 

velocity models, but at the same time, they can exhibit significantly different ground motion responses. In this study, 

three different soil profiles with an identical Vs30 were produced. The first profile was a constant-velocity model. The 

second profile was comprised of a very soft deposit over a stiff layer, and in the third layer, the soil stiffness was 

gradually increasing with depth. Next, these profiles were subjected to the same ground motion. Then, the corresponding 

ground motion response were applied to the base of a structure with five degrees of freedom (5 stories). Results indicated 

that the ground motion response of these sites are different in a meaningful manner. Specifically, the soft-over-stiff 

profile resulted in the largest structural displacements. This profile also altered the frequency content of the input 

earthquake the most and shifted the dominant bandwidth to longer periods. It was concluded that practitioners must be 

cautious when dealing with soft layers as such soils can exhibit unexpected behaviors.     

This study reminds us that engineering judgment should always be considered in seismic studies rather than solely 

relying on Vs30 to characterize a given site. Otherwise, oversimplification of a site and consolidating all the potential 

key factors into a single number can lead to underestimating the ground motion amplification that can have detrimental 

effects on structures. This work can be further extended by performing similar analysis on a much larger pool of velocity 

models; a Monte Carlo simulation on a large sample space of velocity models with the same Vs30 can potentially reveal 

the most critical profiles. A Monte Carlo simulation can also be used in probabilistic risk assessment. However, 

performing a Monte Carlo simulation of ground motion responses could be a challenging process as it would be time-

consuming and computationally-intensive, and requires batch-processing and access to high-performance computing 

machines. 

 

Figure 8. Displacement time histories of the structure over different subsurface profiles 
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