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Abstract 

This work is aimed to investigate on thermal and thermo-mechanical behaviour of 6061 Aluminium alloy. The main 

target of the present investigation is to apply a numerical procedure to assess the thermo-mechanical damage. Finite 
element analyses of the notched tensile specimens at high temperature have been carried out using ABAQUS Software. 
The objective was to study the combined effects of thermal and mechanical loads on the strength and ductility of the 
material. The performance of the proposed model is in general good and it is believed that the presented results and 
experimental–numerical calibration procedure can be used in practical finite-element simulation. 
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1. Introduction 

The Finite element modeling (FEM) has been widely introduced into the design of manufacturing products because 

of its high efficiency in predicting several problems and major defects occurring in sheet metal forming manufacturing 

process like necking. In order to predict those defects within a virtual manufacturing system [1-2], One of the most 

widely used models is continuum damage. The tensile strength, the yield strength and Young’s modulus depend the 

temperature because Young’s modulus of some tempered steels increases slightly at mid temperatures before 

decreasing at high temperature on mechanical properties is linked to transformations of the material structure due to 

various processes that inelastic deformation can occur more easily at elevated temperatures, so more plastic 

deformation and creep occur in the plastic zone of a fatigue crack [3, 4].  The damage parameter is not incorporated 

into the constitutive equation and it is assumed that presence of voids does not significantly alter the behavior of the 

material. The von Mises criterion is most frequently used as yield criterion in uncoupled models, Damage parameter is 

incorporated into constitutive equation and crack growth simulation is automatically performed using a complete 

deterioration of elements in front of the crack tip [5]. 

To describe the phenomenon of initiation and growth of cavities and micro cracks induced by large deformation in 

metals and called “ductile damage”, within the framework of continuum damage models, either phenomenological or 

micromechanically based, have been developed. In recent years, several different formulations for a variety of 

materials and processes have been presented, such as elastic-brittle [6, 7], brittle, creep, fatigue and creep-fatigue      

[8-13], among others. However, initially, the development and application of damage models was focused on ductile 

fracture. 

Ductile fracture process is controlled by nucleation, growth and coalescence of micro voids, so it is natural to link 

material fracture behavior to the parameters that describe the evolution of micro voids rather than conventional global 

fracture parameters [14].  
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In this work, the 6061 Aluminum alloy was studied in order to find out the effect of tensile strength. Both the 

malleability and the ductility properties relate to the plasticity of the material. Malleability refers to the ability of 

plastic deformation under compressive loads, while ductility refers to plastic deformation under tensile loads. 

2. Continuum Damage Mechanics Model for Ductile Materials 

Kanchanov defined a continuum damage variable as the relationship between the sectional area of voids Av and the 

overall sectional area A0 of a given surface in a volume element Equation 1. This definition is the same one as the 

micro-void area fraction used is some micromechanical theories, such as McClintock’s [15]. The damage variable can 

assume any value between 0 and 1, covering from a virgin state to a completely damaged reaches a critical value, 

when the effective area can no longer resist the applied load, loading to the formation of a macroscopic crack. 
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Where      is the effective resisting area. It may observe that. 

According to Lemaitre’s damage model and strain equivalence principle, any constitutive equation for a damaged 

material may be derived in the same way as for virgin material, replacing the stress tensor   by the effective stress 

tensor  ̌, defined by: 
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 (2) 

The effective elastic modulus of damaged material, giving an indirect way to measure the damage in a solid, by 

monitoring the evolution of the Young modulus with increasing strain: 

1D  (3) 

 ̌  is the effective elastic modulus and   is the elastic modulus for the undamaged material. 

The evolution of an internal thermodynamic state variable can be derived assuming the existence of a potential of 

dissipation    and an associated variable  , named damage strain energy release rate and defined as [16]: 
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‖  ‖ is the von Mises equivalent stress,    is the deviatoric stress tensor,   is the Poisson’s ratio and  
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)   ( ) is the hydrostatic stress. Further, Lemaitre [16] shows that the damage evolution can be written as: 
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With    √
 

 
‖  ‖ defined as the accumulated plastic strain and    being the plastic strain tensor. The choice of a 

proper potential of dissipation that can represent experimental results is the core of any CDM model. In Lemaitre and 
Chaboche’s model, the hypothesis of isotropic damage, existence of a strain threshold for damage initiation and linear 

evolution of the damage with the accumulation plastic strain leads to the following equation for damage evolution: 
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  : The accumulated plastic strain threshold and 

 : The damage resistance parameter, which are material dependent properties. 

A critical damage value for the uniaxial stress state    which can be calculated with the following equation [16]: 
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Where     is the critical damage for the uniaxial stress state and can be measured in a tensile test,    is the ultimate 

stress and    is Triaxiality factor, which accounts for the difference between the actual stress state and the perfectly 

uniaxial stress state. 
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This model was later implemented in the ABAQUS/Explicit solver using subroutine [17] following the numerical 

algorithm proposed by lee and Pour-Boughrat [18]. 

3. Materials and Simulation Method Description 

The material considered in this study is 6061 Aluminium Alloy. The main mechanical and thermal properties of 

tested specimen are summarized in Table 1. The geometry of the tested studied is shown in Figure 1. To obtain a 

thermal stress loading under homogeneous uniform temperature distribution, the steel was restrained against axial 

expansion by creating an interaction boundary condition at its outside edge. In order to determine thermal strain in the 

analysis we have need to the thermal expansion coefficient. Poisson’s coefficient does not depend on temperature and 

takes the constant value. 

A displacement boundary condition was applied at the outside extremity of the tensile specimen. The displacement 

was smoothly ramped up in the first portion of the test and then held constant. 

The explicit finite element calculation software, ABAQUS/Explicit, was employed for the simulation of traction 

deformation and fracture of the 6061 Aluminium alloy. The size of mesh in the element model was 0.05 mm×0.05 mm 

and 0.1 mm×0.1 mm for the 20 mm and 110 mm sample, respectively. Thus, there were 18785 and 56360 meshes in 

the 20 mm and 110 mm model, respectively. The mesh was then transitioned toward the boundaries using triangular 

elements and quad elements where bilinear mapping could be employed. The finite element analysis results are critical 

for identifying crack propagation parameters during a TMF cycle. The methodology is sensitive to the finite element 

modelling procedure. Care must be taken in controlling the element selection, material properties definition and 

applied boundary condition evaluation. The selected element type was an 8-node linear brick, of reduced-integration 

elements (C3D8R). In the finite element model, the specimen was simplified as a rigid body. The displacement load 

was applied on the top specimen along the 3-axis direction with the other degrees of freedom fixed. In the traction test, 

the Steel cylindrical rod suffered damage. The boundary element method (BEM) simplifies the meshing process and 

has the ability to correctly characterize the singular stress fields near the crack front. The boundary conditions applied 

to this model were the result of a global/local approach where displacements and temperatures were taken from the 

results of the global model and applied to the boundaries of the local sub-model studied here. Therefore, in order to 

gain a further insight into the evolutionary process of the damage to the 6061 Aluminium alloy, a shear damage model 

built in the standard model library of ABAQUS software was used. The thermal portion of the analysis should consist 

at least of two steps. The first step is a steady-state analysis in which the blade is brought from an initial temperature 

of 100 °F to a steady operating temperature distribution and then the second step simulates the cool down. The 

transient response of the blade is then monitored for flight time. 

Table1. Mechanical and Thermal material properties 

Density 2700       

Young’s modulus 71000       

Poisson’s ratio 0.33 

Heat capacity [19] 900       

Heat conduction [19] 120      

Thermal expansion coefficient 2.4.10-5     
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Figure 1. Geometry of the simulated tensile test specimen and boundary conditions (dimension in mm) [20] 

4. Results and Discussion 

 
Figure 2. Resulting load- time curves for three different value temperatures 

The analysis of the results presented in Figure 2. show that in the first 125 seconds the force Reaches 45.5 KN.  

The tensile behaviour of the specimens was determined as the load–time relation during tensile loading. Furthermore, 

a change in the loading curve during time was obtained. Load start, i.e. elastic strain start, then plastic strain start point 

where the maximum force is reached, i.e. the end of homogenous plastic strain (fracture). The results presented in 

Figure 2. prove that the maximum elongation before final failure line started. The beginning of elastic deformation, the 

beginning of plastic deformation, reaching maximum force, the homogeneous plastic deformation to the final fracture 

of specimen and then the temperature distribution is consistent with the equivalent plastic strain one, which shows that 

the temperature change causes by the plastic work.  
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  Figure 3. Resulting displacement-Number of cycles curves for three different values Pressure                                                                            

The Figure 3. depicts the elongation (displacement) measured between the 1st and Nth cycles as a function of the 

number of cycles. In order to evaluate the influence of the maximum cyclic stress on the dimensional changes of the 

material, the plastic elongation measured between the 1st and 500th has been plotted as a function of the plastic 

elongation during the 1st cycle. The plastic elongation between the 1st and 500th cycle increases rapidly with the 

deformation.  Thus the elongation between the 1st and the 500th test cycle initially increase with the maximum stress, 

then decrease and becomes very small at high stresses. However, the thermo-mechanically coupled problem is not a 

bifurcation problem, since inelastic heat generation gives rise to an increased temperature in the specimen and 

convection results in the non-homogeneous temperature distribution. The response is more brittle for the case of 

combined softening, which is characteristic for metals when loaded in tension. 

To demonstrate the influence of the Pressure loads in the model, simulations have been performed with tree 

different values: 400, 600 and 650 MPa. 

 
Figure 4. Resulting Damage- time curves for three different values of temperatures 
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Figure 5. Stress evolution image of the specimen during loading test 

 

During the rapid-growth period exhibited in Figure 5. smaller clusters can continue to grow but they are not 

necessary to complete the failure. For increasing system sizes the NT onset of rapid growth occurs at earlier times, and 

so there is less other damage and interactions of the largest cluster with the smaller clusters can be neglected for large 

system sizes. In the time-dependent problem studied here the heterogeneity is self-generated by the evolution of the 

damage itself, and there is no heterogeneity in the local failure rates. Furthermore, failure in the present problem is not 

instantaneous but rather stems from the onset of an accelerating growth process. This latter aspect makes the present 

problem somewhat more tractable than the time-independent problems, where there is an actual fracture threshold. The 

damage rate is slightly smaller than the rate of effective plastic strain, as the time, displacement and temperature 

increases the stress state at the center of the specimen Figure 5. causes the damage to increase exponentially whereas 

the equivalent plastic strain rate remains approximately constant. The reaction forces on the constrained edge of the 

specimen it is possible to observe the damage influence on the global behaviour of the structure because the softening 

caused by damage results on the decrease of the reaction force. 

5. Conclusion 

This paper has presented a comprehensive numerical study aimed at developing and validating a predictive model 

of fracture damage in specimen structure under plastic conditions. The material models successfully describe 

continuum damage mechanics for ductile materials of specimens that are often presented in literature.  The method of 

scaling fracture locus for different temperatures is successful and for plastic response depends on the type of material. 

The obtained results confirm that it is very useful to use Continuum damage model based on ABAQUS software for 

early diagnostics of complex metal structures in the exploitation or service conditions. The obtained results prove that 

the model offers the possibility of non-destructive and real time testing to observe the physical process of metal 

degradation and to detect the occurrence of energy dissipation. A large-scale grounding experiment is also simulated 

showing very good agreement with measurements.  
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