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Abstract 

Recycled coarse aggregates (RCA) and fly ash (FA) are materials with least to very low global warming potential. 

Considering long term strength and durability, various studies have suggested to use RCA in concrete with FA. This 

research paper deals with the strength and economic performance of concrete made with individual and combined 

incorporation of FA and RCA. Nine different mixtures of concrete were prepared by varying the incorporation levels of 

RCA and FA. 0% RCA, 50% RCA and 100% RCA were used in concrete with three different levels of FA (0%FA, 20%FA, 

and 40%FA). The compressive strength of each mixture of concrete was determined at the age of 3, 28, 90 and 180 days. 

To evaluate economic performance cost of 1 m3 of each mixture of concrete was compared to that of the control mixture 

having 0% RCA and 0% FA. Results showed that RCA was detrimental to the compressive strength of concrete at all ages, 

whereas, FA reduced early strength but improved the strength at later ages of testing i.e. 90 and 180 days. FA plus RCA 

mixes also showed lower early age strength but gained higher strength than conventional concrete at the age of 180 days. 

RCA did not reduce the cost of concrete effectively. FA despite having a very high transportation cost, it reduced the cost 

of concrete efficiently. FA did not only reduce the cost of binder but also lower the demand of plasticizer by improving 

workability. Cost to strength ratio (CSR) analysis also indicated that FA significantly improve the combined economic and 

strength performance of RCA concrete mixes. 

Keywords: Recycled Aggregate Concrete; Recycled Aggregates; Fly Ash; Compressive Strength; Economic Performance. 

 

1. Introduction 

Concrete is used more than any other manmade material in the world due to its unique advantages. Formability, higher 

strength and durability, and the cost-effectiveness of OPC concrete makes it more adaptable material than other 

conventional materials such as wood, steel, bricks, stones, etc. But it possesses a very high global warming potential 

associated with its vital components such as OPC and NCA.  

In construction industry necessity for sustainability is obvious. Not only construction industry should lessen its carbon 

footprint, but it should also contribute to preserve the natural resources which are vital for continuous growth and long-

term economy. Therefore, waste materials are undergoing extensive research worldwide so that they can be replaced 

with the conventional materials in order to lessen the impact of the construction industry on environment, society and 

economy. The requirement of NCA to produce the concrete will reach to about 40 billion tons/annum with coming 20 

years [1, 2]. On the other hand, construction and demolition activities generate 90 million tons of waste in major countries 

around the world i.e. Japan, Europe and USA [3]. In this scenario, best practice would be to streamline C&DW into the 

concrete industry by manufacturing recycled aggregates. On the other hand, total world production of Portland cement 
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has reached up to a level of 4200 million tons per annum [4]. Cement industry consumes massive amount of fuels and 

also natural resources of limestone, clay, etc., in order to meet the requirements of energy and raw materials. It was 

estimated that the cement industry alone shares about 7% to the total greenhouse gas emissions [2, 5]. By reducing the 

demand of OPC in construction sector, its negative impact on the environment can be reduced. A possible way will be 

to use supplementary cementitious material with lower carbon emissions associated with its manufacturing. FA is 

produced as a by-product of coal electricity power plants. Handling and disposal of FA has become a major concern as 

worldwide consumption of 3500 million tons of coal produces a huge portion of waste as FA [6]. So, replacement of any 

part of OPC in concrete with cementitious waste material like FA can bring a huge deal of economy and sustainability 

to concrete. Not only this practice will help concrete in lowering its carbon footprint, but it may save us from troubles 

of waste management pertaining to FA. 

Researchers have reported that using recycled aggregates as partial or full replacement of natural aggregates can help 

in reducing the carbon footprint of concrete but some properties like workability, strength, and durability are badly 

affected  [7-10]. Whereas, partial replacement of OPC with a pozzolanic binder like FA reduce carbon emissions 

associated with concrete manufacturing effectively with some loss in strength and durability at early ages [11-14]. 

Replacing waste materials with conventional construction materials not only minimize the negative environmental 

impact of concrete but also help in preserving raw materials for future usage.  

Recycled aggregates are usually obtained from construction and demolition wastes (C&DW). Recycled aggregates 

from C&DW are of various types i.e. recycled concrete aggregates, recycled mortar aggregates, recycled brick 

aggregates or sometimes their different combinations are referred to mixed recycled aggregates (MRA). Out of these, 

recycled concrete aggregates are useful for superior concrete works i.e. reinforced, precast and prestressed concrete. 

Recycled aggregates have very high roughness and water absorption than natural aggregates which in turn increase the 

harshness of fresh concrete, therefore, RCA concrete mixtures are less workable and require higher water demands than 

their conventional counterpart [10, 15]. Due to presence of adhered mortar in RCA, strength and durability properties of 

concrete are affected badly [14, 16]. FA has positive impact on workability, durability and later strength of concrete than 

RCA. By virtue of the relatively inert nature of glassy beads of FA, durability of concrete under aggressive conditions 

is improved. FA particles react with unused calcium hydroxide (Ca(OH)2) produced in the hydration of cement. Products 

of this reaction increase the durable calcium silicate hydrates (CSH-gel) content in the binder matrix of concrete.  

The economic impact of combined use of RCA and FA in concrete is still not yet studied broadly. Concrete with 

RCA has been proved weaker and expensive product than conventional concrete in a study which investigates the 

financial assessment of RCA in concrete [17]. The lower strength of RCA can increase the CSR of concrete. Studies 

have shown that using recycled aggregates in construction industry as replacement of conventional aggregates is an 

economical and eco-efficient practice than disposing off construction and demolition waste in landfills and backfilling 

[18-21]. 

Various studies have investigated the effect of individual and simultaneous incorporation of RCA and FA on fresh 

and hardened properties of concrete [16, 22-27]. To the best knowledge of authors combined use of RCA and FA in 

concrete has not been investigated viewing both economic and strength performance of concrete. Sustainability in the 

construction industry is inevitable but utilization of both RCA and FA in concrete must also be investigated considering 

both economy and strength i.e. using cost to strength ratio (CSR) analysis. RCA and its conventional counterpart NCA 

both involve same manufacturing process, so that influence of RCA on the cost of concrete may become insignificant. 

Moreover, longer transportation distances associated with FA may increase its final cost at the hand of consumer. So, 

considering these shortcomings of RCA and FA, a CSR analysis may provide a useful tool in order to optimize potential 

waste materials in concrete. 

2. Materials and Methods 

2.1. Materials 

In this experimental study, general purpose Portland cement of Grade 43 (Fauji Cement) was used. Properties of 

cement conform to specifications of general-purpose OPC given under ASTM C150 [28] and are shown in Table 1. Low 

calcium type of FA was used as a pozzolanic binder. FA was obtained from Port Qasim power plant in Karachi. Results 

of chemical and particle analysis of FA are shown in Table 2. According to ASTM C618 [29] specifications of this FA 

conform to Class F.  

Natural river sand of Lawrance Pur brand was used as fine aggregate in all concrete mixes throughout the 

experimental study. The crush stone of Margalla brand was used as a natural coarse aggregate (NCA). General properties 

of both coarse and fine aggregates are given in Table 3. RCA was obtained through the manual crushing of tested 

specimens of concrete. Specimens crushed to make RCA, had compressive strength value in the range of 30-35 MPa. 

After manual crushing aggregates were sieved and separated according to sizes of NCA. Maximum size of coarse 

aggregates was maintained as 22.5 mm for both NCA and RCA, whereas minimum size for both was retain of 4.75 mm 
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sieve. General properties of RCA are also given in Table 3. All aggregates used in this experimental study adhere to 

ASTM specifications of aggregates for concrete [30]. Gradation curves of all aggregates are shown in Figure 1. 

Tap water free from organic impurities was used in the mixing of concrete. Anticipating the workability loss at the 

inclusion of RCA in concrete mixtures, a high range plasticizer (Sikament 520) was used. Plasticizer’s properties 

conform to Type F of admixtures according to ASTM C494 [31] specifications. Overview of materials in this 

experimental study is shown in Figure 2. 

Table 1. General properties of OPC provided by the supplier 

Chemical characteristics Result Physical characteristics Result 

SiO2 22.5% Specific gravity 3.14 

Al2O3 5% Specific surface (m2/kg) 322 

Fe2O3 4.0% Consistency 29.25% 

CaO 64.25% Initial setting time 1hr, 53 min 

MgO 2.5% Final setting time 3 hr, 58 min 

SO3 2.9% Soundness 0.102% 

Na2O 0.2% 28 days compressive strength 41.56 MPa 

K2O 1% - - 

Loss on ignition 0.64% - - 

Table 2. General properties of FA provided by the supplier 

Chemical characteristics Result Physical characteristics Result 

SiO2 57%-65% Specific gravity 2.34 

Al2O3 28%-32% Specific surface (m2/kg) 423 

Fe2O3 1%-4% Consistency 32.5% 

CaO 1%-2% Initial setting time - 

MgO 0.5% Final setting time - 

SO3 1.09% Soundness 0.034% 

Na2O 1.5% Maximum Passing through a 40-micron sieve 94% 

Lime reactivity 5.8% - - 

Loss on ignition at 950oC 9.04% - - 

Table 3. General properties of aggregates 

Property NFA NCA RCA 

Max. nominal size (mm) 4.00 22.50 22.50 

Min. nominal size (mm) 0.075 4.75 4.75 

Saturated surface dry water absorption (%) 1.40 1.08 7.22 

10% fine value (kN) - 157 125 

Bulk density (kg/m3) 1614 1534 1395 

Abrasion value (%) - 29.42 41.23 
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Figure 1. Gradation of aggregates 

Figure 2. Overview of materials (a) RCA, (b) NCA, (c) Fine aggregate, (d) OPC, and (e) FA 

2.2. Composition of Concrete Mixtures 

Three series of concrete mixes were produced by using three different levels of RCA (0%RCA, 50%RCA, and 

100%RCA) as coarse aggregates. In each of these three series, three different levels of FA (0%FA, 20%FA, and 40%FA) 

were incorporated as partial replacement of OPC (by weight). In this study, incorporation level of FA was not increased 

beyond 40% because after consumption of excess Ca(OH)2 (which is produced in the hydration of cement) in the binder 

matrix of concrete, FA particles may behave as mineral filler rather than binder [32]. Also increasing the level of FA 

may also cause significant reductions in early age strength due to slow nature of pozzolanic reaction between 

aluminosilicate particles of FA and Ca(OH)2. Details of the composition of each mixture are given in Table 4. C1 serves 

as a conventional/control mix having 0%FA and 0%RCA. Water to cement ratio was maintained as 0.50 through all of 

the concrete mixes. Water reducing admixture was used to maintain the constant level of workability. Slump test 

following ASTM C143 [33] was conducted to evaluate the demand of dosage of plasticizer in each mixture of concrete 

against a constant slump value. Target slump value for each mixture of concrete was maintained up to 130 mm. No mix 

was designed to achieve a particular strength because the study was aimed at relative evaluation of concrete mixes with 

respect to conventional/control counterpart.  

Each concrete mix was blended in a mechanical mixer of 0.15 m3 capacity. All solid ingredients (binder + sand + 

aggregates) for each concrete mix, were blended thoroughly in mechanical mixer for about 3 min. Then water and the 

required amount of plasticizer was added and mixing of concrete continued for further 4 min. RCA were soaked in water 

for about 30 min and then after air drying were used in the blending process of corresponding RCA concrete mixes. This 

practice of presoaking RCA, restraint them to absorb any water from fresh binder matrix of concrete. Whereas, NCA 

were used in air-dried state in the blending of concrete. Since NCA has a very little water absorption than RCA, therefore, 

NCA were used in air-dried state in the blending process of concrete mixes.   
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Table 4. Composition of mixes 

Series 
RCA 

(%) 

FA 

(%) 

MIX 

ID 

OPC 

(kg/m3) 

FA 

(kg/m3) 

NFA 

(kg/m3) 

NCA 

(kg/m3) 

RCA 

(kg/m3) 

Water 

(kg/m3) 

Admixture 

(kg/m3) 

I 0 

0 C1 405 0 607.5 1215 0 202.5 2.75 

20 C2 324 81 607.5 1215 0 202.5 2.65 

40 C3 243 162 607.5 1215 0 202.5 2.58 

II 50 

0 C4 405 0 607.5 607.5 550 202.5 2.89 

20 C5 324 81 607.5 607.5 550 202.5 2.78 

40 C6 243 162 607.5 607.5 550 202.5 2.75 

III 100 

0 C7 405 0 607.5 0 1100 202.5 3.12 

20 C8 324 81 607.5 0 1100 202.5 3.08 

40 C9 243 162 607.5 0 1100 202.5 3.03 

  

2.3. Preparation and Testing of Specimens 

All concrete mixtures after production were subjected to slump test following ASTM C143 [33] to confirm the 

required workability. For mixes involving RCA reductions in workability were adjusted using plasticizer. Fresh density 

by filling a 150 mm cube into three layers (each layer was compacted 25 times using temping rod) was calculated using 

mass-volume relationship. To evaluate compressive strength of each mixture, cubic specimens of 150x150x150 mm3 

were cast according to BS-EN 12390-3 [34]. After casting specimens were left in molds for 24 hours setting. Then after 

demolding, all the specimens were cured in water tank at temperature of about 24oC. Average of three specimens were 

tested at 3, 28, 90 and 180 days of curing, to estimate the compressive strength of each mixture. All specimens were 

tested in the CONTROLS compression testing machine of 3000 kN capacity. Overview of slump and compression 

testing is shown in Figure 3. 

Figure 3. Overview of (a) slump testing and (b) compression testing 

2.4. Strength Performance 

Strength performance (SP) of each concrete mixture was determined via Equation 1 using the results of compressive 

strength at the age of 3, 28, 90 and 180 days. The compressive strength of C1 was taken as reference strength as it 

represents conventional concrete made with 0%RCA and 0%FA. Resulted value from Equation 1 if higher than ‘100’ 

would indicate better performance than C1, and if lower than ‘100’ would indicate lower performance. Compressive 

strength was taken as representative of strength parameters because it is most widely used strength parameter in concrete 

design.  

𝑆𝑃 (%) =
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑛𝑦 𝑚𝑖𝑥𝑡𝑢𝑟𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 (𝐶1)
× 100                                                                                                (1)    

2.5. Economic Performance 

To perform economy analysis, cost of 1m3 of each concrete mixture was calculated by summing the cost of 

ingredients under each mix. Cost of materials (USD) at the doorstep of the consumer (UET, Taxila) was calculated using 

the unit price of materials at the hand of supplier plus transportation charges. Cost of transportation was taken as 0.00004 

USD/kg/km was estimated by direct quarries from National Logistics and Construction (NLC), Pakistan. Distances of 

material suppliers from University of Engineering and Technology, Taxila, Pakistan (consumers end) are shown in 

Figure 4. RCA was manually crushed due to the absence of any recycling plant. Its cost was estimated by analyzing the 

costs of low-quality coarse aggregates available at different crushing plants in Margalla hills, Taxila, Pakistan. As quality 
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is one of the prime factors which influence the increase or decrease in the demand for material hence, cost of RCA was 

estimated by qualitative assessment.  

Unit cost of each material used in the experimental study is given in Table 5. Cost of mixing was not covered in this 

study because investigation was aimed to evaluate economic performance (EP) relatively. EP of each mixture of concrete 

was ascertained by using Equation 2. As C1 represent conventional concrete, therefore, the cost of each mix was 

compared with C1. For a mix with EP having greater than ‘100’ would have lower cost than C1, whereas a particular 

mix with EP value lower than ‘100’ would be having higher cost associated with materials than that of the conventional 

C1. 

𝐸𝑃 (%) =
𝐶𝑜𝑠𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 (𝐶1)

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑎𝑛𝑦 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑚𝑖𝑥𝑡𝑢𝑟𝑒
× 100                                                                                                                           (2) 

Table 5. Cost of materials 

Material 
Unit cost at supplier’s hand 

(USD/kg) 

Transportation cost 

(USD/kg/km) 

Total cost (USD/kg/km) at 

door-step 

OPC 0.085 0.00004 0.08534 

FA 0.0017 0.00004 0.0585 

River sand 0.0041 0.00004 0.00444 

NCA 0.0067 0.00004 0.00704 

RCA 0.0042 0.00004 0.00454 

Admixture 1.25 0.00004 1.25176 

Water 0.0009 - - 

 

 

Figure 4. Overview of locations of material suppliers 

2.6. Combined Performance (CP) 

Cost (or economy) and strength, both are important parameters that are generally considered in designing a particular 

grade of concrete. Therefore, CP based on strength and economic performance (SP and EP) was evaluated for each of 

the concrete mixture. CP was calculated at two ages of compression testing i.e. at 28 and 180 days, and this is explained 

as follows. Conventional concrete ‘C1’ having binder as OPC reach nearly full potential of its compressive strength at 

the age of 28 days. But concrete mixes involving FA as partial replacement of cement reach the full potential of strength 

at extended period of time (this is due to slow nature of pozzolanic reaction between aluminosilicate particles of FA and 

Ca(OH)2). Therefore, the age of 180 days was also considered in evaluating the CP of each mixture. To evaluate CP 

concerned with each concrete mixture, values of SP (from Eq.1) and EP (from Eq.2) were used in Eq.3. Value of CP 

higher than ‘100’ would indicate that a particular mix have better performance than its conventional counterpart, 

similarly, a particular mix having value of CP lower than ‘100’ would have relatively poor performance than its 

conventional equal. 

𝐶𝑃 (%) =
𝐸𝑃+𝑆𝑃

2
× 100                                                                                                                                                       (3) 
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3. Results and Discussions 

3.1. Workability and Fresh Density 

Results of slump testing for all mixtures (both with and without plasticizer) are shown in Figure 5. Whereas, results 

of fresh density achieved at the target slump of all concrete mixture are shown in Figure 6. General trend indicates that 

inclusion of RCA reduced both workability and density of fresh concrete. Although RCA were soaked in water prior to 

using them in the blending process of concrete, but still the workability of RCA mixes was lower than that of the C1. 

FA improved the workability of concrete, but it slightly influenced the fresh density. 

 
Figure 5. Results of slump testing 

As RCA contained low density adhered mortar from parent concrete, reduced the workability and fresh density with 

each increasing level. RCA are more harsh and irregular-shaped than conventional stone aggregates, therefore they offer 

lower workability. Presence of low-density adhered mortar from parent concrete in RCA increase the overall porosity 

of concrete; that is why the fresh density of concrete mixtures reduced with increasing RCA incorporation. RCA mixes 

have lower fresh density because of the fact that presoaked RCA increase the overall water content of concrete. It is 

worth mentioning here, to reach the same level of workability, RCA mixes required somewhat higher dosages of 

plasticizers than that of the mixes having NCA as coarse aggregates. This already has been ascribed to increase in 

harshness due to RCA in fresh concrete. But the increase in the demand of plasticizer with each increasing level of RCA 

was insignificant as RCA were already soaked in water before blending of mixes. Kurad et al. [14] reported that RCA 

mixes have higher water demand than NCA mixes and RCA mixes required higher dosage of plasticizer in order to 

maintain workability at constant w/c ratio. 

FA particles are known for their fine size and spherical shapes; therefore, they act as small ball bearings among coarse 

grains in cement matrix of fresh concrete. This lubricating action of FA increase the workability of fresh concrete 

mixtures with each increasing level. FA particles are lighter than cement, but their replacement volume is not huge, 

therefore FA does not cause significant changes in fresh density of concrete. FA mixes also required lower dosages of 

plasticizers than C1 to achieve a target level of workability. It is worth mentioning here, role of FA on reduction in the 

demand of plasticizer was not very significant. It may be concluded that FA particles partly acting as lubricators 

effectively reduce the demand of plasticizer. 

 
Figure 6. Results of fresh density at target slump 
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There was a clear contrast in influence of RCA and FA on fresh properties of concrete. RCA reduced the workability 

and fresh density, whereas FA improved both of the fresh properties. The mixes containing RCA showed little 

improvements in workability upon the inclusion of FA. As shown in Table 4, the dosage of plasticizer decreased in RCA 

mixes upon the inclusion of FA. For example, mix ‘C6’ (made with 40% FA and 50% RCA), and the mix ‘C1’ had the 

same demand of plasticizer to achieve the constant level of workability. This can solely be ascribed to positive influence 

of FA on rheology of concrete. Brito et al. [10] have also reported that FA improves the workability of concrete. It can 

be concluded that inclusion of FA to some extent compensates the loss in workability due to RCA.  

3.2. Compressive Strength 

Results of compressive strength for all mixes are shown in Figure 7. The overall trend shows that inclusion of RCA 

reduced compressive strength at all ages of testing when compared to conventional concrete mixture ‘C1’. Whereas loss 

in early age strength of mixtures involving FA increase with increasing level of FA. But all mixes involving FA (with 

and without RCA) showed significant improvements in compressive strength at 90, and 180 days. 

 

Figure 7. Results of compression testing 

The inclusion of RCA as partial replacement of NCA reduced strength primarily because of the presence of low-

density mortar in RCA. Increase in overall water content of RCA mixes can also be blamed for lower strength of RCA 

mixes than that of the C1. Compared to C1, presence of more water in RCA mixes may increase the global porosity of 

concrete which can be responsible for reductions in compressive strength. Reduction in fresh density of concrete mixes 

due to RCA also suggest that lessening in compressive strength is inevitable. At 50% level of RCA reductions in the 

compressive strength at the ages of 3, 28, 90, and 180 days were 6%, 4%, 3%, and 1% respectively. Similarly, reductions 

in compressive strength at 100% RCA at the ages of 3, 28, 90, 180 days were 19%, 17%, 16%, and 14% respectively. 

The compressive strength of RCA mixes improved over the period of 180 days. This can be ascribed to the hydration of 

old cement mortar present in RCA as reported by Kurda et al. [14] which contributes to strength gains in RCA mixes at 

later ages. 

The inclusion of FA reduced the early age (at 3-days) compressive strength by about 14% and 33% at 20% and 40% 

level of FA respectively. This loss for 20% and 40% FA reduced to about 7% and 15% respectively at the age of 28 

days. Unlike younger ages, FA improved later strengths i.e. 90 and 180 days. At the age of 180 days, there was a net 

increase, in compressive strength, of about 6% and 14% at 20% FA and 40% FA respectively, w.r.t conventional C1. 

FA mainly act as a pozzolanic binder which means it will slowly react with Ca(OH)2 produced as by product of hydration 

of Portland cement. Calcium silicate hydrates (C-S-H) are the durable product of hydration of cement along with free 

Ca(OH)2 as a non-durable product. As FA is rich in silica and alumina, its particles react with Ca(OH)2 and form C-S-

H product and add to the overall durable content of cementing products in the matrix of concrete. Pozzolanic reaction is 

very slow in nature therefore, significant improvements in compressive strength are noticed at later ages only i.e. at 90 

and 180 days. 

RCA+FA mixes (C5, C6, C8, C9) showed a decline in compressive strength at the age of 3 days, mainly because of 

FA. As the age of curing increased higher strength gains were noticed at later ages. At the age of 180 days, all RCA 

mixes involving FA showed better strength properties than conventional ‘C1’ mix. At the age of 180 days, 100% RCA 

decreased the compressive strength by about 14% and contrarily FA caused an increase in compressive by about 15%, 

hence FA compensated the strength loss in RCA mix to a great extent. Concrete mix ‘C9’ made with 40% FA and 100% 

RCA showed a net increase in compressive strength of about 9% w.r.t ‘C1’. As new and old cement paste in RCA mixes 
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carry free or unused Ca(OH)2 which may react with FA particles in pozzolanic reaction to produce CSH. So, the net 

increase in compressive strength of FA+RCA mixes is attributed to the reaction of FA particles with Ca(OH)2 present 

in both new cement matrix and old cement paste of RCA. Hence it can be inferred that FA can minimize negative 

influence of RCA on compressive strength of concrete up to a great extent. 

Table 6. Loss (+) or gains (-) in compressive strength on individual incorporation of RCA and FA w.r.t C1 

Mix ID RCA/FA 3-days 28-days 90-days 180-days 

C2 FA-20% 13.3% 6.8% -1.7% -6.8% 

C3 FA-40% 32.0% 14.6% 3.3% -14.0% 

C4 RCA-50% 5.5% 3.3% 2.1% 0.7% 

C7 RCA-100% 19.0% 16.7% 15.7% 13.4% 

Table 7. Prediction of combined effect using the individual effect of RCA and FA 

Mix ID RCA+FA 
3-days 28-days 90-days 180-days 

Predicted Actual Predicted Actual Predicted Actual Predicted Actual 

C5 RCA50FA20 18.9% 17.3% 10.1% 8.1% 0.4% -0.6% -6.2% -5.9% 

C6 RCA50FA40 37.6% 34.6% 17.9% 15.9% 5.4% 4.7% -13.3% -11.0% 

C8 RCA100FA20 32.3% 32.3% 23.5% 17.7% 14.0% 8.0% 6.6% 4.1% 

C9 RCA100FA40 51.0% 45.0% 31.3% 23.4% 19.0% 5.9% -0.6% -9.7% 

  

Coupling effect of RCA and FA on compressive strength of concrete can be predicted to some extent by summing 

up their individual effects. For example, at the age of 3 days, reduction in compressive strength w.r.t ‘C1’ due to 100% 

RCA (C7) was about 19% and for 40% FA (C3) reduction was about 33%. Their individual effect if summed would 

result in a total loss of about 52% in compressive strength but actually loss was about 47% in case of 40%FA+100%RCA 

(C9). Table 7 presents the analysis of predictions of loss or gain in FA+RCA mixes by combining results of individual 

effects shown in Table 6. At early ages i.e. 3 and 28 days, results of coupling effect are predictable with fair accuracy, 

but at later ages accuracy reduced. It can be deduced that simultaneously FA and RCA behave differently than their 

individual behavior on strength of concrete. This is because in RCA+FA mixes chances for FA particles to react with 

Ca(OH)2 are higher, thus FA+RCA mixes showed higher rates of strength development than FA mixes without RCA. 

3.3. Strength Performance (SP) 

SP of each mix was calculated using the results of compression testing at the age of 3, 28, 90 and 180 days via 

Equation.1 are shown in Table 8. At the age of 3 and 28 days, no mixture performed better than ‘C1’. As RCA reduced 

strength at all ages and FA influenced strength at 3 and 28 days severely, therefore no mix outperformed conventional 

C1. At the age of 90 days, mixes involving 20% FA outperformed C1 by an insignificant margin. At the age of 180 

days, nearly all mixes involving FA outperformed C1 by fair/significant margin. All concrete mixtures involving 40% 

FA outperformed conventional C1 by a very good margin at 180 days. Hence it can be concluded that C5, C6, and C9 

are best mixes to outperform conventional concrete by a fair margin. 

Table 8. Strength performance of each mix 

MIX ID RCA (%) FA (%) 
SP 

(3-days) 

SP 

(28-days) 

SP 

(90-days) 

SP 

(180-days) 

C1 

0 

0 100.0% 100.0% 100.0% 100.0% 

C2 20 86.7% 93.2% 101.7% 106.8% 

C3 40 68.0% 85.4% 96.7% 114.0% 

C4 

50 

0 94.5% 96.7% 97.9% 99.3% 

C5 20 82.7% 91.9% 100.6% 105.9% 

C6 40 65.4% 84.1% 95.3% 111.0% 

C7 

100 

0 81.0% 83.3% 84.3% 86.6% 

C8 20 67.7% 82.3% 92.0% 95.9% 

C9 40 55.0% 76.6% 94.1% 109.7% 

3.4. Economic Performance (EP) 

Unit costs of materials presented in Table 5 were used to calculate the cost of 1 m3 of each mix under investigation 

of this research. In Table 10 cost of all ingredients in each mixture and cost of 1 m3 of each mix is listed. Relative cost 

of binder, aggregates, and admixture and of 1 m3 of each concrete mix w.r.t ‘C1’ is shown in Figure 8. 
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Incorporation of RCA caused insignificant reductions in total cost of concrete mix w.r.t C1. Cost of aggregates 

reduced upon the inclusion of RCA as material cost of RCA was less than NCA. But due to the loss in workability of 

fresh concrete, the cost of plasticizer was augmented. Increasing RCA up to 100% reduced the total cost of concrete by 

about 7% w.r.t C1. The total increase in the cost of plasticizer was about 13% compared to C1 at 100% RCA level. 

Hence, it can be said RCA does not reduce the cost of product concrete by a significant margin and cannot be considered 

as economical replacement of NCA considering equivalent performance. 

It is evident that the cost of OPC is highest of all other conventional ingredients of concrete. Reductions in total 

consumption of OPC by replacing it with a relatively cheaper mineral admixture will bring the huge economy to 

concrete. Incorporation of FA as replacement of OPC reduced the total cost of concrete more effectively than RCA did. 

FA did not only reduce the cost of concrete by reducing the cost of binder but also contribute to reductions in the cost 

of plasticizers. Total cost of 1 m3 concrete reduced by about 5% and 10% w.r.t C1 at 20%FA and 40%FA respectively. 

The combined effect of RCA and FA on the cost of concrete is predictable. A total reduction, in total cost, of about 

19% was noticed at 40%FA+100%RCA (in C9). FA reduced the requirement of plasticizer which up-surged in mixes 

involving RCA. A large portion of the reduction in the total cost of concrete due to FA+RCA can be largely attributed 

to FA. Compared to RCA when a small portion of OPC was replaced with FA but FA reduced cost efficiently. It is 

worth mentioning that cost of transportation has a major role in the cost of FA (transportation distance was about 1400 

kilometers), if the distance between FA supplier and the consumer is reduced that will cause further reductions in the 

cost by large margins. 

EP of each mix was calculated using Equation 2 and results are presented in Figure 9. Every mix having RCA or FA 

or RCA+FA performed better than conventional ‘C1’. Percentage higher than 100% is an indicator of better performance 

than a conventional mixture. Mixes involving FA performed more effectively than those having no FA. As already 

mentioned, that RCA causes some reductions in the cost of aggregate content but increase the cost of plasticizer to 

maintain a constant level of workability, therefore RCA do not cause any significant drop in total cost. Unlike RCA, the 

inclusion of FA reduced the cost of binder content efficiently and also caused savings in cost of plasticizer by increasing 

workability of fresh concrete. 

Table 9. Cost of each ingredient under each mix and total cost 

MIX ID 
Cost (USD) 

OPC FA Sand NCA RCA Water Admixture Total 

C1 34.56 0.00 2.70 8.55 0.00 0.18 2.75 48.75 

C2 27.65 4.74 2.70 8.55 0.00 0.18 2.65 46.47 

C3 20.74 9.48 2.70 8.55 0.00 0.18 2.58 44.23 

C4 34.56 0.00 2.70 4.28 2.50 0.18 2.89 47.11 

C5 27.65 4.74 2.70 4.28 2.50 0.18 2.78 44.82 

C6 20.74 9.48 2.70 4.28 2.50 0.18 2.75 42.62 

C7 34.56 0.00 2.70 0.00 4.99 0.18 3.12 45.56 

C8 27.65 4.74 2.70 0.00 4.99 0.18 3.08 43.34 

C9 20.74 9.48 2.70 0.00 4.99 0.18 3.03 41.12 

 

 

Figure 8. The relative analysis cost of ingredients of each concrete mix and total cost with reference to C1 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

C1 C2 C3 C4 C5 C6 C7 C8 C9

FA-0 FA-20 FA-40 FA-0 FA-20 FA-40 FA-0 FA-20 FA-40

RCA-0 RCA-50 RCA-100

R
el

at
iv

e 
co

st
 w

.r
.t

 C
1

Binder (OPC+FA) Aggregates Admixture+Water Total C1



Civil Engineering Journal         Vol. 5, No. 4, April, 2019 

842 

 

 

Figure 9. EP of each concrete mixture with respect to C1 

3.5. Combined Performance 

CP of each mix was calculated incorporating results of SP (at the age of 28 and 180 days) and results of EP in 

Equation 3. CP of each mixture at 28 and 180 days is given in Table 10. Results of CP showed that most of the mixes 

underperformed C1 at the age of 28 days. Whereas sufficient improvements in CP were seen for mixes involving FA at 

the age of 180 days. Although at 50% RCA outperformed nearly all concrete mixtures because of minor reductions in 

compressive strength at the age of 28 days but CP was reduced by about 5% w.r.t conventional ‘C1’ at 100% level of 

RCA. As FA caused savings in total cost of binder and caused significant reductions in the cost of plasticizer, therefore, 

CP of FA mixes was lower than ‘C1’ by not a very huge margin. Higher strength gains at the age of 180 days improved 

CP by about 5% and 13% more than C1 at 20% FA and 40% FA respectively.  

The combined influence of FA and RCA was predictable at the age of 28 days. Both FA and RCA caused significant 

reductions in compressive strength. Only one out of all mixtures having FA+RCA (C5) outperformed C1 at the age of 

28 days. At 20% and 40% level, FA improved CP of concrete made with 100% RCA. At the age of 180 days as FA 

nearly reach its full potential of strength all RCA+FA mixes showed better CP than C1. Higher CP is associated with 

the mixes involving 40% FA for two reasons; (1) Higher strength gain at the later ages (2) Higher reductions in total 

cost of concrete. Highest and lowest CP values at the age of 180 days are associated with C7 and C9 respectively. It is 

worth mentioning all mixes, made with either RCA or FA or with both RCA and FA, did not showed any marginal 

reductions in CP compared to C1. C7 showed a reduction of about 5% in CP. 

Table 10. Results of combined performance analysis 

MIX ID RCA (%) FA (%) CP (28-days) CP (180-days) 

C1 

0 

0 100.0% 100.0% 

C2 20 99.0% 105.9% 

C3 40 97.8% 112.1% 

C4 

50 

0 100.1% 101.4% 

C5 20 100.3% 107.3% 

C6 40 99.3% 112.7% 

C7 

100 

0 95.1% 96.8% 

C8 20 97.4% 104.2% 

C9 40 97.6% 114.1% 

4. Conclusions 

This research paper investigates the influence of fly ash (FA) and recycled coarse aggregates (RCA) on economic 

performance of concrete considering its compressive strength. Following conclusions can be drawn from this research 

paper: 

 RCA reduce the workability and density of fresh concrete. On the other hand, FA improve workability and 

compensates some loss in workability due to the incorporation of RCA in concrete mixtures. By improving 
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workability FA reduces demand for plasticizers in RCA mixes. RCA affected compressive strength of concrete 

badly. FA also reduced the early age strength. Both FA+RCA showed higher rates of strength development 

between 28 and 180 days than FA+NCA and conventional concrete. FA efficiently compensate the compressive 

strength loss of concrete due to incorporation of RCA. 

 Economy analysis indicates that RCA did not cause any significant reductions in the total cost of product concrete, 

but FA highly contributes to lower the cost of product concrete. FA does not only reduce the cost of OPC but also 

reduce demand for plasticizers. Economic performance of concrete made with 40%FA and 100% RCA was about 

15% higher than that of the conventional concrete. 

 Combined economic and strength performance analysis suggests that no concrete mix with individual or 

combined incorporation of FA and RCA outperform conventional concrete at 28 days. But mixes made with FA 

and FA+RCA mainly due to higher strength at 180 days and improve the combined performance of concrete by 

about 13% than that of the conventional concrete. 
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