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Abstract 

Increased urbanization have many negative effects on human well-being, city infrastructure, electricity usage and the 

increase of indoor temperatures. A solution may be to retrofit existing buildings, with implementing a vegetated layer to 

roofs and walls, this may enhance building performance, reduce consumption and improve indoor comfort. Cities with tall 

buildings may be more adequate to implement a green-wall as it have more area to make impact. This paper examines the 

energy reduction advantages of adding greenery on buildings in the hot arid climate of Egypt by considering three typical 

types of residential buildings in the city of Cairo as a case study. Design builder software was selected to stimulate the 

buildings chosen in this research. The results shows that an extensive soil thickness of 15cm performs better in the arid 

climates. electricity consumption for the base case is 52 kWh/m2 annually when used a traditional external envelop and 

dropped to 43 kWh/m2 when a vegetated layer added to the whole building (roof & wall), annual electricity consumption 

reduced by 17% to 25% per annum when added a vegetated layer. In addition to enhancing the indoor thermal comfort by 

3 PMV values and indoor air temperature by 5°C. 
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1. Introduction 

Today Urban Cities face energy and environmental challenges due to increased population, higher urbanization [1, 

2]. These challenges include shortage in natural resources, increased energy demand and global warming [3–5]. Global 

warming is the main environmental concern for the world which is leading to sea level rise and climate change. Climate 

change caused many changes like seasonal disorder including frequent and more severe weather related disasters such 

as flooding, storms, droughts and wildfires. In 2015, The United Nations Climate Change Conference confirmed the 

realization of the issue globally and the need to tackle environmental problems. The building sector has a big 

responsibility as it acquires high consumption rates in global energy and environmental scenarios. It is responsible for 

40% of the overall energy consumption, 40% of harmful emissions [6–9]. The building sector need to play a vital role 

in the sustainability act, there is a great potential to reverse negative impact if appropriate methods are considered during 

construction [10].  Sustainable construction have become an inevitable choice for any developer. Green buildings should 

promote a better human well-being, better material choice to ensure better indoor quality. In addition to 

efficient use of resources to reduce pollution and waste. 
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The built environment is the largest part of the physical and economic human-made capital [11], where the 

construction sector itself constitutes a major part of the gross national product (GNP) [12] and accounts for 40% of the 

world's resource and energy use [13]. In Egypt, the sector is a particularly significant contributor to the economy 

(averaging at 25% of the GNP) [14] and is also a key user of energy. It is thought that the built environment in Egypt is 

responsible for 26% of the total overall national energy consumption, 62% of the total electricity consumption (Figure 

1) and around 70% of resultant CO2 emissions [15]. It is therefore important that the sector be considered a key target 

of energy consumption policies. In recent years, due to the growth of the consumer base, a high rate of rural 

electrification, increased use of electrical appliances and the Urban Heat Island effect (UHI) affecting major urban 

centers, the domestic building sector, in particular, has become the main consumer of electricity in the country. The use 

of air conditioning (AC) units has increased dramatically over the past years, look Figure 1. Official statistics indicate 

that the number of AC units rose from 196,000 in 1999 to three million in 2009, and then doubled to six million units 

by 2012. The use of these devices also in turn worsens the environment through the release of waste heat into urban 

canyons. 

Third world countries still underestimate the importance of activating building codes to enhance the overall 

performance of buildings; retrofitting of existing buildings mainly focus on structural aspects. Most of residential 

developers in Cairo uses the minimum expenses to construct a building and ignores any performance codes available. 

In return, buildings consumes more energy, produce more operational pollutants and provide an uncomfortable indoor 

thermal environment for the occupants [16]. Available codes must be utilized and used. This could be a condition for 

issuing the construction permit; however, corruption and little awareness in local councils is causing cities a massive 

amount of deterioration. Building's energy codes is an important aspect to ensure a sustainable life for the building. In 

2009, Housing and Building National Research Center in Egypt [17] has published many codes, one of them for energy 

efficiency in residential and commercial buildings. The code is very detailed and may need a simpler version to be easy 

to use. Energy consumption in Egyptian public buildings, including administrative, educational and health buildings is 

the second largest type after residential [18]. Air conditioning in residential buildings in Egypt consumes about 56% of 

total energy per annum, [19].  

 

Figure 1. Air-conditioning and fans sales in Egypt [20] 

Adding green elements to any urban area is proved to be an effective strategy with numerous benefits to enhance the 

city's ecosystem, also mitigate the urban heat island measures. Many researches over the past decade investigated the 

impact of greenery when added to cities; especially trees, studies shown how effective a tree can be compared to air 

conditioning units. A study concluded that one tree is as effective and equal to 60 air conditioning units. Greenery have 

proved to improve thermal comfort at the local scale [21-25]. Since roofs represent a high portion of the exposed 

urbanized area, green roofs have gained widespread attention for their accountable impact on reducing energy 

consumption, also for their impact on modifying urban climate. Santamouris published many researches about the topic 

and recently presented a state-of-the-art assessment of green roofs [26]. It's proved that whenever vegetative, or green 

roofs are installed in high- or medium-rise buildings, there is a direct impact on energy use and urban heat island 

mitigation potential [27–29]. 
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Thermal efficiency caused by green roofs varied, depending on the climate condition and building characteristics. 

The topic have been extensively studied. Results shows the accountable impact of a green roof to moderate energy 

consumption [30]. Walls also occupy a high percentage of the total urban surface, potentially greater than the space 

available for green roofs. Green walls as well can regulate the total energy consumption and reduce cooling load also 

improve indoor thermal comfort [31–35]. In addition, green walls are more effective in moderating outdoor urban 

climate than green roofs, studies shown street temperature are lower when a green wall is implemented on a near building 

[36, 37]; their impact on a city’s climate and indoor comfort however has not been widely investigated.  

In 2017, a study reported an exclusive summery of green roofs potential, on reduction of the urban heat island effect, 

reduction of urban air pollution, and reduction of building energy consumption. It concluded that 17 studies reported 

green roof cooling potential on streets around, ranging between 0.03–3 C°, four detailed contamination removal at 

rooftop level, extending between 0.42– 9.1 g/m2 every year, and 41 studies gave an account of building energy 

consumption, of which 20 were equivalent and asserted changes in annual consumption ranging between an expansion 

of 7% to a 90% decline. The expansive ranges in archived adequacy are attributed to heterogeneity in setting and outline 

parameters of the distinguished examinations. Investigation of the recognized examinations recommends that a few 

parameters are of key significance for the adequacy however additionally inquire about is expected to clear up the 

unpredictable connection between biological system benefit viability and the parameters impacting it [38]. 

In this paper, through a case study conducted in Cairo, Egypt, the direct effects of green walls and green roofs will 

be investigated. A typical residential tower will implement a green roof and a green wall to modify a building’s thermal 

environment, carbon emissions. This study will compare the electricity consumption and savings potential of green roof 

and green walls when implemented in arid climate for different latitudes. The study will investigate the effect of green 

roofs and walls on the thermal comfort of a single conditioned zone in arid climate. This was achieved by building 

energy simulation, DesignBuilder. 

2. Methodology 

The present study aims to investigate the effect of green infrastructure on electricity consumption, thermal comfort 

and carbon emission reduction via its effect on annual energy consumption and air temperature in a typical urban 

neighborhood in Cairo. High-density city situated in the middle of Egypt (30.04° N, 31.23° E) with an average altitude 

of 74m. Electricity is accounted annually in Kwh while indoor comfort investigation is during the hottest day 2nd of 

August and is calculated using PMV, and air temperature. Cairo experiences a hot-arid climate with average temperature 

around 35 °C and humidity of 56%. 

 2.1. Description of Simulation Tools 

DesignBuilder is a whole building simulation software tool. It uses energy plus's open source code to simulate the 

indoor micro-climate and energy use. The program enable users to model a full detailed buildings. Modelling interface 

is user friendly and a descriptive content is provided to help users. Users model building with full description to every 

building system used; from schedules, construction materials to lighting, HVAC system and openings percentages. 

Sailor [39] provided DesignBuilder with a validated model of a green roof, based on heat balance equation. Software 

accounts for Irrigation dynamics that affect the vegetated layer performance, due to evaporation and transpiration. It's 

agreed that the software is accepted to assess the green roof performance. The green roof material can be used on walls 

to act as a green wall. Irrigation isn't effective with green walls. Software enables the user to identify many properties 

for any vegetated layer including soil depth, soil conductivity, plant density, plant height, stomatal conductance and 

embodied carbon [40–42]. Trail version of DesignBuilder is available at https://designbuilder.co.uk.  

 2.2. Scenarios Setup 

Simulation sequence goes as follows; simulate building performance and deduce most effective green layer to reduce 

electricity, carbon emission and enhance indoor thermal comfort. A Hypothetical building comes with 3m height per 

floor and area of 260 m. sq. (two flats per floor) and three different heights 5 Floors, 10 Floors and 15 Floors, look Table 

1. All simulations will implement a green roof and wall (100% coverage), then, will compare it with a base case (bare 

wall). A 15cm soil thickness (extensive) is set for any green layer (roof or wall), as it is the most efficient thickness in 

arid climates [43], Table 2 present the properties of any green layer used in the simulation. Building systems and 

materials description in DesignBuilder are presented in Table 3 and 4. The weather data of Cairo was derived from 

EnergyPlus climate file database of the U.S. Department of Energy. The outside Dry-Bulb Temperature, wind speed and 

relative humidity are all enforced via DesignBuilder preinstalled weather file. 

https://energyplus.net/downloads
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Table 1. Displays the simulation sequence and scenario 

Stage 1: Building           (BH from 5 to 15/ WT from 12 to 25) 
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Variable 1: Building 

Height 

   

Variable 2: Brick Wall 
thickness 

Objective: Annual 

Electricity loads and 
Carbon 

Stage 2: Zone 

Variable : With VS 
without Green wall & 

roof 

  

Objective: Indoor 

Temperature & PMV 

BH= Building Height, WT= Wall thickness, F=No of floor, M=meter 

Table 2. Describes green layer properties for the simulation  

Green-Layer 15 cm Thickness 

Green Wall / roof 

   K= 0.3       SH=1000 

D= 400      LAI= 5 

HP= 0.5     EI= 0.9 

 

 

U-Value 1.79 W/m2-K 

K is Thermal Conductivity in (W/m2-K), SH is Specific Heat in (J/kg-K), D is Density in (kg/m3), 

LAI is Leaf Area Index, HP is Height of plants in (m) and EI is Emissivity, U-Value in W/ (m2-K) 

Table 3. Building Characteristics for Simulation Scenario  

Function Rate 

occupancy rate 0.0196 (people/m2) - residential 

walls construction 12 & 25 brickwork – outer leaf 

lighting energy 1.00 w/m2 - 100 lux 

HVAC split with no fresh air 

openings 30% wall to window ratio – double glazing clear 6mm/6mm 

infiltration model infiltration 0.7 (ac/h) 
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Table 4. Roof and wall layers modeled in the software and total u-value 

Roof type Bass roof Wall type Bass wall 

roof tile 2 cm external painting 2 mm 

sand and mortar 6 cm external render 2 cm 

thermal break 5 cm red brick 12 cm - 25 cm 

water proofing 0.5 cm internal render 2 cm 

sloped concrete 7 cm internal painting 2 mm 

reinforced concrete1% 15 cm 

u-value 0.6 - 0.8 w/m2-k u-value 2.7  w/m2-k 

 

3. Results and Discussion 

3.1. Electricity Savings and Validation 

 Construction in Egypt doesn't follow the Egyptian Code for improving the Energy Efficiency in residential buildings. 

By code external envelop for conditioned residential towers in greater Cairo capital should account for an average of 1 

W/m2-K, depending on orientation. However, almost all residential developers apply only 12 or 25 cm of red brick with 

U-value of 0.42 and 0.5 W/m2-K, to enlarge area of dwellings and maximize sales profits. This is a main cause of indoor 

discomfort and increased electricity usage for air cooling. This research aim to find a realistic retrofitting solution by 

adding a green layer to the existing walls and roofs. Table 5 summarizes the results of the simulated energy performance 

for the base case model and the green layer options applied on three buildings with 5 different envelop options. 

Table 5. Annual electricity results for the three buildings with and without greenery 

DesignBuilder 
15 floor tower – Total 

electricity 

10 floor tower – Total 

electricity 

5 floor tower – Total 

electricity 

Results are annual for the whole 

building and in Kwh 

   

Option Annual Savings Annual Savings Annual Savings 

A Base roof / 12cm Base wall 204598 Base 133870 Base 62097 Base 

B Base roof /  25cm Base wall 203167 1% 132269 1.2% 60545 2.5% 

C 
Base roof / 25cm Base wall + 

15cm Green Wall 
178026 13% 115415 14% 51885 16.5% 

D 
Base roof / 12cm Base wall + 

15cm Green Wall 
173650 15% 112813 16% 51002 18% 

E 
15cm Green roof / 12cm Base 

wall + 15cm Green Wall 
169678 17% 107768 20% 46252 25.5% 

Layer (E) vs. layer (A) 
Annual Savings = 34919 

Kwh  17% 

Annual Savings = 26102  

Kwh   20% 

Annual Savings = 15845 

Kwh   25.5% 

An interesting finding is green wall works better with a thinner brick layer in arid climate like Egypt, than a thicker 

one. An external envelop with no vegetation and 25cm of brick wall performs better than a 12cm, which is common and 

predicted, however after adding a green layer on the 12cm brick wall, it resulted in more energy savings than the 25cm 

brick layer. This is due to lower thermal mass. This is good news for retrofitting existing buildings. The results confirm 
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that there is significant Energy-saving potential in the application of green roofs and walls as an energy conservation 

strategy for buildings in arid climatic.  

It is observed in Figure 2 that air cooling electricity consumption increases in April, May, June, July, August, 

September, and October due to increasing solar radiation in these months. Option E is the most effective layer, consumes 

less energy per annum than rest of layers A, B, C & D. In general, air cooling accounts for 40% of annual electricity 

usage. The total yearly energy consumed by the base case model, option A (with 12cm brick wall and without the 

vegetative layer) is 52, 51, 47 kWh/m2 per annum for different heights of 15, 10 & 5 floors respectively, while green 

wall/roof option E reduced the total annual energy consumption of 43, 41, 35 kWh/ m2 and, thus, a reduction of 17%, 

20% & 25% of the total annual energy consumption is provided.  

    
 

Figure 2. Air cooling annual loads between option A & E (with/out greenery) 

In order to validate the simulation results, a comparison between actual annual electricity consumption for a typical 

flat (170 m.sq) facing north south on the 10th floor of a residential building located in Cairo and its duplicate simulated 

with DesignBuilder using option B for external envelop. Aerial photo and August 2017 electricity receipt are shown in 

Figure 3. Results of the comparison shown in Figure 4 and implies very close consumption rates between the actual 

building and one simulated in the software. Differences are acceptable due to the dynamics of the human factor.  

                              

Figure 3. Showing Aerial photo for the actual building and August electricity receipt  
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Figure 4. Annual electricity consumption for actual flat compared with simulated 
 

Starting from 2014, Egyptian government signed to receive loans from the World Bank, the agreement was 

conditioned by removing electricity subsidies [44]. Today prices for kWh in residential electricity is 1.35 EGP if 

consumption is between 650 kWh and 1000 kWh monthly and 0.90 EGP if consumption is between 351 kWh and 650 

kWh. In our simulated cases, monthly electricity consumption usually averages between the previously mentioned 

consumption rates. Results from Table 4 Adding green layer option E saves around 34919, 26101, 15845 kWh for the 

three different heights when compared to option A per annum, with an average price of 1.10 EGP for kWh reflecting 

winter months less than 650 kWh per month and summer months consumptions exceeding 650 kWh per month, this is 

a huge amount of savings per annum with about 37500, 28700, 17400 EGP for the three different heights 15, 10, 5 

Floors respectively. Results indicates the economic benefits of greenery when installed.  

3.2. Indoor Air Temperature and Comfort  

In order to measure the thermal effects of adding a green wall and roof on a building, a comparison is set to target a 

single zone inside one the building we previously investigated. An air conditioned rectangular zone of size Length = 8 

m, width = 6 m and height = 3 m inherited from our simulated cases is considered in the study. This zone is considered 

a typical reception area, the traditional room represent option A without greenery and option E with greenery. The air 

conditioning unit is located on the West facing wall at the height of 2.7 m from the floor. The 3-dimensional model of 

the test case room is created in the CFD feature impeded in Designbuilder, CFD boundary condition and comfort 

calculations is shown in Table 6. Simulation occurs on the 2nd of August, hottest day in the year [45]. 

Table 6. CFD boundary configuration for single zone (with/ without greenery) 

CFD boundary       Temperature *c Bare wall & roof (a) Green wall and roof (e) 

Inside surface temperature-internal 25 

 

25 

 

Inside surface temperature-external 35 35 

Inside surface window temperature 30 30 

Average zone air temperature 40 31 

Incoming air temperature 34 34 

Comfort calculation options  

Metabolic rate (met) 0.9 0.9 

Clothing Level (clo) 1.0 1.0 

Relative humidity (%) 50 50 
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3.2.1. Indoor Air Temperature 

The temperature variation across the room A and E simulated for the time of 1hr at 15:00, shown in Figure 5. In this 

figure, the temperature profile for the room with and without greenery is simulated. For the room Option (E) (with 

greenery) the temperature variation for the entire room’s interior is 27°C except from small portion nearer to south and 

west facing wall has a temperature of  29°C. However for the Option (A) room, zone nearer to roof, west wall and south 

have a temperature of 35°C and rest of the room portions is 33°C. It is noticed that zone with green layers the variation 

is from 24°C to 29°C, while the other zone with traditional external envelop is from 30°C to 35°C. This shows indoor 

temperature reduction by 5°C at 15:00.  

 

 

 

 

Figure 5. Zone Temperature distribution in room E & A at 15Hr, 2nd of August 

3.2.2. Indoor Thermal Comfort  

Predicted mean vote (PMV) was used to discuss indoor thermal comfort in the warmest day. A higher PMV means 

stronger feeling of hotness. The PMV value has a range of +3.0 to 3.0, corresponding with the hot and cold thermal 

conditions. However in this study the PMV value reached 5 within the whole zone for the room A, which shows the 

intense effects of using 12cm brick wall in construction in Arid climate. For room E, at 15:00 few portions nearer to the 

floor and the east facing wall have a PMV of 2 and rest of the portions attains the PMV of 1.5. The entire indoor is 

having average PMV of 1.7, Figure 6. Measuring PMV for one hour is not enough to compare the comfort performance, 

but it is an indicator for poor performances of thin bricks in Cairo and a catalyst for better envelop solutions. 

Room E 

Room A 
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Figure 6. PMV measures for room A & E respectively at 15hr, 2nd of August 

Further increase in the thickness wall layer and adding a green roof and green wall of 15cm soil thickness, reduces 

the average indoor PMV by 3 and reduces the entry of solar radiation. Hence the cooling energy consumed by the air 

conditioning units will be effectively utilized to keep indoor in a desired comfort level. About 43% reduction in 

electricity resulted between room A and E. 

3.3. Operational Carbon and Emission Reduction 

The production of concrete and steel/iron are two of the five primary industries that contribute to nearly one-quarter 

of the carbon dioxide emissions annually. To see the true carbon offset potential of a green layer (roof or wall), there is 

a need to look at it from a cradle-to-cradle perspective. This would include taking into account the carbon dioxide 

emitted from the materials used to construct the roof and the wall. For the purposes of this commentary, operation 

emissions is the only phase that will be highlighted for our study. The amount of carbon dioxide emissions avoided 

through energy savings from green roofs and wall is illustrated in Figure 7. Option A compared to option E for the three 

different building heights. Peak CO2 emissions is in August in all cases, due to heat gain and increased solar radiation. 

Option E (with greenery) emits less carbon than option A for the three different heights with 35140, 16200 and 8365 kg 

of carbon respectively. This accounts for 15%, 10% and 7% reduction between traditional external envelop and green 

envelop.  

 

Room E 

Room A 
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4. Conclusion 

Green roofs and walls play an important role in reducing the urban heat island effect. Green layers reduce the amount 

of energy needed to control the internal temperature of the building and reducing energy consumption. While providing 

interior temperature moderation, during warm months a green envelop increases evapotranspiration, thus cooling the 

surrounding air. Our findings showed that a green layer in arid climate is a good choice for building environmental 

solution. A green layer have a high ability to reduce electricity, CO2 emissions and enhance indoor comfort.  

 

Figure 7. Annual Carbon production option A & E (with/ greenery) for three heights 

In this study, no comparison was made between extensive and intensive green roof types. The harsh exterior weather 

conditions in Egypt are an obstacle to the application of intensive green roof types as it causes more thermal storage 

which leads to more air cooling usage. In addition, an external envelop with no vegetation and 25 cm of brick wall 

performs better than a 12 cm brick envelop. After adding a green layer to the 12 cm brick wall, it resulted in more energy 

savings than the 25 cm with greenery, this is due to decreased thermal storage over the day. 

The case study showed that that air cooling electricity consumption accounts for 40% of total annual electricity. The 

energy consumption for the base case (without greenery) consumed 52 kWh/m2 annually, while the energy consumption 

due to the application of greenery (100% coverage) reduced consumption to 43 kWh/m2 annually. For the three 

investigated building heights (5, 10, 15 floors), energy saving is found to be in the range of 17% to 25% respectively. 

This reflects a huge economic saving annually ranging between 17,000 to 37,000 EGP.  

Indoor comfort simulation in this research indicated that a building with poor envelop solution (without greenery) in 

arid climate when exposed to solar radiation have a great influence on indoor thermal environment (larger solar radiation 

resulted higher value of PMV), and the energy consumption of air-conditioner in the building was much higher. Results 

proved the building with green envelop reduced indoor air temperature by 5°C at 15:00 and the PMV by 3 values. In 

such way, green cities matching building design with its environment, can witness a more efficient and sustainable future 

of the energy-saving. Future researches could further focus on economic trade-offs when installing a green layer in arid 

climates. 
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