
 Available online at www.CivileJournal.org 

Civil Engineering Journal 

  Vol. 4, No. 7, July, 2018 

 

 

 

 

 
  

 

 

 
1629 

 

 

An Analytical Method for Crack Detection of Beams with 

Uncertain Boundary Conditions by a Concentrated Test Mass 
 

Seyed Milad Mohtasebi a, Naser Khaji b* 

a Faculty of Civil and Environmental Engineering, Tarbiat Modares university, Tehran, Iran. 

b Professor, Faculty of Civil and Environmental Engineering, Tarbiat Modares university, Tehran, Iran. 

Received 28 May 2018; Accepted 20 July 2018 

Abstract 

The aim of this study is to introduce a method for crack detection and simultaneously assessing boundary conditions in 

beams. This study suggests a method based on the effect of a concentrated test mass on the natural frequency that is defined 

as a stationary mass, which can be located in different positions of the beam and cannot be separated from the beam. 

Timoshenko beam theory is used to calculate the frequencies. In this method, a beam with the desired number of cracks is 

modeled. The beam is divided into separated parts at crack section, which are joined together by elastic weightless torsion 

springs, to avoid non-linearity effects; it is assumed that the crack is always open. At the first step, equations for a cracked 

beam are extracted by considering the spring boundary conditions. Then, to verify the equations, numerical finite element 

model is used. In this way, a new method is also applied to model the torsion springs in supports and it is shown that 

suggested model is acceptable. Eventually, the obtained responses are evaluated and the sources of errors are identified. 

To correct the existing errors, a modifying function is suggested. Finally, the inverse problem is solved. 
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1. Introduction 

Generally, to ensure lifetime safety of structures, their health should be monitored continuously to enable possible 

damages detection. Therefore, many studies have been conducted in damage detection so far [1]. Non-destructive testing 

methods are common in crack detection, but these methods are much expensive in comparison with computational 

methods. On the other hand, in computational methods (e.g., frequency based methods), experimental data collection 

from one point may be sufficient, and they have some advantages for components which are not fully accessible [2]. 

Since cracking effects on the dynamic properties of the structures, crack detection can be done with evaluation of these 

parameters. In this way, calculations are usually achieved using various numerical [3, 4] or analytical methods [2, 5].  

For both numerical and analytical methods, some remarkable parameters such as natural frequencies, coefficient of 

the stress intensity and mode shapes are studied [6-9]. In Ref. [6], location and depth of the crack are estimated from the 

intersection of the normalized natural frequency (as a function of location and depth of the crack) and an experimental 

response. In Ref. [7], by using the strain energy density function, the additional flexibility in vicinity of the crack is 

evaluated, so a new finite element matrix is used to achieve dynamic response when a harmonic force is applied on a 

cracked free-free beam. Andreaus and Baragatti [8] considered contact surfaces to model non-propagating cracks for 

analyzing nonlinear behavior of a cantilevered beam. In this procedure, a sensor and driving load are required for crack 
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detection. Totally, in numerical methods, more general conditions compared to analytical methods are considered. For 

instance in Ref. [9], the problem of Euler–Bernoulli cantilever beam theory is solved in a tapered beam which is 

constrained at one end by translational and rotational springs. 

Using of Artificial intelligence methods are common in damage detection. The advantages, limitations and research 

gaps in this field are discussed in Ref. [20], but solution strategy for crack identification would highly benefit from a 

closed form solution. Therefore, they provide a combination of a closed form solution for the static analysis of multi-

cracked beams and a new algorithm for the damage detection in beams. In fact, the availability of the closed form 

solution of the problem improves the performance of the algorithm. More importantly, it decreases noise induced by 

measurements errors and the accuracy of the results [21]. 

To solve this problem and to describe the dynamic behavior of damaged structures, different analytical methods are 

employed, where in most of them, boundary conditions are assumed as known parameters. In other words, to solve the 

problem, the supports were considered as a fixed or simple support. In many cases, the performance of the supports is 

unknown and are not in good agreement with the considered idealization in simple supported beam and clamped-

clamped beam [18]. However, it is not possible to find a precise solution for the problem without studying performance 

of the supports. Furthermore, in many studies, Euler–Bernoulli beam theory is used which ignores shear deformations. 

In 2002, Lele and Maiti [2] suggested a new method to solve the cracked beam problem by Timoshenko beam theory.    

In this new method, the Timoshenko equation for the cracked beam is expressed for a Cantilever beam with 8th-order 

determinant. Lin [13] studied this problem for a simple boundary condition and introduced the certain beam equation as 

a closed-form solution. Khaji et al. [14] suggested a new method for crack detection problem of Timoshenko beam with 

various boundary conditions, which is based on bending vibration measurements. They considered six different 

boundary conditions. In the present study, these equations are developed for the spring boundary conditions.   

In some research works, the effect of the desired number of cracks on the dynamic behavior of structure have been 

studied. Aydin [12] tried to calculate the frequencies and mode shapes of a Timoshenko beam by an analytical method 

that beam have certain numbers of cracks under axial load. In Ref. [22], a beam is modelled with an arbitrary number 

of cracks, and development of crack identification approach in uniform simply supported beams by using a concentrated 

test mass is presented. The calculation was based on changes in natural frequencies of the cracked beams due to the test 

mass. Test mass is defined as a stationary mass, which is located in different positions of the beam. In the present study, 

the proposed method is developed for a beam with uncertain boundary conditions. 

According to the presented literature review, crack detection of a beam element involves three different aspects: the 

first one is the effect of cracks, the second one may be considered as the effect of the boundary conditions, and the third 

is how to detect location and qualification of cracks when the boundary condition is uncertain. Therefore, in this study, 

all the aspects are applied to achieve the minimum error, for which all equations are derived from Timoshenko beam 

theory. For verifying the results, finite element model is used. For numerical simulation of torsional springs in supports, 

a new method is suggested. 

2. Theoretical Approach 

Equations of the vibrations for a single span beam of the length L, the cross-section area of A, and moment of inertia 

I, are as follows [15]. 
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Where ( , )y x t is a transverse deflection function of the beam and ( , )x t  is the slope of the deflection curve due to 

bending; E, G, and   indicate the Young’s modulus, the shear modulus, and the material mass density, respectively; 

k   is the shear coefficient that is introduced to account for the geometry- dependent distribution of the shear stress. The 

above-mentioned equations can be re-written as follows: 

(3) ( , ) ( )exp(j )y x t LU x t 

(4) )jexp()(),( txtx   
In which  and   shows natural frequencies. )(xU  and )(x  are normalized functions of ),( txy  and 1j 
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),( tx . Solving of these normalized functions are according to the following equations: 
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In the above-mentioned equations, A, B, C, and D are constant and the following variables are given by: 
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Figure 1. Timoshenko beam with single- sided open crack 

According to Figure 1, the beam is divided into n parts and the equations of each part are re-written separately, 

according to the following equations: 
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In the above-mentioned equations 𝑒𝑖 is equal to ∑
𝑙𝑖

𝐿
𝑖
1  . In addition, Ui and Ψi indicate the transverse deflection and the 

slope of ith segment. Moreover, Ai, Bi, Ci and Di are constant of the ith segment. 

The conditions for continuity of displacement, moment, and shear force at the crack location are written, respectively, 

in the following form: 
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The cracked section is modeled as a rotational spring to evaluate the effect of the cracks: 

(13) 
ii eiieii
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)(  

This equation depends on the extension of the crack and is calculated for a single-sided open crack as below [14]: 

(14)   2
6 ( )H f

JLi i i
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(15) 
a
i

i H
  

In the above-mentioned equations, 𝑎𝑖 and 𝐻 are the depth of each crack and the height of the beam, respectively. The 

function is obtained through the following equation: 

2 3 4 5 6( ) 0.6384 1.035 3.7201 5.1773 7.553 7.332 2.4909J i i i i i i if               
(16) 

It is worth mentioning, similar equations are proposed for a double-sided open crack.  

Left Boundary 
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Right Boundary 
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i
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Using equations 17 and 18, it is possible to re-write the constants of equations in (i+1)th part on the constants of 

equations in ith part of cracked beam: 
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Through a series of mathematical operations, a transformation matrix [Zi] is calculated [13] as: 
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 (19) 

2.1. A Precise Equation for Calculating the Natural Frequency 

Consider a beam with a spring boundary condition in both ends as shown in Figure 2. In this figure,
 

and   are 

left and right torsional stiffness coefficients of the beam, respectively. This paper studies a beam with uncertain boundary 

conditions. The equations are as follows (axial stiffness at supports is considered infinite): 
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Now, by considering the transformation matrix and equations 20 to 23, presented boundary conditions on both ends 

of the beam are re-written in the matrix form: 
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The coefficients of the nth part of the beam is calculated as the following: 
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Satisfying the four presented boundary conditions leads to a fourth order determinant. Finally, through the following 

equation, the problem is solved [13].   

(26) [ ]
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Det L
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 0 

The above-mentioned equation is called mother equation. All the parameters of the mother equation are defined as 

functions of vibration frequency, so vibration frequency can be calculated by solving equation 26. 

2.2. Approximate Relationship 

 A cracked simple beam with a test mass is shown in Figure 2. Frequency calculation can be done in a way that was 

first provided by the Rayleigh’s method. The basic concept of this method is based on the principle of energy 

conservation law (undamped mode). 

Figure 2. Timoshenko beam with one-sided open cracks and spring boundary condition on both sides with a central mass 

(test mass) 

Expression of the approximate is due to the fact that the natural frequency of the beam is calculated in the presence 

of the test mass by using mode shapes of cracked beam without the test mass (The mode shapes of the cracked beam 

with a test mass is considered to be the same as the cracked beam without the mass of the test mass). 

Rayleigh calculated the amount of frequency with equalizing the maximum amount of potential energy and the 

maximum amount of kinetic energy [16] as:  
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The energy generated by the concentrate test mass without considering rotational inertia is obtained from the 

following equation: 

Test mass (m) 
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Where m is mass of the test mass. If a torsion spring with stiffness of K is placed on the location 𝑙1 of a beam, the 

potential energy at the torsion spring is equal to:  
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By changing of variables (equations 3, 4) and normalizing functions and integrals and with considering the hypothesis 

of equality of kinetic and potential energies, the following equations may be considered [16]:  
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The investigation is in the case of undamped mode, and thus the following equation is obtained: 

(33) maxmax VT  
From Equations 31, 32 and 33, the vibration frequency of the beam in the presence of concentrated mass is equal to 

the following value: 
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It can be noted that in equation 34, numerator is K* for this mode shape, while denominator consists of two parts, M* 

(due to the mass of the beam) and m* (due to the mass of the test mass) for this mode shape. 
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Now, rewrite the following equation to simplify the equation 35. 
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Where 𝜔𝑤𝑚 is equal to the natural frequency of the beam without considering concentrating mass that can be calculated 

according to Equation 34. 

3. The Numerical Model 

For assessment and verification of the relationships, results from a finite element model are used to confirm the 

accuracy of the present forward solutions. The beams with a single-sided transverse cracks of various depths that are 

located at different locations and spring supports in both sides are studied.  

3.1. Cracked Beam Numerical Modeling 

The finite element method is employed as a laboratory sample and it should be emphasized that blind application of 

finite element models may result in considerable errors. So, very small meshes are used to match the numerical and 

experimental models. For this, the beam is modeled with 8-node isoparametric plane-stress elements and to consider the 



Civil Engineering Journal         Vol. 4, No. 7, July, 2018 

1635 

 

 

singularity of stress at the crack tip, this zone is modeled using an appropriate number of quarter-point singular elements 

[17].  

Figure 3. The method of modeling in Ansys software 

3.2. Simulation of Beam Boundary Conditions 

In supports, elastic conditions is considered. The transferring stiffness in the supports are infinite. As a result, for 

simplicity, a simply supported beam with torsion springs in both sides is assumed, as shown in Figure 4.  

 In 2D or 3D finite element model, torsional springs cannot be simulated directly. Therefore, a new method is 

suggested to model torsional springs and they are simulated by the special arrangement of longitudinal springs, as 

depicted in Figure 5. The stiffness of the longitudinal springs is calculated from the torsional stiffness of the torsional 

springs. In each support, the stiffness of longitudinal springs are equal. In these equations, it is assumed that the plane 

cross-sections remain plane, as shown in Figure 6. The following steps are presented to prove these assumptions: 

a) By consideration of the torsional stiffness in the analytical model, the stiffness of the longitudinal springs are 

calculated from equations 41 and 42 , ML,R is considered as the left and right sides torsional spring moment and 

other parameters are defined in Figure 4 to 6.  

b) In this step, according to the stiffness of longitudinal springs that are calculated in the previous step, finite element 

model should be created. 

c) According to deformations in the mode shapes of the finite element model, forces in longitudinal springs are 

calculated which produce a moment in each support. 

d) In this step, a linear function will be fitted to the deformations of each end side that this function has minimum 

standard deviation. 

e) Nodal displacements at the end sides of the beam are calculated by applying the rotations of previous step on each 

side, with the assumption that plane cross-sections remain plane.  

f) By using of statics relationships, moment in supports can be calculated. 

g) It is concluded from the equality of the moment obtained in steps (c) and (f), that the suggested simulation for 

torsional spring in supports is acceptable. 

 

Figure 4. The beam for the analytical model 

(40) 
R

R

R

M

K
 , L

L

L

M

K
  

(41) 2
K K l

R ri i
    ,   

1
... ...K K K rnr ri

     ,     

(42) 2
K K l

L li i
   ,   

1
... ...K K K

l li ln
     

K
L
 K

R
 



Civil Engineering Journal         Vol. 4, No. 7, July, 2018 

1636 

 

 

 

Figure 5. The numerical modeling of the cracked beam in the finite element software 

 

Figure 6. The assumed deformation in the Equations 40, 41 and 42 

The considered common geometric data are beam depth H=25 mm and beam thickness B=12.5 mm, the value of the 

Timoshenko shear coefficient, k  for the rectangular cross-section is taken as 5/6. 

Table 1. Evaluating the effect of the presented assumptions in the Equations 40 to 42 by considering the first mode shape of 

the numerical model (
𝑳

𝑯
= 𝟓, 𝜼 = 𝟎. 𝟓, 𝒆𝟏 = 𝟎. 𝟓,

𝒍𝒎

𝑳
= 𝟎. 𝟒,

𝒎

𝑴
= 𝟎. 𝟏) 

The obtained responses from the numerical model (step c) The obtained responses based on the mentioned assumptions (step d) 

𝒍𝒊 𝑈𝑥𝑖 𝐾𝑙𝑖  𝐹𝑙𝑖  𝑀𝑥𝑖 𝑙𝑖  𝑈𝑥𝑖 𝐾𝑙𝑖  𝐹𝑙𝑖  𝑀𝑥𝑖 

0.0125 2.19E-02 3970909091 86863636 1085795.45 0.0125 4.02E-02 3.971E+09 159476943 1993461.8 

0.0100 4.27E-02 3970909091 169545905 1695459.05 0.0100 3.21E-02 3.971E+09 127581555 1275815.5 

0.0075 2.99E-02 3970909091 118642822 889821.164 0.0075 2.41E-02 3.971E+09 95686166 717646.25 

0.0050 2.09E-02 3970909091 83178633 415893.164 0.0050 1.61E-02 3.971E+09 63790777 318953.89 

0.0025 3.11E-02 3970909091 123296727 308241.818 0.0025 8.03E-03 3.971E+09 31895389 79738.472 

-0.0025 -3.11E-02 3970909091 -123312611 308281.527 -0.0025 -8.03E-03 3.971E+09 -31895389 79738.472 

-0.0050 -2.09E-02 3970909091 -82976116 414880.582 -0.0050 -1.61E-02 3.971E+09 -63790777 318953.89 

-0.0075 -2.97E-02 3970909091 -118063069 885473.018 -0.0075 -2.41E-02 3.971E+09 -95686166 717646.25 

-0.0100 -4.25E-02 3970909091 -168640538 1686405.38 -0.0100 -3.21E-02 3.971E+09 -127581555 1275815.5 

-0.0125 -2.18E-02 3970909091 -86478458 1080980.73 -0.0125 -4.02E-02 3.971E+09 -159476943 1993461.8 

The total moment in the left support (N.m) 8771231.89 The total moment in the left support (N . m) 8771231.9 

Percentage of error 2.28944E-09 

The stated operation is done for three higher modes similar to those obtained in this mode, and the similar results are 

obtained. 

Table 2. Evaluating the effect of the presented assumptions in the Equations 40 to 42 by considering the second, third and 

fourth mode shapes of the numerical model (
𝑳

𝑯
= 𝟓, 𝜼 = 𝟎. 𝟓, 𝒆𝟏 = 𝟎. 𝟓,

𝒍𝒎

𝑳
= 𝟎. 𝟒,

𝒎

𝑴
= 𝟎. 𝟏)  

Mode No. unit 
results according to the 

numerical model (step3) 

Results according to the 

assumption (step6) 
Error (%) 

2 N.M 12419574 12419574 - 

3 N.M -16206561 -16206561 - 

4 N.M 16206561 16953935 - 

4. Study of Equations 

In this section, accuracy of previous parts are shown. Verification will be done by comparison between results of 

numerical and analytical methods. 
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4.1. Torsional Stiffness on Supports 

The accuracy of equation 39 should be evaluated by changing the stiffness of torsional springs in both sides. If the 

frequencies of analytical method were equal to the frequencies of numerical, the suggested method is correct.  

Table 3. Comparison between first, second and third frequency of the analytical and numerical model by changing in 

stiffness of torsional springs in supports (
𝑳

𝑯
= 𝟓, 𝜼 = 𝟎. 𝟓, 𝒆𝟏 = 𝟎. 𝟓,

𝒎

𝑴
= 𝟎. 𝟏,

𝒍𝒎

𝑳
= 𝟎. 𝟒) 

No. 𝒌𝑳/(
𝑬𝑰

𝑳
) 𝒌𝑹/(

𝑬𝑰

𝑳
) 

FEM TBM Error (%) 

F1 F2 F3 F1 F2 F3 F1 F2 F3 

1 100 100 4901 14046 21172 4772 13191 19304 -2.628 -6.093 -8.823 

2 25 25 4591 13635 21002 4496 12789 19175 -2.063 -6.202 -8.699 

3 10 10 4191 13173 20761 4110 12389 19027 -1.940 -5.953 -8.352 

5 2 2 3246 12282 19591 3211 11874 18648 -1.071 -3.325 -4.814 

7 0.5 0.5 2679 11863 19261 2678 11739 19568 -0.034 -1.044 1.594 

8 0 0 2379 11672 19116 2390 11676 19358 0.448 0.032 1.263 

9 100 0 3729 12608 20238 3590 11840 18541 -3.712 -6.091 -8.384 

10 25 0 3566 12453 20000 3441 11685 18378 -3.485 -6.171 -8.108 

11 10 0 3351 12275 19762 3245 11548 18355 -3.152 -5.924 -7.121 

12 5 0 3134 12114 19570 3048 11486 18606 -2.735 -5.186 -4.927 

13 1 0 2654 11816 19253 2628 11581 19514 -0.980 -1.985 1.355 

Table 4. Comparison between first, second and third frequency of the analytical and numerical model by changing in 

location and characteristics of cracks (
𝑳

𝑯
= 𝟓,

𝒎

𝑴
= 𝟎. 𝟏,

𝒍𝒎

𝑳
= 𝟎. 𝟒) 

No. 

𝑲𝑳

(
𝑬𝑰
𝑳

)
 

𝑲𝑹

(
𝑬𝑰
𝑳

)
 number 

of cracks 

First 

crack 

Second 

crack 

Third 

crack 
FEM TBM Error (%) 

𝒆𝟏 ƞ𝟏 𝒆𝟐 ƞ𝟐 𝒆𝟑 ƞ𝟑 F1 F2 F3 F1 F2 F3 F1 F2 F3 

1 100 100 1 0.5 0.5 * * * * 4901 14046 21172 4772 13191 19304 2.6 6.1 8.8 

2 100 0 1 0.5 0.5 * * * * 3729 12608 20238 3590 11840 18541 3.7 6.1 8.4 

3 5 5 1 0.5 0.5 * * * * 3792 12766 19261 3728 12105 18773 1.7 5.2 2.5 

4 100 100 2 0.2 0.3 0.5 0.5 * * 4802 13295 20169 5011 12922 20377 -4.3 2.8 -1.0 

5 100 0 2 0.2 0.3 0.5 0.5 * * 3589 12207 18787 3638 11927 18505 -1.4 2.3 1.5 

6 5 5 2 0.2 0.3 0.5 0.5 * * 3779 11743 18762 3808 11574 18919 -0.8 1.4 -0.8 

7 100 100 3 0.2 0.3 0.5 0.5 0.7 0.3 4802 13061 18244 5055 12868 18462 -5.3 1.5 -1.2 

8 100 0 3 0.2 0.3 0.5 0.5 0.7 0.3 3585 10761 17281 3726 10215 17256 -3.9 5.1 0.1 

9 5 5 3 0.2 0.3 0.5 0.5 0.7 0.3 3830 11185 16732 3974 11094 17497 -3.7 0.8 -4.6 

It is shown in Table 3 and 4, by increasing in the number of cracks or torsional stiffness in two supports, the accuracy 

of the frequencies is reduced when errors are acceptable. 

4.2. Changing Values of Test Mass and Accuracy of Method 

Since the effect of the test mass is considered in Equation 43, this parameter is examined by the following formulation. 

(43) 
*

2

*
( ) 1wmm

Ef
M




    

Table 5. Comparison of the effect of concentrating mass on the frequencies produced by the Timoshenko beam theory with 

finite element models for different values and positions of mass test 

 (
𝑳

𝑯
= 𝟏𝟎, 𝑲𝑳 = 𝑲𝑹 = 𝟏𝟎𝟎

𝑬𝑰

𝑳
, 𝒆𝟏 = 𝟎. 𝟑𝟓, 𝒆𝟐 = 𝟎. 𝟓, 𝒆𝟑 = 𝟎. 𝟔𝟓, 𝜼𝟏 = 𝜼𝟑 = 𝟎. 𝟑𝟓, 𝜼𝟐 = 𝟎. 𝟓) 

N
o

. 𝒍𝒎

𝑳
 𝒎𝒑 

FEM TBM Error (%) 

𝑬𝒇𝟏 𝑬𝒇𝟐 𝑬𝒇𝟑 𝑬𝒇𝟏 𝑬𝒇𝟐 𝑬𝒇𝟑 𝑬𝒇𝟏 𝑬𝒇𝟐 𝑬𝒇𝟑 

1 0.1 1 0.05 0.27 3.01 0.01 0.03 3.51 -75.01 -90.18 16.73 

2 0.1 2 0.10 0.55 1.36 0.02 0.05 4.02 -73.76 -90.28 194.60 

3 0.1 5 0.24 1.42 3.64 0.04 0.13 5.52 -82.03 -90.57 51.98 
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4 0.1 10 0.48 2.98 8.05 0.12 0.27 8.04 -74.07 -91.02 -0.14 

5 0.2 1 0.38 1.38 1.85 0.26 0.20 1.12 -31.31 -85.65 -39.30 

6 0.2 2 0.77 2.81 2.97 0.52 0.40 2.25 -31.53 -85.86 -24.21 

7 0.2 5 1.93 7.16 8.99 1.31 0.99 5.62 -32.12 -86.13 -37.41 

8 0.2 10 3.93 14.81 16.97 2.62 1.99 11.25 -33.29 -86.59 -33.74 

9 0.45 1 2.46 0.30 1.37 1.26 0.07 4.16 -48.68 -75.86 202.56 

10 0.45 2 4.93 0.59 2.71 2.52 0.14 5.30 -48.85 -75.46 95.92 

11 0.45 5 12.40 1.41 6.48 6.31 0.36 8.74 -49.09 -74.37 34.98 

12 0.45 10 24.94 2.61 12.04 12.62 0.72 14.48 -49.40 -72.27 20.25 

Where 𝑚𝑝 is the percentage of mass ratio. 

The obtained parameter from equation 43 that shows the effect of the test mass, has high amount of errors, so it is 

necessary to modify these amount for solving the inverse problem. 

4.3. Effect of Different Length to Height Ratio 

In this section, the responses are evaluated with significant changes in the ratio of length to height. Additionally, in 

the Table 6, the obtained responses from the mother equation and in Table 7, the responses from equation 39 are 

examined. 

Table 6. Comparison between the natural frequencies of the analytical models and finite element models for different ratios 

of length to height, according to the mother equation (𝑲𝑳 = 𝑲𝑹 = 𝟐. 𝟕𝟑 × 𝟏𝟎𝟔, 𝒆𝟏 = 𝟎. 𝟓, 𝜼 = 𝟎. 𝟓) 

𝑳

𝑯
 

FEM TBM Error (%) 

F1 F2 F3 F1 F2 F3 F1 F2 F3 

20 459.4 1335.7 2364.7 477.1 1423.1 2464.2 -3.85 -6.54 -4.21 

16 718.45 2094 3608 729.4 2195.9 3715.4 -1.52 -4.87 -2.98 

12 1222 3533 5928.7 1254.4 3808.9 6226.6 -2.65 -7.81 -5.03 

8 2494.6 7151.8 11394 2666.0 8071.0 12463.8 -6.87 -12.85 -9.39 

7 3153.3 8851.9 13856.1 3408.38 10244.3 15492.7 -8.09 -15.73 -11.81 

6 4118.7 11350.4 16746.4 4518.8 13400.0 19751.0 -9.72 -18.06 -17.94 

5 5388 14598.2 20026.5 6296.1 18224.5 25962.2 -16.85 -24.84 -29.64 

4 6807.1 17946.2 26856.1 9432.1 26130.6 35251.2 -38.56 -45.61 -31.26 

According to Table 6, it is concluded that obtaining responses in cases where the length to height ratio is less than 

12, is faced to many difficulties. Thus in the next step, only beams with more than 12 of this ratio will be considered. In 

Table 7, the evaluation of the equation (39) is presented. 

Table 7. Comparison of the natural frequencies of the analytical models of the Timoshenko with finite element models for 

different lengths to heights and constant mass ratios (𝑲𝑳 = 𝑲𝑹 = 𝟐. 𝟕𝟑 × 𝟏𝟎𝟔, 𝒆𝟏 = 𝟎. 𝟓, 𝜼𝟏 = 𝟎. 𝟓, 𝒎 = 𝟑𝟎. 𝟕 𝒈𝒓,
𝒍𝒎

𝑳
= 𝟎. 𝟐)  

𝑳

𝑯
 

FEM TBM Error (%) 

F1 F2 F3 F1 F2 F3 F1 F2 F3 

20 467.3 1340.6 2354.5 467.5 1360.8 2283.7 -0.05 -1.51 3.01 

16 710.6 2006.1 3602.0 710.2 2082.1 3589.5 0.06 -3.79 0.35 

12 1211.9 3416.7 5708.7 1204.1 3504.4 5911.7 0.64 -2.57 -3.56 

8 2940.7 6787.0 10794.2 2875.5 7048.8 10706.8 2.22 -3.86 0.81 

5. Identify Sources of Errors 

As one of the main parts of the inverse solution is the use of equation 39 and according to Table 5, it is needed to 

modify the effect of the test mass. To find the proper parameters for the modification function, the sources of errors 

should be determined, as given below:  

a) The accuracy of the responses is reduced by increasing the mass of concentrated test mass, it is shown in Figure 7. 

b) According to Section 3, to model torsional springs in supports, a new method is suggested. Although moment 

absorption of the suggested numerical model and the analytical model are the same, but longitudinal deformation of 

nodes in supports are different as shown in Figure 8. This is because the discrepancy of natural frequencies of these 

two models can be vary slightly. In other words, in analytical models it is assumed that the plane cross-sections 

remain plane but it is not according to the suggested numerical model. 
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Figure 8. Items show the difference between the deformations of the supports, from fitted function (step d of section 3.2) and 

the numerical model. The deflections are in the direction of longitudinal springs- ( 0.0125iL l
i
  ). 

These graphs are plotted according to the characteristics of the beam in Table 1, while linear deformation is based on 

analytical model. The comparison in Figure 8 is based on the mode shapes of the numerical model. 

c) Other source of the error is corresponding to the torsional spring that is employed in crack location to show the effect 

of cracks. It is located in middle of the beam cross-section but it is clearly not true. This amount is significantly less 

than the other errors, and it is negligible. 

 
Figure 9. The error in a direct solution, which only the depth of the crack is changed (frequency of the first mode) 

(
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𝒍𝒎

𝑳
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Figure 7. An error in the direct solving of a beam in which the test mass only changes 
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Now, in regards to the issues raised in the next section, we consider the functional definition for the correction of the 

values of the responses obtained in relation to Equation 39. 

6. Modification Function 

Decision of this section is to find a function that matches the values of numerical and analytical solution. For this 

purpose, the point-to-point correction coefficient is defined as follows: 

*
2 2

* * wm

M

M ce m
 

 
 (44) 

Where ce  is the correction factor for solving the problem that is applied to term of test mass, because solution procedure 

is based on frequency changes due to the concentrated test mass. Now, to find a relation for this correction parameter 

Equation 45 is presented which is a function of numerical and analytical frequencies. 

(45) 
1

1

2

2

2

2







analytical

wm

numerical

wm

ce









 

In general, the effect of test mass is a function of location and amount of itself. Thus, the modification function can 

be defined by these two parameters and if the location of test mass be fixed, according to Figure 10 to 12 the first or 

second order function of this mass ratio can be fitted with the point-to-point correction coefficient (ce ), this function is 

named FP. 

 

Figure 10. Comparison between linear and the second order correction function  
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𝒍𝒎
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Figure 11. Comparison between linear and the second order correction function 

(
𝑳
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= 𝟐𝟎, 𝑲𝑳 = 𝑲𝑹 = 𝟐𝟓 (

𝑬𝑰

𝑳
) , 𝒆𝟏 = 𝟎. 𝟑𝟓, 𝜼𝟏 = 𝟎. 𝟓,

𝒍𝒎

𝑳
= 𝟎. 𝟐) 

 

Figure 12. Comparison between linear and the second order correction function 

(
𝑳

𝑯
= 𝟖, 𝑲𝑳 = 𝑲𝑹 = 𝟏𝟎𝟎, 𝒆𝟏 = 𝟎. 𝟐, 𝒆𝟐 = 𝟎. 𝟓, 𝜼𝟏,𝟐 = 𝟎. 𝟓,

𝒍𝒎

𝑳
= 𝟎. 𝟑𝟕𝟓) 

Considering Figure 10 to 12 both of linear and second order correction function (Poly) is acceptable for this problem 

so correction function is suggested in Equations 46 and 47  where 
i  is unknown and should be calculated in solving 

procedure of inverse solution. This Function is introduced for a test mass that is in a fixed location and the only variable 

is amount of the test mass. So new correction function should be calculated for different position of the test mass. 

(46) 
2 2

( )
i wm i

i i

M
EQ

M FP mp m
  

 
 

(47) 2

1 2 3( ) ...i i iFP mp mp mp       
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7. Solving Inverse Problem 

In this section, an algorithm is presented to solve the problem which is used in Equations 26 and 46. 

Figure 13. Algorithm of a subroutine that is used in inverse solution algorithm to solve the equation (Figure 14), this is 

named A + algorithm 

Table 8. Inverse solving for a beam with a crack, based on the algorithm that is shown in Figure 14 

(
,L RK is based on the EI

L

 coefficients.) 

 

 

 

 

 Table 9. The results of the inverse solving of the beam with two cracks according to the algorithm described in Figure 14 

The values obtained from the inverse solution Values Considered in Numerical Models 𝑳

𝑯
 N

o
. 

𝒆𝟏 ƞ 𝑲𝑳 𝑲𝑹 𝒆𝟏 ƞ 𝑲𝑳 𝑲𝑹 

0.75 0.4 0 31.3 0.75 0.4 0 30 12 1 

The obtained  values  from the inverse solution Considered  values  in Numerical Models 𝑳

𝑯
 No. 

𝒆𝟐 ƞ𝟐 𝒆𝟏 ƞ𝟏 𝑲𝑳 𝑲𝑹 𝒆𝟐 ƞ𝟐 𝒆𝟏 ƞ𝟏 𝑲𝑳 𝑲𝑹 

0.320 0.525 0.201 0.510 0.023 111.0 0.5 0.5 0.2 0.5 0 100 8 1 

0.248 0.670 0.500 0.390 9.520 9.940 0.75 0.7 0.5 0.4 10 10 16 2 
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Figure 14. The inverse solution algorithm 

1) Regarding the process of variation in Equation 26, variety of frequency by changing in support torsional stiffness 

is much higher than the other parameter. Therefore, it is possible to guess the support torsional stiffness in the 

beginning of solving procedure (guess without consideration to cracks). 

2) It is possible to guess crack modification function with a reasonable approximation without considering cracks. 

3) Given the fact that the parameters of the crack are changed in a certain range, the initial quantity and the range of 

crack depth should be determined in the algorithm of inverse solving. 

According to the above algorithms, the inverse solution is performed and the answers are obtained. 
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Table 10. The results of inverse solving of the beam with three cracks according to the algorithm shown in Figure 14 

 (
,L RK is based on the EI

L

 coefficients.) 

 

 

 

 

 

 

 

 

 

8. Conclusion 

In this study, the aim is to reduce the cost of health monitoring of beams, for which the analytical method is used. This 

procedure contains five main stages. In the first step, equation of cracked beam with one sided open crack and uncertain 

boundary conditions are presented. In the next stage, a new numerical model is suggested to simulate cracked beam with 
2D torsional springs. In the following step, the acceptable performance of the new model is shown. The comparison 

between responses of numerical and analytical model is performed, and source of errors is identified to solve the inverse 

problem. A modification coefficient is suggested which is a function of amount and location of the test mass. In the last 

part, an algorithm for inverse problem is proposed. It is very encouraging that the obtained results of the inverse 

algorithm are very close to those obtained from the numerical model, when all three aspects of crack detection in a beam 

is considered. 
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