brought to you by 🗴 CORE

47

東北薬科大学研究誌, **57**, 47-50 (2010) Journal of Tohoku Pharmaceutical University, **57**, 47-50 (2010)

ムラサキハシドイの葉のセコイリドイド配糖体の構造並びに ヒトがん細胞株に対する増殖阻害活性について

八百板康範, 菊地 正史, 菊地 正雄

Secoiridoid Glycosides from the Leaves of *Syringa vulgaris* and Their Growth Inhibitory Activity against Human Cancer Cell Lines

Yasunori YAOITA, Masafumi KIKUCHI, and Masao KIKUCHI

(Received November 20, 2010)

Two secoiridoid glycosides were isolated from the leaves of *Syringa vulgaris* L. (Oleaceae) and identified as hydroxyframoside A (1) and neooleuropein (2). Their structures were determined on the basis of spectral data. Compound 1 has been isolated from the leaves of *S. vulgaris* for the first time. The growth inhibitory activity of compounds 1 and 2 against 39 human cancer cell lines was evaluated.

Key words — Syringa vulgaris; Oleaceae; secoiridoid glycoside; human cancer cell lines; growth inhibitory activity

先に著者らは、モクセイ科(Oleaceae)植物の 化学成分研究の一環としてムラサキハシドイ Syringa vulgaris L. の葉について検討を行い、セコ イリドイド配糖体¹²⁾及びフェニルエタノイド配糖 体³⁴⁾を単離し、それらの化学構造について報告し た、今回、更に成分検索を行ったところ、2種のセ コイリドイド配糖体(化合物1及び2)を単離す ることができたので、それらの化学構造について 報告する.また、これらの化学構造について 報告する.また、これらの化合物について、39種 のヒトがん細胞株パネルを用いた細胞増殖阻害活 性についても検討したので併せて報告する.

化合物 1 は、高分解能 (HR)-FAB-MS より C₃₂H₃₈O₁₄ の分子式を有することが判明した.¹H-NMR スペク トルにおいては、二重結合に直結したメチル基 [$\delta_{\rm H}$ 1.65 (3H, dd, J=7.0, 1.5 Hz, H₃-10)], 糖のアノメリッ クプロトン [$\delta_{\rm H}$ 4.79 (1H, d, J=7.7 Hz, H-1')], アセ タールプロトン [$\delta_{\rm H}$ 5.89 (1H, s, H-1)], 三置換二 重結合 [$\delta_{\rm H}$ 6.07 (1H, q, J=7.0 Hz, H-8), 7.46 (1H, s, H-3)], 3,4-二置換フェニル基 [$\delta_{\rm H}$ 6.54 (1H, dd, J=8.1, 2.2 Hz, H-6"), 6.66 (1H, d, J=2.2 Hz, H-2"), 6.69 (1H, d, J=8.1 Hz, H-5")] 及びp-置換フェニ ル基 [$\delta_{\rm H}$ 6.70 (2H, d, J=8.8 Hz, H-2", H-6""), 7.06 (2H, d, J=8.4 Hz, H-3", H-5")] に基づくシグナル が認められた.¹³C-NMR スペクトルにおいては β glucopyranose [$\delta_{\rm C}$ 62.8 (C-6'), 71.5 (C-4'), 74.8 (C-2'), 78.0 (C-5'), 78.5 (C-3'), 100.9 (C-1')] ⁵⁾ の 存在が明らかとなった.更に,各種2次元NMR スペクトルを検討することにより本化合物は hydroxyframoside Aと推定されたので,文献値⁶⁾ (¹H-及び¹³C-NMRスペクトル)との比較により同 定した.本化合物は既にモクセイ科の植物である マンナノキ(*Fraxinus ornus*)の樹皮から報告され ているが,⁶⁾ムラサキハシドイより単離されたの は今回が初めてである.

化合物**2**は標品との直接比較(¹H-及び¹³C-NMR スペクトル)により,既に本植物より報告されて いる¹⁾ neooleuropein と同定した.

先に著者らは、ムラサキハシドイより得られた

Type of cancer	Cell line	Compound/GI ₅₀ $(\mu M)^{a}$	
		1	2
Breast	HBC-4	>100	42
	BSY-1	> 100	34
	HBC-5	> 100	26
	MCF-7	71	29
	MDA-MB-231	> 100	51
Central nervous system (brain)	U251	> 100	> 100
	SF-268	> 100	41
	SF-295	> 100	82
	SF-539	> 100	28
	SNB-75	> 100	49
	SNB-78	> 100	90
Colon	HCC2998	> 100	> 100
	KM-12	> 100	> 100
	HT-29	>100	> 100
	HCT-15	>100	68
	HCT-116	>100	22
Lung	NCI-H23	> 100	> 100
	NCI-H226	>100	68
	NCI-H522	34	33
	NCI-H460	> 100	> 100
	A549	> 100	> 100
	DMS273	> 100	21
	DMS114	74	32
Melanoma	LOX-IMVI	99	27
Ovary	OVCAR-3	> 100	28
	OVCAR-4	88	19
	OVCAR-5	> 100	18
	OVCAR-8	> 100	> 100
	SK-OV-3	> 100	>100
Kidney	RXF-631L	> 100	> 100
	ACHN	> 100	> 100
Stomach	St-4	> 100	44
	MKN1	> 100	20
	MKN7	> 100	30
	MKN28	> 100	26
	MKN45	> 100	41
	MKN74	> 100	25
Prostate	DU-145	> 100	>100
	PC-3	> 100	>100
Mean value of GI_{50} over all cell lines tested		96	49

Table 1. Growth Inhibition of Compounds 1 and 2 against a Panel of 39 Human Cancer Cell Lines

^{a)} Concentration of compound for inhibition of cell growth at 50% relative to control.

セコイリドイド配糖体,フェニルエタノイド配糖 体並びに酵素加水分解によって得られたそれらの 非糖部について,39種(乳がん5系,脳腫瘍6系, 大腸がん5系,肺がん7系,メラノーマ1系,卵 巣がん5系,腎がん2系,胃がん6系及び前立腺 がん2系)のヒトがん細胞株パネルを用いた細胞 増殖阻害活性⁷⁾について検討を行った.その結果, 配糖体に比べて非糖部に強い活性が認められたこ とを報告した.⁸⁻¹⁰⁾今回,化合物1及び2につい て同様の活性試験を行った.検定した全ての細胞 株について control と比較して増殖を 50% 抑制す

る濃度(GI₅₀)を求め,更に,それらの平均値を求 めたところ,化合物 1 は 96 μ M であり,活性は認 められなかった.一方,化合物 2 は 49 μ M であり, 弱いながら活性が認められた(Table 1).

実験の部

旋光度は日本分光 DIP-360 型を用いて測定した. UV スペクトルは Beckman DU-64 型を用いて測定した. HR-FAB-MS は日本電子 JMS-700 型を用いて測 定した. NMR スペクトルは日本電子 JNM-LA 600 型を使用し、内部標準物質に tetramethylsilane (TMS)を用いて測定した(略語:s=singlet, d= doublet, dd=double doublet, q=quartet, m= multiplet). 化学シフトは δ 値(ppm)で示し, 結 合定数(J) は Hz で表した.シリカゲルカラムクロ マトグラフィーには充填剤として Kieselgel 60 (Merck, 230-400 mesh)を使用した.分取 HPLC には、東ソー製装置[ポンプ, CCPS; 検出器, UV-8011 (検出波長: 220 nm); カラム恒温槽, CO-8020] を使用した.

抽出及び分離 2008年5月に, 宮城県仙台市に おいて採集したムラサキハシドイの葉(0.9 kg)を MeOH で抽出し, MeOH エキス (80.0 g) を得た. これを水に懸濁し, AcOEt 及び n-BuOH で順次分 配, AcOEt 可溶部 (8.1 g) 及び n-BuOH 可溶部 (25.6 g) を得た.次に,AcOEt エキスをシリカゲ ルカラムクロマトグラフィー [CHCl₃-MeOH (4: 1), CHCl₃-MeOH-H₂O (30:10:1)] に付して分 画を行い, fr.1-30を得た. このうちの fr.14を分 取HPLC [column, Cosmosil 5C18AR (Nacalai Tesque, 10 mm i.d. \times 25 cm); column temperature, 40° C; mobile phase, MeOH – H₂O (1 : 1); flow rate, 1.0 ml/min] に付し, 化合物1 (6.0 mg) を単 離した.更に, n-BuOH エキスをシリカゲルカラム クロマトグラフィー [CHCl₃-MeOH-H₂O (30: 10:1)]に付して分画を行い, fr.1-40を得た. こ のうちの fr. 8 を分取 HPLC [column, Cosmosil 5C18AR (Nacalai Tesque, 10 mm i.d. \times 25 cm); column temperature, 40°C; mobile phase, MeOH-H₂O (1:1); flow rate, 1.0 ml/min] に付 し, 化合物 2 (50.0 mg) を単離した.

Hydroxyframoside A (1) 無晶形粉末. $[a]_D^{24}$ -118.1° (*c* = 0.2, MeOH). UV λ_{max} (MeOH) nm (log ε): 202 (4.6), 225 (4.4), 279 (3.7). HR-FAB-MS *m/z* 647.2334 [M + H]⁺ (Calcd for C₃₂H₃₉O₁₄: 647.2340). ¹H-NMR (600 MHz, CD₃OD) δ : 1.65 (3H, dd, *J*=7.0, 1.5 Hz, H-10), 2.37 (1H, dd, *J*=14.3, 9.5 Hz, H-6a), 2.63 (1H, dd, *J*=14.3, 4.4 Hz, H-6b), 2.76 (1H, dd, *J*=7.0, 7.0 Hz, H-7^{*m*}), 2.86 (1H, dd, *J*= 6.6, 6.6 Hz, H-7^{*m*}), 3.67 (1H, dd, *J*=12.1, 5.5 Hz, H-6'a), 3.88 (1H, dd, *J*=12.1, 1.8 Hz, H-6'b), 3.93 (1H, dd, *J*=9.5, 4.4 Hz, H-5), 4.09 (1H, m, H-8^{*m*}a), 4.20 (1H, m, H-8^{*m*}b), 4.28 (2H, m, H-8^{*m*}), 4.79 (1H, d, *J*= 7.7 Hz, H-1'), 5.89 (1H, s, H-1), 6.07 (1H, q, *J*=7.0 Hz, H-8), 6.54 (1H, dd, *J*=8.1, 2.2 Hz, H-6^{*m*}), 6.66 (1H, d, J=2.2 Hz, H-2"), 6.69 (1H, d, J=8.1 Hz, H-5"), 6.70 (2H, d, J=8.8 Hz, H-2", H-6"), 7.06 (2H, d, J=8.4 Hz, H-3", H-5"), 7.46 (1H, s, H-3). ¹³C-NMR (150 MHz, CD₃OD) δ : 13.6 (C-10), 31.8 (C-5), 35.3 (C-7"), 35.5 (C-7"), 41.2 (C-6), 62.8 (C-6'), 66.4 (C-8"), 66.9 (C-8"), 71.5 (C-4'), 74.8 (C-2'), 78.0 (C-5'), 78.5 (C-3'), 95.2 (C-1), 100.9 (C-1'), 109.6 (C-4), 116.3 (C-3", C-5"'), 116.5 (C-5"), 117.1 (C-2"), 121.4 (C-6"), 124.9 (C-8), 130.3 (C-9), 130.5 (C-1"'), 130.8 (C-1"), 131.0 (C-2", C-6"'), 145.0 (C-4"), 146.3 (C-3"), 155.2 (C-3), 157.1 (C-4"'), 168.2 (C-11), 173.2 (C-7).

Neooleuropein (2) 無晶形粉末.¹H-NMR (600 MHz, CD₃OD) δ : 1.64 (3H, dd, J=7.0, 1.5 Hz, H-10), 2.38 (1H, dd, J=14.3, 9.5 Hz, H-6a), 2.64 (1H, dd, J=14.3, 4.4 Hz, H-6b), 2.76 (1H, dd, J=7.0, 7.0 Hz, H-7^{""}), 2.80 (1H, dd, J = 6.6, 6.6 Hz, H-7"), 3.67 (1H, dd, J=12.1, 5.5 Hz, H-6'a), 3.88 (1H, dd, J=12.1, J=12.1)1.8 Hz, H-6'b), 3.93 (1H, dd, J=9.5, 4.4 Hz, H-5), 4.09 (1H, m, H-8"a), 4.20 (1H, m, H-8"b), 4.27 (2H, m, H-8'''), 4.80 (1H, d, J = 7.7 Hz, H-1'), 5.89 (1H, d, J = 1.1Hz, H-1), 6.06 (1H, q, J=7.0 Hz, H-8), 6.54, 6.55 (each 1H, dd, J=8.1, 1.8 Hz, H-6", H-6""), 6.66 (2H, d, J = 1.8 Hz, H-2", H-2"), 6.68, 6.69 (each 1H, d, J =8.1 Hz, H-5", H-5"'), 7.47 (1H, s, H-3). ¹³C-NMR (150 MHz, CD₃OD) δ : 13.6 (C-10), 31.8 (C-5), 35.4 (C-7""), 35.5 (C-7"), 41.2 (C-6), 62.8 (C-6'), 66.4 (C-8""), 66.9 (C-8"), 71.5 (C-4'), 74.8 (C-2'), 78.0 (C-5'), 78.4 (C-3'), 95.2 (C-1), 100.9 (C-1'), 109.6 (C-4), 116.3, 116.5 (C-2", C-2"), 117.0, 117.1 (C-5", C-5"), 121.3, 121.4 (C-6", C-6"'), 124.9 (C-8), 130.3 (C-9), 130.8 (C-1"), 131.0 (C-1""), 144.9, 145.0 (C-4", C-4""), 146.3 (C-3", C-3"), 155.2 (C-3), 168.2 (C-7), 173.3 (C-11).

39種のヒトがん細胞株パネルによるスクリーニ ング評価 39種のヒトがん細胞株パネルによるス クリーニング評価は文部科学省がん特定・統合が ん「化学療法基盤情報支援班」により行われた.⁷⁷ スクリーニングパネルは以下に示す 39種のヒトが ん細胞株より構成されている:乳がん5系(HBC-4, BSY-1, HBC-5, MCF-7, MDA-MB-231), 脳腫瘍6 系(U251, SF-268, SF-295, SF-539, SNB-75, SNB-78), 大腸がん5系(HCC2998, KM-12, HT-29, HCT-15, HCT-116), 肺がん7系(NCI-H23, NCI-H226, NCI-H522, NCI-H460, A549, DMS273, DMS114), メラ ノーマ1系(LOX-IMVI), 卵巣がん5系(OVCAR-3, OVCAR-4, OVCAR-5, OVCAR-8, SK-OV-3), 腎 がん2系 (RXF-631L, ACHN), 胃がん6系 (St-4, MKN1, MKN7, MKN28, MKN45, MKN74), 前立腺 がん2系 (DU-145, PC-3). これらのがん細胞を96 ウェルプレートに播き込み, 翌日検体溶液を添加 し, 2日間培養後, 細胞増殖をスルホローダミンB による比色定量により測定する.

謝辞 本研究にあたり,ヒトがん細胞株パネ ルによるスクリーニング評価を行っていただきま した文部科学省がん特定・統合がん「化学療法基 盤情報支援班」の矢守隆夫先生に深謝致します.

REFERENCES

- Kikuchi M., Yamauchi Y., Yanase C., Nagaoka I., *Yakugaku Zasshi*, **107**, 245 – 248 (1987).
- Kikuchi M., Yamauchi Y., Takahashi Y., Nagaoka I., Sugiyama M., Yakugaku Zasshi, 108, 355 – 360 (1988).
- 3) Kikuchi M., Yamauchi Y., Sugiyama M., Tohoku

Yakka Daigaku Kenkyu Nempo, 35, 113-118 (1988).

- 4) Kikuchi M., Yamauchi Y., Takahashi Y., Sugiyama M., *Yakugaku Zasshi*, **109**, 366 – 371 (1989).
- 5) Pretsch E., Bühlmann P., Affolter C., "Structure Determination of Organic Compounds," Springer-Verlag Berlin Heidelberg, 2000, pp. 152-153.
- 6) Iossifova T., Vogler B., Kostova I., *Phytochemistry*,
 49, 1329-1332 (1998).
- 7) Yamori T., Matsunaga A., Sato S., Yamazaki K., Komi A., Ishizu K., Mita I., Edatsugi H., Matsuba Y., Takezawa K., Nakanishi O., Kohno H., Nakajima Y., Komatsu H., Andoh T., Tsuruo T., *Cancer Res.*, **59**, 4042-4049 (1999).
- Kikuchi Masaf., Yaoita Y., Mano N., Kikuchi Masao, Shoyakugaku Zasshi, 64, 104 – 105 (2010).
- 9) Kikuchi Masaf., Mano N., Uehara Y., Machida K., Kikuchi Masao, J. Nat. Med., 65, 237 – 240 (2011).
- Kikuchi Masaf., Yaoita Y., Mano N., Kikuchi Masao, Chem. Biodiversity, "in press."