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ON THE HALL-JANKO GRAPH WITH 100 VERTICES
AND THE NEAR-OCTAGON OF ORDER (2, 4)

AN DE WISPELAERE AND HENDRIK VAN MALDEGHEM

Abstract. In this paper, we construct the Hall-Janko graph within
the split Cayley hexagon H(4). Using this graph we then construct the
near-octagon of order (2, 4) as a subgeometry of the dual of H(4), with
J2 : 2 as its automorphism group. These constructions are based on a
lemma determining the possibilities for the structure of the intersection
of two subhexagons of order 2 in H(4).

1. Introduction

The sporadic simple Hall-Janko group J2 is known to be the automor-
phism group of the Hall-Janko graph HJ(100), which is a strongly regular
graph on 100 vertices and valency 36, acting rank 3 with subdegrees 36 and
63. Also, it is known that J2 acts on a near-octagon NO(2, 4) of order (2, 4).
Moreover, the full automorphism group J2 : 2 of J2 is a maximal subgroup
of the Chevalley group G2(4). The latter acts naturally on a generalized
hexagon of order 4, the split Cayley hexagon H(4). Moreover, there exists
a construction of the Hall-Janko graph using the split Cayley hexagon H(2)
of order 2, which is also a subgeometry of both H(4) and NO(2, 4). This
construction, however, is not homogeneous, in the sense that one vertex
plays a special role in the construction and so it is not apparent that the
thus constructed graph has even a transitive automorphism group. In the
present paper, we explain these seemingly random coincidences by exhibit-
ing the dual of NO(2, 4) inside H(4), as a subgeometry, and with stabilizer
J2 : 2. Our construction will immediately imply that NO(2, 4) contains 100
subhexagons isomorphic to the dual of H(2), which form the vertex set of
HJ(100). Adjacency will be given by intersecting in a subhexagon of order
(2, 1).
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However, to achieve our goal, we must go in the opposite direction: first
we find a set of 100 subhexagons of order 2 in H(4) on which J2 : 2 acts
rank 3, and hence which can be identified with the vertex set of HJ(100).
We then characterize adjacency geometrically and show that the union of
these subhexagons yields the dual of the unique near-octagon NO(2, 4) order
(2, 4). A central tool in all this is the determination of all possible structures
of intersections of two subhexagons of order 2 in H(4), and this will take the
largest part of the paper.

Our construction also completes the geometrical interpretations of all
maximal subgroups of G2(4). In the dissertation of the first author the
corresponding problem for the group G2(3) has been solved, and for G2(4),
only J2 : 2 remained unresolved. The main results of the present paper
now show that all maximal subgroups of G2(4) have an easy geometrical
interpretation inside the generalized hexagon H(4). Indeed, they are either
the stabilizer of a point, a line, a (Hermitian) spread, a distance-2 ovoid,
or (the dual of) a sub-near-polygon (more exactly, a subhexagon of order
(1, 4), a subhexagon of order 2, a non-thick subhexagons consisting of line
regulus, its complement and all shortest paths between these, and the dual
of a sub-near-octagon of order (2,4)).

So our main result reads as follows.

Main Result. The hexagon H(4) contains the dual of NO(2, 4) as a sub-
geometry with stabilizer J2 : 2. The subhexagons isomorphic to the dual
of H(2) contained in NO(2, 4) form the vertex set of HJ(100), where two
subhexagons are adjacent if they meet in a non-thick subhexagon.

The paper is organized as follows. In Section 2, we introduce generalized
hexagons, the split Cayley hexagons, some well-known results about these,
the Hall-Janko graph, and some other notions that we will encounter in
the course of our proofs. In Section 3 we prove our main lemma, namely,
we determine the structure of the intersection of two arbitrary subhexagons
of order 2 of H(4). In Section 4 we construct HJ(100) inside H(4), and in
Section 5 we construct the near-octagon NO(2, 4) inside the dual of H(4).

2. Preliminaries

2.1. Generalized hexagons. A generalized hexagon Γ, or briefly hexagon,
is a bipartite graph with diameter 6 and girth 12. It is convenient to view one
of the bipartitions of a generalized hexagon as point set and each element of
the other bipartition as a line containing the points it is adjacent with. This
way we obtain a point-line geometry (and adjacent elements x, y are then
called incident, with symbols xIy, or, if x is a point and y a line, x ∈ y), and
the original graph is referred to as the incidence graph. Interchanging the
names of “points” and “lines” gives us the dual of the geometry. If every
vertex corresponding to a point has valency t + 1 and every other vertex
has valency s+ 1, then we say that the generalized hexagon has order (s, t),
briefly order s if s = t. The definition implies that every vertex has valency
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at least 2 (this is a little exercise). If there are vertices of valency 2, then
we call the hexagon non-thick ; otherwise thick. If every vertex has valency
at least 3, then the graph is automatically bi-regular (see 1.5.3 of [3]).

We will measure distances between the elements (points and lines) in the
incidence graph, and we will use standard notation in graph theory such as
Γ(x) for the vertices adjacent with the vertex x. It will be convenient to
denote vertices corresponding to points with lower case letters, and those
corresponding to lines with upper case letter. We also use some specific
terminology of incidence geometry, such as collinear points (which are points
at distance 2), concurrent lines (lines at distance 2). The definition of a
generalized hexagon implies that, given any two vertices a, b of Γ, either
these elements are at distance 6 from one another, in which case we call
them opposite, or there exists a unique shortest path (in the incidence graph)
from a to b. If, in the latter case, (a, . . . , ba, b) denotes this path, then the
element ba, also denoted by projba, is called the projection of a onto b. If
two points x and y are at distance 4, then the unique point collinear to both
is denoted by xony. Every circuit of length 12 is called an apartment.

A spread of a generalized hexagon is a set of lines such that every line is
at distance less than or equal to 2 from a unique element of the spread. It
follows readily that all lines of a spread are at distance 6 from each other,
and that there are 1+q3 elements in a spread if the generalized hexagon has
order q. In other words, a spread is a perfect code in the incidence graph
consisting of lines.

A subhexagon Γ′ of a hexagon Γ is a subgeometry which is a generalized
hexagon. A subgeometry Γ′ is called ideal if Γ′(x) = Γ(x), for every point x
of Γ′, and it is called full if Γ′(L) = Γ(L) for every line L of Γ′.

Now let Γ be a generalized hexagon with point set P and line set L,
and suppose that Γ has order (s, t). A graph automorphism preserving P
is called a collineation. If a collineation g of Γ fixes all elements incident
with at least one element of a given path γ of length 4, then we call g a
root elation, γ-elation or briefly an elation. We define an axial elation (also
called a axial collineation) g as a collineation fixing all elements at distance
at most 3 from a certain line L, which is then called the axis of g.

There are two kinds of — potential — elations, namely, a path of length
4 can start and end with a point, or with a line. The first type of elations
will be referred to as a point-elation, the second as a line-elation. In a point-
elation we shall speak of the center of this elation, by which we mean the
point at distance 2 from both the beginning and ending point of the path γ.

If for all paths γ of length 4, the group of γ-elations has order s (if the
middle element of γ is a point) or t (if the middle element of γ is a line),
then we say that Γ is Moufang.

A generalized homology g is a collineation point-wise fixing an apartment,
and also, for at least one element v of that apartment, fixing all elements
incident with v.
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Let us end these generalities by mentioning that generalized hexagons
were introduced by Jacques Tits in his celebrated paper on trialities [6].

2.2. Split Cayley hexagons. The canonical examples of generalized hexa-
gons are the split Cayley hexagons of order q arising from Dickson’s simple
groups G2(q), with q any prime power. The split Cayley hexagons H(q),
for any prime power q, can be constructed as follows (see Chapter 2 of
[3], the construction is due to Jacques Tits [6]). Choose coordinates in the
projective space PG(6, q) in such a way that the non-denerate quadric Q(6, q)
of maximal Witt index has equation X0X4 + X1X5 + X2X6 = X2

3 , and let
the points of H(q) be all points of Q(6, q). The lines of H(q) are the lines
on Q(6, q) whose Grassmannian coordinates (p01, p02, . . . , p56) satisfy the six
relations

p12 = p34, p56 = p03, p45 = p23,

p01 = p36, p02 = −p35, and p46 = −p13.

To make the points and lines more concrete to calculate with, we will use
the coordinatization of H(q) (see [3]). We apply it directly to our situation
(q even), and obtain the labelling of points and lines of H(q) by i-tuples with
entries in the field GF(q), and two 1-tuples (∞) and [∞], with ∞ 6∈ GF(q),
as given in Table 1.

POINTS

Coordinates in H(q) Coordinates in PG(6, q)
(∞) (1, 0, 0, 0, 0, 0, 0)
(a) (a, 0, 0, 0, 0, 0, 1)

(k, b) (b, 0, 0, 0, 0, 1, k)
(a, l, a′) (l + aa′, 1, 0, a, 0, a2, a′)

(k, b, k′, b′) (k′ + bb′, k, 1, b, 0, b′, b2 + b′k)
(a, l, a′, l′, a′′) (al′ + a′2 + a′′l + aa′a′′, a′′, a,

a′ + aa′′, 1, l + a2a′′, l′ + a′a′′)

LINES

Coordinates in H(q) Coordinates in PG(6, q)
[∞] 〈(1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 1)〉
[k] 〈(1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1, k)〉

[a, l]
〈
(a, 0, 0, 0, 0, 0, 1), (l, 1, 0, a, 0, a2, 0)

〉
[k, b, k′]

〈
(b, 0, 0, 0, 0, 1, k), (k′, k, 1, b, 0, 0, b2)

〉
[a, l, a′, l′]

〈
(l + aa′, 1, 0, a, 0, a2, a′),

(al′ + a′2, 0, a, a′, 1, l, l′)
〉

[k, b, k′, b′, k′′]
〈
(k′ + bb′, k, 1, b, 0, b′, b2 + b′k),

(b′2 + k′′b, b, 0, b′, 1, k′′, kk′′ + k′)
〉

Table 1: Coordinatization of H(q), q even
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While the assignment of coordinates might seem to make things a bit
more complicated, the incidence relation becomes very easy. If we consider
the 1-tuples (∞) and [∞] formally as 0-tuples (because they do not contain
an element of GF(q)), then a point, represented by an i-tuple, 0 ≤ i ≤ 5,
is incident with a line, represented by a j-tuple, 0 ≤ j ≤ 5, if and only if
either |i − j| = 1 and the tuples coincide in the first min(i, j) coordinates,
or i = j = 5 and, with the notation of Table 1,

k′′ = a3k + l + a′′a2 + aa′,

b′ = a2k + a′,

k′ = a3k2 + l′ + kl + a2a′′k + a′a′′ + aa′′2,

b = ak + a′′,

or, equivalently,
a′′ = ak + b,

l′ = a3k2 + k′ + kk′′ + a2kb+ bb′ + ab2,

a′ = a2k + b′,

l = a3k + k′′ + ba2 + ab′.

The group G2(q) acts on Γ := H(q) in such a way that it turns H(q) into a
Moufang hexagons. In particular, every line is the axis of a group of q axial
elations. Also, G2(q) acts transitively on the set of pairs of opposite points,
and also the set of pairs of opposite lines. For every apartment Σ and every
element x ∈ Σ, there is a group of q generalized homologies fixing Σ∪ Γ(x).

We now introduce some more notation and terminology.
Let Γ = H(q) be the split Cayley generalized hexagon of order q. For

an element u of Γ, we denote by Γi(u) the set of points and lines of Γ at
distance i from u. We fix the duality class of H(q) by requiring that all
points of H(q) are regular, that is, for every three points x, y, z such that y
and z are opposite x, the inequality |Γi(x) ∩ Γ6−i(y) ∩ Γ6−i(z)| ≥ 2 implies
|Γi(x) ∩ Γ6−i(y) ∩ Γ6−i(z)| = q + 1, for i = 2, 3 (see [5]).

The above regularity for i = 3 implies the following property (see [3],
1.9.17 and 2.4.15). Let x, y be two opposite points and let L,M be two
(opposite) lines at distance 3 from both x, y. All points at distance 3 from
both L,M are at distance 3 from all lines at distance 3 from both x, y.
Hence we obtain a set R(x, y) of q + 1 points every member of which is at
distance 3 from any member of a set R(L,M) of q+ 1 lines. We call R(x, y)
a point regulus, and R(L,M) a line regulus. Any regulus is determined by
two of its elements. The two above reguli are said to be complementary,
i.e. every element of one regulus is at distance 3 from every element of the
other regulus. Every regulus has a unique complementary regulus. Two
complementary reguli together with all shortest paths joining an element
from one regulus with an element of the other form a non-thick subhexagon.
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We call two reguli opposite if every element of the first regulus is opposite
every element of the second one.

The generators of Q(6, q) (i.e., the subspaces of PG(6, q) of maximal di-
mension contained in Q(6, q)) are planes. Such a plane can either contain
q+ 1 hexagon lines through a point x or no hexagon lines at all. In the first
case we call the plane a hexagon plane, and denote it by πx. In the second
case we call the plane an ideal plane. Note that all points of an ideal plane
are mutually at distance 4 in the hexagon. The lines of an ideal plane (which
are lines on Q(6, q)) will be called ideal lines. Given an ideal line I, there
exists a unique point p, which we will call the focus of I, that is collinear
to all points on I. We will use the convention of denoting an ideal line with
focus point p by Ip, while denoting the ideal line on two points x and y by
Ixy (note that the line Ip is not uniquely determined by its notation, while
Ixy is).

Let H be a hyperplane in PG(6, q). Then either H is a tangent hyper-
plane of Q(6, q) at some point x and the points of H(q) in H are the points
not opposite this particular point x of H(q); H intersects Q(6, q) in a non-
degenerate elliptic quadric and the lines of H(q) inH are the lines of a spread,
called a Hermitian or classical spread of H(q); or H intersects Q(6, q) in a
non-degenerate hyperbolic quadric and the lines of H(q) in H are the lines
of an ideal subhexagon H(1, q) of H(q) of order (1, q), the points of which are
those points of H(q) that are incident with exactly q+1 lines of H(q) lying in
H and there are exactly 2(1 + q+ q2) of them. This subhexagon is uniquely
determined by any two opposite points x, y it contains and will be denoted
by ∆(x, y). If, in ∆(x, y), collinearity of points is called adjacency, then we
obtain the incidence graph of the Desarguesian projective plane PG(2, q) of
order q. The lines of ∆(x, y) can be identified with the incident point-line
pairs of that projective plane. The q2 + q+ 1 points of ∆(x, y) belonging to
the same type of elements of PG(2, q) (points or lines) are the points of an
ideal plane. Hence H∩Q(6, q) contains two projective planes π and π′, the
points of which are precisely the points of ∆(x, y), and which we call the
ideal twin planes of H or of ∆(x, y).

Concerning Hermitian spreads, we mention the following property. Let
L,M be 2 lines of the spread S, then every line of H(q) in R(L,M) is
contained in S. This property implies that, since a line regulus spans a
3-space of PG(6, q), three of its lines that are not contained in a common
regulus, uniquely determine any Hermitian spread in H(q). The stabilizer
of every Hermitian spread inside G2(q) is a group isomorphic to SU3(q) : 2,
and all such subgroups are conjugate. It follows that there are precisely
1
2q

3(q3 − 1) Hermitian spreads.
However, if q is equal to 2, then two opposite lines induce a unique Her-

mitian spread, as the following Fact states.

Fact 2.1. If L and M are two opposite lines of H(2), then there exists a
unique Hermitian spread S containing these two lines.
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Proof. By the transitivity on the set of pairs of opposite lines, there are
a constant number C of Hermitian spreads containing two given opposite
lines. Since, by the above, there are 28 Hermitian spreads, and since there
are 63 lines and 32 lines opposite a given line, and since a Hermitian spread
contains 9 lines, we obtain C = 28·9·8

63·32 . �

As an immediate consequence of Fact 2.1, we have the following Corollary.

Corollary 2.2. Any two Hermitian spreads of H(2) intersect in an unique
line.

Proof. Given a spread S and a line L in S, there are 32− 8 ways to choose
a line opposite L and not in S. Hence, since by Fact 2.1 two opposite lines
determine a spread, there are 3 spreads on L distinct of S. In other words,
there are 9 · 3 spreads which intersect S in a unique line. These 27 spreads,
together with S itself, add up to a total of 28 spreads, which is the total
number of spreads in H(2), and we are done. �

2.3. Hall-Janko graph. There is a strongly regular graph G with param-
eters v = 100, k = 36, λ = 14, µ = 12. Uniqueness of the graph given
the parameters only, is unknown. The graph was constructed by Hall and
Janko. The full group of automorphisms is J2 : 2, acting rank 3, with point
stabilizer U3(3).2 ≡ G2(2).

One of the constructions of this graph starts with the dual H of the split
Cayley hexagon of order 2. The vertices are an element ∞, the 36 sub-
hexagons of order (2, 1) of H, and the 63 points of H. The vertex ∞ is ad-
jacent with every subhexagons and with no other vertex. Two subhexagons
are adjacent when they have 4 lines in common, two points are adjacent
when they have distance 4 and a subhexagon is adjacent to its points.

Dualizing this construction we obtain the Hall Janko graph within H(2).

Observation 2.3. The Hall Janko graph on 100 vertices is constructed as
a strongly regular graph on 1 + 36 + 63 vertices, where the 36 represents
the set of ideal non-thick subhexagons of order (1, 2) of H(2), adjacent when
they intersect in a point and all points collinear to this point (4 points and 9
lines), and the 63 corresponds to the set of 63 lines of H(2), adjacent when
they have distance 4, and a subhexagon is adjacent to the lines in it.

This construction is based on the point stabilizer, and hence is a non-
homogeneous construction. We aim at a homogeneous construction starting
from J2 ≤ G2(4). Moreover, the above construction will be a consequence of
our results, which will be proved independently of the above construction.

2.4. Near-polygons. A near-polygon is a connected partial linear space of
finite diameter satisfying the following property.

(NP) For each point p and every line L, there exists a unique point q on
L nearest to p (with respect to the distance in the incidence graph).
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One easily shows that the diameter is always even. If 2d is the diameter of
the incidence graph, then the near-polygon is also called a near-2d-gon. For
d = 4, we obtain a near-octagon.

3. A theorem on intersections of subhexagons

3.1. Statement of the result. In this section, we determine the intersec-
tion of two subhexagons of order 2 of H(4). We will prove the following
theorem.

Theorem 3.1. Let Γ′ be an order 2 subhexagon of H(4). Then Table 2
captures

(A) notation of a possible intersection S of Γ′ with another order 2 sub-
hexagon Γ′′;

(B) a description of S;
(C) the number χS of order 2 subhexagons Γ′′ which intersect Γ′ accord-

ingly and finally
(D) the number of such configurations within Γ′.

The lower index l in the labelling Sp
l of these configurations denotes the

number of lines they contain, while the upper index p denotes the number of
points.

3.2. Preliminary lemmas. Before embarking on the proof of this theorem,
we state a known fact and separate some lemmas from the proof.

Fact 3.2 (1.8.5 of [3]). Let Γ′ be a subhexagon of order (s, t), s, t ≥ 1, of a
generalized hexagon Γ. Then Γ′ is uniquely determined by an apartment Σ,
and by two neighbor sets Γ′(p) and Γ′(L) of Γ′ with p incident with L, and
both belonging to Σ. In particular, if Γ′(p) = Γ(p) and Γ′(L) = Γ(L), then
Γ′ coincides with Γ.

If Γ is a split Cayley generalized hexagon of even order, we can say more.

Lemma 3.3. Let Γ′ be a subhexagon of order 2 of a split Cayley generalized
hexagon Γ of even order. Then Γ′ is uniquely determined by an apartment
Σ and two neighbor sets Γ′(p) and Γ′(L) of Γ′, with p and L elements of Σ.
In particular, if Γ′(p) = Γ(p) and Γ′(L) = Γ(L), then Γ′ coincides with Γ.

Proof. First of all, if p is incident with L, then this lemma is equivalent
to Fact 3.2. Secondly, if L is a line of Σ at distance 5 from p, then the
projections of the points in Γ′(L) \ Σ onto one of the lines on p, that are
opposite L, gives us a point row and line pencil as in Fact 3.2 to conclude the
lemma. Hence we may assume that p and L are distance 3 apart. Without
loss of generality we may coordinatize Γ such that the apartment Σ contains
the points (∞), (0), (0, 0), (0, 0, 0), (0, 0, 0, 0) and (0, 0, 0, 0, 0), with p = (∞)
and L = [0, 0]. We show that there is a unique subhexagon Γ′ of order
2 containing the point (0, 0, 1) of Γ(L) and the line [1] ∈ Γ(p). There is
certainly at least one such hexagon, by restricting the coordinates to GF(2).
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A B C D

S63
63 Γ′ 1 1

S14
21 weak subhexagon of order (1, 2) 72 36

S7
9 lines concurrent with an ideal line Ip, 252 252

together with all points in πp

S9
8 points on two opposite lines, 2016 1008

together with the three connecting paths

S15
7 lines concurrent to a given line L, 63 63

together with all incident points

S3
7 lines concurrent to a given line L 126 63

S6
5 lines incident to two collinear points, x and y 1512 756

together with the points on an ideal line on x
and likewise on y

S3
4 path of length 6, starting with a line 6048 3024

S3
3 all lines on a point, together with all 378 189

points incident with one of these lines

S1
1 a point and a single incident line 3024 189

S2
1 two collinear points 3024 189

S3
1 3 points on a line 252 63

S0
0 the empty set 4032 1

Table 2: Intersections of two order 2 subhexagons in H(4)

Now let Γ′ be such a subhexagon and let (a) be a point of Γ′ on [∞], with
a 6= 0. We show that a = 1.

In the following we will use that, if three concurrent lines L1, L2, L3 belong
to Γ′, and two points x1 ∈ L1 and x2 ∈ L2, with xi 6= L1 ∩ L2, then also
Ix1x2 ∩ L3 belongs to Γ′. This follows readily from the regularity of Γ′.

Since (a) belongs to Γ′, so do the point (a, 0, 0, 0, 0) and the line [a, 0, 0, 0]
(projection onto [0, 0, 0, 0]). The unique line on (1, 0) (which belong to Γ′)
at distance 4 from [a, 0, 0, 0] is, after an easy calculation, equal to [1, 0, a3].
Also, projecting (a, 0, 0, 0, 0) onto the latter yields (1, 0, a3, a2) ∈ Γ′. Now
we find (1, 0, 0, a2) as the intersection point of [1, 0, 0] (which belongs to Γ′)
and the ideal line on (∞) and (1, 0, a3, a2). But there are only three points
of Γ′ on [1, 0, 0], and these are (1, 0), (1, 0, 0) and (1, 0, 1) (as projection of
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(0, 0, 1)). Consequently, as a 6= 0 by assumption, a2 = 1 and so a = 1 is
uniquely determined. �

Concerning the intersection of two order 2 subhexagons in H(4), we have
the following three lemmas.

Lemma 3.4 (Regulus Condition). Let Γ′ and Γ′′ be two order 2 subhexagons
of Γ ∼= H(4). Let x, y, z be three points of Γ′ ∩Γ′′ that are on an ideal line I.

(i) If Γ′(x) = Γ′′(x) and |Γ′(y) ∩ Γ′′(y)| > 1, then both Γ′(y) = Γ′′(y)
and Γ′(z) = Γ′′(z).

(ii) If |Γ′(x) ∩ Γ′′(x)| = |Γ′(y) ∩ Γ′′(y)| = 1, then Γ′(z) = Γ′′(z).
(iii) If |Γ′(x) ∩ Γ′′(x)| = |Γ′(y) ∩ Γ′′(y)| = 2, then |Γ′(z) ∩ Γ′′(z)| = 2 as

well.

Proof. Let p denote the focus of the ideal line I. Note that if two opposite
lines L,M as well as three points a, b, c, with a ∈ L, b ∈ M and a, b, c on
an ideal line of Γ, belong to the intersection of two order 2 subhexagons,
then so does the unique line through c of the line regulus through L,M . We
will refer to the previous argument as the regulus property. First of all, a
repeated use of this regulus property proves (i).

Secondly, let Xi, Yi and Zi, with i = 1, . . . , 4, denote the four lines of
Γ \ Γ1(p) on x, y and z, respectively, and suppose the first two indices
indicate the lines of Γ′. By the regulus property X1, X2 and Y1, Y2 determine
the lines Z1, Z2 of Γ′ on z. However, this implies that the regulus on Z1 and
X3 ought to contain one of the two lines Y3, Y4, as does the regulus on Z1

and X4. Consequently Z1, and in the same way Z2, belongs to Γ′′, and we
are done for (ii).

And finally, the regulus property yields, under the assumptions of (iii),
that |Γ′(z) ∩ Γ′′(z)| ≥ 2. However, if Γ′(z) were equal to Γ′′(z), then (i) of
this lemma would lead to a contradiction. �

Lemma 3.5. If two order 2 subhexagons of H(4) share a line L and all of
the lines concurrent to L, then either all of the points at distance 3 from L
belong to the intersection or none of them do.

Proof. Let Γ′ and Γ′′ denote two such order 2 subhexagons of H(4) — and
we assume that Γ′ 6= Γ′′ — and denote the points on L by li, i ∈ {1, 2, 3}.
Considering regularity and the ideal lines of H(4), it is clear that, since Γ′

and Γ′′ have L and all of its points in common, the points li are collinear
with exactly 4 or no additional common points.

Furthermore we claim that, if one of the points on L is collinear to 4
additional common points, then no line at distance 4 from L on one of these
particular points is not contained in the intersection of our two subhexagons.
Suppose, by way of contradiction, that l1 is collinear to 4 additional common
points, one of which we denote by a, and that M , with d(L,M) = 4, is a
common line on a. Denote the unique third point of Iali in Γ′ by ai, for i =
1, 2, 3. Then, by the previous lemma, all lines on a2 and a3, and consequently
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also those on a and a1, are common to Γ′ and Γ′′. Hence, Γ′ and Γ′′ share
all lines at distance at most 3 from l1. If we coordinatize this situation such
that l1 = (∞), and Γ′ is obtained from this coordinatization by restricting
coordinates to GF(2), then [0, 0, 0, x, 0], with x ∈ GF(4) \ GF(2), belongs to
Γ′′ \Γ′, as it is the projection of the line [0, 0] onto the point (0, 0, 0, x) (if a
point on [0, 0, 0] = M belonged to both hexagons then by Fact 3.2 these two
would coincide). By assumption the projection of the line [0, 0, 0, x, 0] onto
the point (1) has to be a line in Γ′. However, given the incidence relations
of H(4) as listed in Section 2.2, any point with coordinates (1, l, a′, l′, a′′) on
[0, 0, 0, x, 0] has l = x /∈ GF(2) in its second entry, a contradiction. Hence
the claim.

To complete the proof of the lemma we now suppose, again by way of
contradiction, that in the intersection of Γ′ with Γ′′, l1 is collinear to 6 and
l2 is collinear to only 2 common points. Once again, we coordinatize Γ′ with
entries in GF(2) in such a way that L = [∞], l1 = (∞) and l2 = (0). By
the previous claim, there are no common lines on (0, 0). Hence [0, 0, x], with
x ∈ GF(4) \ GF(2), belongs to Γ′′ and not to Γ′. The projection of (0, 0, x),
which by assumption belongs to Γ′′\Γ′, onto this particular line implies that
[0, 0, x, x, 0] belongs to Γ′′. However, since [1, x] is the unique line on the
point (1) at distance 4 from [0, 0, x, x, 0], this yields a contradiction (as all
lines on the point (1) should belong to Γ′ ∩ Γ′′) and we are done. �

Lemma 3.6. Let Γ′ and Γ′′ be two order 2 subhexagons of H(4). Suppose
Γ′ and Γ′′ share two collinear points x and y. If x is incident with exactly
2 common lines, then so is y, while if x is incident with exactly 3 common
lines, then y is either incident with a unique common line or y is incident
with 3 of them.

Proof. We offer a group theoretic proof, using elations and generalized ho-
mologies. In fact, we will only use the following facts:

(i) H(4) is Moufang,
(ii) elations have order two,

(iii) if a generalized homology fixes an apartment Σ and all lines trough
one point of Σ, then it fixes all lines through all points of Σ (follows
from the explicit description of generalized homologies as given in
[3], Proposition 4.5.11, noting that x3 = 1 for every x ∈ GF(4)\{0}),

(iv) G2(4) acts transitively on the subhexagons of order 2, and the sta-
bilizer of such subhexagon induces G2(2) in it.

Label the lines of Γ′ on x by X0, X1, X2 and those on y by Y0, Y1, Y2, with
X0 = Y0 = xy.

Suppose first that Γ′′ contains X1, X2 and Y1, but not Y2. Using (iv)
above, we see that there exists g ∈ G2(4) fixing Xi, i = 0, 1, 2, and Y1,
and mapping X2 to Y2. Composing g with suitable elations, we obtain a
generalized homology h ∈ G2(4) fixing Xi, i = 0, 1, 2, and Y1, and mapping
X2 to Y2. This contradicts (ii) above.
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Now suppose that Γ′′ contains Y1, but not X1, X2, Y2. There is an elation
e fixing all elements of Γ(y) ∪ Γ(X0) and mapping X1 onto a line different
from X1 and X2. Since e is involutive, X2 is also mapped onto a line different
from X1 and X2. It follows that the image of Γ′′ under e shares X1, X2 and
Y1, but not Y2 with Γ′, contradicting the previous paragraph.

The lemma is proved. �

3.3. Proof of Theorem 3.1. To prove Theorem 3.1 we use the following
strategy. For each type of intersection, we count the number of such configu-
rations in a fixed subhexagon Γ′ of order 2, and we determine a lower bound
on the number of subhexagons of order 2 intersecting Γ′ in that particular
configurations by first exhibiting that number of subhexagons containing
that configuration, and then proving that each such subhexagon indeed in-
tersects Γ′ exactly in that configuration. If every one of these lower bounds
is as in Table 2, then we have obtained all possible subhexagons of order 2
and the lower bounds all become exact numbers. Moreover, no other inter-
section configuration is possible. This follows from the fact that the sum
of all numbers in Column C of Table 2 equals the total number of order
2 subhexagons of H(4), which equals 20800, by the orbit counting formula
applied to a fixed subhexagon Γ′ of order 2 and G2(4).2 (the stabilizer of Γ′

is isomorphic to G2(2).2).
We will deal with the various configurations in the order as they are

written down in Table 2 (we hereby skip the trivial configuration S63
63).

Configuration S14
21 . First of all, let ∆ be one of the 63·32

14·4 non-thick sub-
hexagons of order (1, 2) contained in Γ′. By Fact 3.2, the choice of an exter-
nal point (that is, a point not in Γ′) on any line in ∆, determines another
order 2 subhexagon. We thus obtain two additional order 2 subhexagons.
A repeated use of Lemma 3.6 shows that both order 2 subhexagons in fact
intersect Γ′ exactly in all points and lines of ∆.

Configuration S7
9 . The number of configuration of type S7

9 in Γ′ is 63 · 4,
as we can choose πp in 63 ways and πp contains 4 ideal lines. The lines
concurrent to such an ideal line, say Ip, can contain no further common
points as otherwise, by Fact 3.2, the thus defined subhexagon Γ′′ would
coincide with Γ′. Denote the lines of Γ′ incident with p by M0,M2,M4 and
those at distance 3 from p that are concurrent to both Ip and Mi by Li and
Li+1, for i = 0, 2, 4. Let Σ be the apartment containing the point p, an
external point on L0 and the line L2. By Fact 3.2, this apartment together
with the points of Γ′(M0) and the line M4 uniquely determines an order 2
subhexagon Γ′′. We now claim that Γ′′ intersects Γ′ in the points of πp and
all lines incident with Ip. Indeed, by Lemma 3.6, the lines on both points in
Ip ∩Σ are common lines and hence, by the regulus property, so are those on
the third point of this ideal line. Moreover, none of these lines at distance
3 from p contain intersection points. Finally, if a point p′ distinct from p in
πp\Ip would be on another common line, next to Mi, then, using Lemma 3.6,
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we first obtain Γ′(p′) = Γ′′(p′), and secondly, we obtain a contradiction to
Lemma 3.5.

Configuration S9
8 . Inside Γ′ we can choose two opposite lines, say L and M ,

in 63 · 16 ways. By definition of this particular configuration, Γ′′ has to be
an order 2 subhexagon on L and M containing all three points of Γ′ on these
lines. As the paths from one to the other are fixed, Fact 3.2 states that an
additional line on one of the points on L or M will determine Γ′′ completely.
Not wanting Γ′′ to be equal to Γ′, we have two remaining choices for such a
line, giving a total of 63 ·16 ·2 order 2 subhexagons that intersect Γ′ in S9

8 , as
we will show. The fact that the points in this intersection are on no further
common lines, is an easy consequence of Lemma 3.6. If, on the other hand,
one of the 6 lines connecting L toM would contain 3 intersection points, then
one obtains an order (2, 1) subhexagon within Γ′ ∼= H(2), a contradiction
and we are done.

Configuration S15
7 . The number of corresponding configurations is clearly

equal to the number of lines L of Γ′. It is clear that the orbit of Γ′ under the
group of axial collineations with axis L has size 2, and that the subhexagon
in this orbit distinct from Γ′ meets Γ′ exactly the elements of Γ′ at distance
at most 3 from L. So we have 63 configurations and 63 order 2 subhexagons.

Configuration S3
7 . There are again 63 ways to choose the line L and all lines

concurrent with it in Γ′. Now let Σ be an apartment containing L, and
let x, y be the points of Σ on L. Let g and h be γ-elations, where γ is
contained in Σ and has middle point x and y, respectively, and which do
not preserve Γ′. If z is the third point on L in Γ′, then, considering (Γ′)g, it
follows from Lemma 3.5 that both g and h map Γ′(z)\{L} onto Γ(z)\Γ′(z).
Hence gh preserves Γ′2(L) and maps Γ′ onto a subhexagon Γ′′ with the right
intersection. By the previous configuration, there is an order 2 subhexagon
Γ′′′ intersecting Γ′′′ in {L} ∪ Γ′′1(L) ∪ Γ′′2(L) ∪ Γ′′3(L). Hence also Γ′′′ has the
right intersection with Γ′.

Configuration S6
5 . Configuration S6

5 is determined by choosing inside Γ′ a
line L, two of its points, say x and y, an ideal line on x in πy, say Iy, and
likewise on y in πx, say Ix. Hence there are 63 · 3 · 22 such configurations
in Γ′. As we want Γ′′ to contain x, y, Γ′(Ix) and Γ′(Iy) and no more, the
choice of a point on L that is not in Γ′, fixes Γ′′ completely. Let M and N
be the lines in the defining apartment Σ, concurrent with Iy and Ix and at
distance 3 from x and y, respectively. Obviously, the points of Γ′′ in x⊥ and
y⊥ that are not on Ix and Iy do not belong to Γ′ (since the third point of Γ′′

on L is no point of Γ′ either). Furthermore, as a direct consequence of first
Lemma 3.6 and then Lemma 3.4 the lines of Γ′′ incident with the points on
Ix \ {y} and Iy \ {x} are no lines of Γ′. In other words, Γ′ and Γ′′ indeed
share only those 5 lines and 6 points and one can choose Γ′′ in 63 · 3 · 23

ways.
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Configuration S3
4 . One readily counts the number of length 6 paths, starting

and ending with a line, within Γ′ to be equal to 63 · 3 · 24. Let γ be such a
path and denote the end lines by L and M . As we want to define Γ′′ in such
a way that the intersection with Γ′ contains only those points and lines that
are in γ, we have no further choice in the points on L and M . Hence, by
Fact 3.2, Γ′′ is determined by the choice of a third line, which ought to be in
H(4) \ Γ′, on the unique common point on one of these two lines. As such,
Lemma 3.6 leads to the fact that the 3 points in this path are on precisely
two common lines, that is, they are on the lines of the path and on no more.
To prove that the intersection of Γ′ with Γ′′ equals γ, it now suffices to show
that the two lines of γ that are concurrent to L and M contain only the
points of the path itself. However, if one of these lines were to contain 3
intersection points, then, looking in the hexagon plane spanned by the first
2 or last two lines of the path γ, this would imply that two projective planes
of order 2 inside PG(2, 4) intersect in exactly two lines, one of which contains
three common points and one of which contains a unique intersection point,
and we claim that this is impossible. Indeed, coordinatize PG(2, 4) such that
those two common lines are the lines X0 = 0 and X1 = 0. Suppose that
the points (0, 0, 1), (0, 1, 0) and (0, 1, 1) belong to both order 2 subplanes,
while (1, 0, 0) and (1, 0, 1), and (1, 0, x) and (1, 0, x2) belong to F1 and F2,
respectively. Since (1, 1, 1) belongs to F1 and (1, 1, x2) belongs to F2, the line
on (0, 0, 1) and (1, 1, 1) belongs to the intersection as well, a contradiction
and the claim follows.

Since we had two choices for the defining line of Γ′′, there are 63 · 3 · 25

order 2 subhexagons in Γ which intersect Γ′ in such a path of length 6.

Configuration S3
3 . Configuration S3

3 is constructed by taking a line, all of
its points, and all lines incident with one of these points, which can be done
in 63 · 3 ways. Denote the line by L, its special point by l0 and the lines
on l0 by M and N . Inside the still-to-be-constructed Γ′′ we now know all
lines concurrent to L, that is, M and N on l0 and those that are not in Γ′

on the other two points of L. Moreover, we know that the points on M and
N ought to be points off Γ′. By Lemma 3.5 the points on all of the lines
concurrent to L are thereby fixed. Moreover, the proof of Configuration
S15

7 shows that we have two choices for such a subhexagon of order 2, and
clearly these two subhexagons meet Γ′ in the right configuration (otherwise
the projection of an additional common element onto either L or l0 produces
a common element either concurrent with L or collinear with l0 distinct from
the ones inside the configuration).

Configuration S1
1 . Obviously, there are 63 · 3 ways to choose an incident

point-line pair (x, L). The lines on x and the points on L are fixed as those
that are not contained in Γ′. Denote these points and lines by li and Mi,
with i = 0, 1, 2 and M0 = L and l0 = x. To fix Γ′′ in terms of Fact 3.2, we
need a point m1 on M1, a line N1 on l1, a line on m1 and a point on N1.
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Summarized this yields 63 ·3 · 44

24 such subhexagons Γ′′ and, by construction,
it may be clear that Γ′′ shares no further points and lines with Γ′.

Configuration S2
1 . This configuration is completely similar to the previous

one. Inside Γ′ we consider a line L, two of its points l0 and l1 and fix the
lines on these points as those that are not contained in Γ′, say M0,M1 and
N0, N1. Now Γ′′ is determined by a point m0 on M0, a line on m0, a point
on N0 and finally, a point on L, that is not in Γ′. Considering the lines
through l0, Lemma 3.6 yields that there are no further common lines on l1.
In conclusion, there are 63 ·3 · 44

24 subhexagons that intersect Γ′ in a line and
two of its points.

Configuration S3
1 . Let L denote the line of Γ′. The lines of Γ′′ concurrent

with L are determined. And since these lines can be obtained from Γ′2(L)
by applying the composition of a suitable point elation (with center a point
x on L and fixing the lines through a point y 6= x on L) and an axial elation
(with axis in Γ′ concurrent with L through the point z of Γ′ on L distinct
from x, y), there is at least one subhexagon with the desired intersection.
The configurations S3

7 and S15
7 show that there are at least 4 such. Hence,

in total, there are 63 · 4 subhexagons intersecting Γ′ in a configuration of
type S3

1 .

Configuration S0
0 . This is probably the most involved case, as the empty

set gives a single configuration in Γ′, but there are many more subhexagons
intersecting in the empty set. Our approach is based on the construction of
Hermitian spreads in [4].

Step 1 : Construction of Γ′′.
Consider a Hermitian spread S of Γ′ and let L and M be two of its lines.
If p, p′ and q, q′ are the points of H(4)\Γ′ on L and M , respectively, and
suppose p is opposite q then, by [4], ∆(p, q) is a non-thick subhexagon of
order (1, 4) of H(4) which intersects Γ′ precisely in the lines of S. Hence,
none of the points of Γ′ is in one of the two ideal twin planes, π and π′, of
∆(p, q). In other words, every line of Γ′ either belongs to S or intersects
the lines of ∆(p, q) in a point off the weak subhexagon. Now suppose g is
a group element of the automorphism group of ∆(p, q) that maps S to a
set of 9 lines which is disjoint from S and denote the image of S under g
by S ′. We then claim that S ′ uniquely determines an order 2 subhexagon
of H(4), say Γ′′, which shares no points nor lines with Γ′. Indeed, let L′

and M ′ be two lines of S ′ and define Γ′′ on these two lines by taking all
points on these lines that are not contained in π nor in π′. Note that
there is a unique third line of R(L′,M ′) in S ′ and hence, by Lemma 3.3,
the subhexagon Γ′′ is fixed and the claim is proven. Moreover, again by
[4], the lines of Γ′′ in ∆(p, q) are just those of S ′, and all lines of Γ′′ either
belong to S ′ or are concurrent to one of these lines in a point off π ∪ π′.
Hence it may be clear that Γ′ and Γ′′ share no lines and consequently
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also no points (otherwise two lines of ∆(p, q), one in S and one in S ′,
would intersect in a point outside π ∪ π′, a contradiction).

Step 2a: Upper bound on the cardinality.
We will now count the number of subhexagons, disjoint from Γ′, that are
obtained in this way. First of all, within a subhexagon of order (1, 4),
there are 105·64·3

9·8 = 280 such sets of 9 lines, which for sake of simplicity we
will call spreads. Moreover, one easily counts that there are 24 spreads
on a single line and 3 of them on a pair of opposite lines. Hence, since
Fact 2.1 states that inside an order 2 hexagon two opposite lines uniquely
determine a spread, there are 280 − 1 − 2 ·

(
9
2

)
− 9 · (23 − 2 · 8) = 144

spreads that are disjoint from the given spread S in ∆(p, q). Therefore,
the number of order 2 subhexagons disjoint from Γ′ that arise in this way
is at most equal to 28 · 144 = 4032, as there are 28 spreads within Γ′.

Step 2b: Lower bound on the cardinality.
We now claim that this number is also a lower bound for the cardinality
of this set (in other words, no two subhexagons constructed above coin-
cide), which will complete the proof of Theorem 3.1. Indeed, let S1 and
S2 be two spreads in Γ′ and denote the corresponding non-thick ideal
subhexagons by ∆1 and ∆2. Each of these two spreads now determines
a set of 144 order 2 subhexagons disjoint from Γ′. We denote the respec-
tive sets by Ω1 and Ω2. Our aim is now to prove that the intersection of
these two sets is the empty set.

It suffices to show that if S ′1 in ∆1 determines Γ′′, there is no S ′2
in ∆2 which is disjoint from S2 and determines Γ′′. Suppose by way
of contradiction that there exists such an S ′2 in ∆2. If g denotes the
element of Aut(Γ′) that maps S1 onto S2 and consequently also ∆1 onto
∆2, then obviously S ′g

−1

2 is a spread in ∆1 which is disjoint from S1. We
will denote this spread by S ′′ and we will show that the lines of S ′′g = S ′2
cannot be contained in Γ′′.

First of all, we recall that by Corollary 2.2 any two spreads of Γ′

intersect in a unique line. Secondly, as there are 12 line reguli in a
spread, every point of the ideal twin planes, that is not on a line of a
certain spread S, is at distance 3 from exactly 3 lines of S (as there are
12+9 points in each of those planes and hence every one of the points not
on a spread line belongs to the opposite regulus of such a line regulus).
Below we shall refer to this property as the points-at-distance-3 property.

We now consider S1 and S ′′ within ∆1 and determine the image of
both sets under g. Since S1 and Sg

1 = S2 are two spreads of Γ′, they
share a line L. Let M denote the line of S1 such that L is the image of
M under g and note that M can coincide with the line L itself. Denote
the points of L and M in π and π′ (the ideal twin planes of ∆1) by
x and x′, and y and y′, respectively. By definition of a spread, either
x or x′ is not on a line of S ′′. Suppose x is this point, then by the
point-at-distance-3 property three out of the five points on Ix, the ideal
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line containing all points of ∆1 collinear to x, are on a line of S ′′. Now
considering the action of the element g, the point x can be mapped onto
the point y or onto the point y′ (note that if M = L, then y = x and
x′ = y′). In any case, the ideal line Ix will be mapped onto the ideal line
corresponding to the point xg, being y or y′. Either Ixg intersects π ∪ π′
in the point xg or it belongs to the hexagon twin plane not containing
the point xg.

In the former case, at least two of those three lines of S ′′ that are
concurrent to Ix are mapped onto lines which do not belong to ∆1.
Since these lines should belong to Γ′′, they have to intersect the lines of
∆1 in the lines of S ′1. However, these image lines intersect ∆1 in lines
incident with xg, a contradiction.

In the latter case, the lines of S ′′ concurrent to Ix are mapped onto
lines of ∆1. By definition these image lines belong to Γ′′. In other
words, those three lines of S ′′ are mapped onto lines of S ′1, as this is
the intersection of ∆1 and Γ′′. However, since S ′′g = S ′2 and since S ′2
determines ∆2 6= ∆1, S ′2 and S ′1 are two distinct spreads of Γ′′ which
intersect in at least two lines, a contradiction and hence the claim.

4. Construction of the graph

It is well known that (see Atlas of Finite Simple Groups [2])

G2(2) ≤ J2 : 2 ≤ G2(4).2

with G2(4).2 ∼= Aut(H(4)) =: G. Moreover, one of the orbits of G2(2) on
the point set P of H(4) will be isomorphic with H(2). We now consider
such a maximal subgroup J2 : 2 of G and the subgroup G2(2) as a maximal
subgroup of J2 : 2. To simplify notation, we will denote by H2 the order 2
subhexagon stabilized by the latter group. By the orbit counting formula
one now readily checks that the orbit of H2 under the group action of J2 : 2
has size 100. Let Ω be the set of the 100 order 2 subhexagon obtained as
such. It may be clear that, fixing H2 within Ω, the number of orbits of G2(2)
on Ω \ {H2} will be determined by the number of distinct intersections of
the elements of this set with H2, with respect to the substructures in H2.
Indeed, suppose

(Ω \ {H2})G2(2) = Ω1 ∪ Ω2 ∪ · · · ∪ Ωk

and let ω1 denote an element of Ω1 for which H2 ∩ ω1 = S. Then for every
such a substructure S′ in H2, i.e. for every substructure such that there
exists an element g ∈ G2(2) for which Sg = S′, there is a corresponding
element of Ω1 that intersects H2 in S′. In other words, 99 must be the sum
of multiples of numbers of Column D of Table 2, except for the number in
the first row, of course.

As a direct consequence of Theorem 3.1, there are only five possible in-
tersections of an element H′2 ∈ Ω with H2, being S0

0 , S14
21 , S3

7 , S15
7 and S3

1 .
First, we rule out type S0

0 . Indeed, inside Ω this type of intersection with
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H2 would occur a multiple of 28 times, which is non-combinable with the
other possible intersections (the latter are all multiples of 9, as is the total
number of subhexagons, 99, that we are looking for).

As the substructures corresponding to the last three types arises 63 times
inside H2, S14

21 necessarily has to be one of the possible intersections (as the
sum should be 99). Now suppose the second (and final) type of intersection
is of type S3

1 , that is 3 points on a line, and consider two concurrent lines L
and M in H2. If H′2 is the hexagon that intersects H2 in the points of L and
H′′2 is the one corresponding to M , then H′2 ∩ H′′2 contains x = L ∩M and
the lines of H(4) \H2 on x. In other words, there are exactly two lines on x
within this intersection, which is impossible both in S14

21 and in S3
1 .

Also intersections of type S15
7 lead to a contradiction as follows. Let L

and M be the defining lines of two such intersections with L opposite M
and denote the associated hexagons by H′2 and H′′2. Then the three points
of H2 at distance 3 from both L and M belong to H′2 ∩ H′′2. Also, the six
lines of H(4) through these three points not in H2 must belong to both H′2
and H′′2. So the intersection H′2 ∩ H′′2 contains, by the regularity of H(4),
a configuration isomorphic to S9

8 . But this cannot be contained in an S15
7

configuration, nor in an S14
21 configuration.

We now have the following theorem:

Theorem 4.1. Let Υ = (V,E) be the graph with vertex set V = Ω =
HJ2:2

2 , where two vertices are adjacent whenever the corresponding order 2
subhexagons intersect in a configuration S14

21 , while two vertices are non-
adjacent if the corresponding order 2 subhexagons intersect in a configuration
S3

7 . Then Υ is isomorphic to the Hall-Janko graph.

Proof. We have shown above that Υ has the same parameters as HJ(100).
Since it is also clearly rank 3, it must be isomorphic to HJ(100). Alterna-
tively, this also follows from Observation 2.3, by identifying each member
ofΩ that intersects H2 in an ideal non-thick subhexagon with that intersec-
tion, and every member of Ω that intersect H2 in a configuration S3

7 with
the unique line that contains three points of the intersection. �

Now Observation 2.3 also follows from the previous theorem, if we use
the first argument of the above proof.

5. Near-octagon of order (2, 4)

5.1. Two useful lemmas. Using the results of the previous section, we
now show two lemmas that will be very useful for the proof of Theorem 5.3
below.

Lemma 5.1. Let H and H′ be two elements of Ω, and let p be a point of
H and p′ a point of H′. If p and p′ are collinear in H(4), then the line L
joining them belongs to both of H and H′.



THE HALL-JANKO GRAPH AND A NEAR OCTAGON 55

Proof. Suppose by way of contradiction that L does not belong to either H
or H′. First suppose that H ∩ H′ is a subhexagon ∆ of order (1, 2) in both
H and H′. It is well known (and easy to see with an elementary count) that
every point of H and of H′ not on a line of ∆ belongs to a point regulus
R(x, y), with x, y points of ∆. It follows that both p and p′ are at distance
4 of all points of a line of any of the ideal twin planes of ∆ (noting that
this is obvious if p or p′ belongs to a line of ∆). Since lines in these ideal
twin planes intersect non-trivially, we deduce that there is a point z of ∆ at
distance 4 from both p and p′. This gives rise to a pentagon in H(4) unless
L is at distance 3 from z, in which case L is on the shortest paths from z to
p and p′ and hence L belongs to both H and H′.

Suppose now secondly that H∩H′ contains three collinear points (say, on
a common line M) and all lines of H through these points. There is at least
one point z on M of H ∩ H′ at distance at most 4 from p. Considering the
line projzp, which belongs to both H and H′, we see that the shortest path
joining p′ and projzp contains L; hence L belongs to H′. Symmetrically, L
belongs to H. �

Lemma 5.2. Two opposite lines L,M of H(4) are contained in at most 4
members of Ω; if they are contained in at least one, then they are contained
in exactly 4 members, and there are unique points x ∈ L and y ∈ M at
distance 4 such that L,M, x, y are not contained in any member of Ω.

Proof. Let H0 be a member of Ω containing L,M , and let xi, i = 0, 1, 2, 3, 4,
denote the points on L, and yj , j = 0, 1, 2, 3, 4, the points on M , with
xi at distance 4 from yi, i ∈ {0, 1, 2, 3, 4}. Without loss, we may assume
that H0 contains x1, x2, x3 and consequently also y1, y2, y3. By construction
of Ω, there is a unique element Hk, k ∈ {1, 2}, of Ω intersecting H0 in
the ideal non-thick subhexagon ∆(xk, y3) of H0. Clearly H1 ∩ H2 contains
L,M, x3 and y3 and hence must contain a further element on L, since it
must clearly be of type S14

21 . Say x0 and y0 also belong to H1 and H2. The
same argument repeated for H1 in stead of H0 shows that also x0, x1, x2 and
M are contained in a member H3 of Ω. Now, if also x0, y0, L and M were
contained in a member of Ω, then this member would intersect at least one
of H0,H1,H2,H3 in L,M and unique points on these lines, contradicting the
fact that such intersection must be either configuration S14

21 , or S3
7 . Putting

x = x4 and y = y4, the lemma follows. �

5.2. The near-octagon. Finally we are ready to prove that the split Cay-
ley generalized hexagon of order 4 has a full subgeometry isomorphic to the
dual of the near-octagon of order (2, 4). This provide a geometrical interpre-
tation of J2 : 2 as a maximal subgroup of G2(4). Furthermore, the following
theorem immediately implies that the dual split Cayley generalized hexagon
of order 2 is a full subgeometry of this near-octagon.

Theorem 5.3. Let Γ = (P,L, I) be the incidence geometry with P, respec-
tively L, the union of all points, respectively lines, contained in the order 2
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subhexagons of Ω, and with induced incidence relation. Then the dual ΓD

of Γ is a near-octagon of order (2, 4) with 315 points and 525 lines..

Proof. We will prove this Theorem in the following 3 steps.

Step 1: Γ has 525 points, 315 lines and order (4, 2).
Step 2: Two elements of Γ are at most distance 7 apart.
Step 3: ΓD satisfies property (NP).

Step 1 : Γ has order (4, 2).
Consider an element H of Ω and count the number of elements H′ ∈
Ω \ {H} on a fixed line L of H. There are exactly 36 elements of Ω which
intersect H in 21 lines, while there are 63 elements of Ω that intersect H in
7 lines. Hence a double counting on the couples (H′, L), with H′ ∈ Ω\{H}
and L ∈ H∩H′, together with the fact that J2 : 2 acts transitively on the
elements in Ω yields that every line in L is contained in 20 subhexagons
of Ω. Similarly, a double counting of the pairs (H′, p), with H′ ∈ Ω \ {H}
and p ∈ H∩H′ tells us that there are 12 elements of Ω on every point of
P. One now readily checks that the cardinalities of P and L equal 525
and 315, respectively.

We will now prove that Γ has order (4, 2). Consider a point p in P
and suppose H is one of the 12 elements of Ω on p. Obviously, within H
there are 3 lines on p, each of which belongs to L. Hence there are at
least 3 lines on every point in Γ. On the other hand, a fourth line of L
on p would imply that there exists a subhexagon H′ ∈ Ω for which the
number of lines on p in H∩H′ is at most 2, a contradiction (two elements
of Ω always intersect in a substructure having 3 lines on any one of its
intersection points). Hence there are exactly 3 lines through every point
in Γ and consequently also 5 points on every one of its lines (apply an
easy double count to see).

Step 2 : A point and a line in Γ are never at distance 9 from each other.
Let L be a line at distance 9 from a point x. Lemma 5.1 together with
the fact that all points of H(4) on L belong to Γ imply that, in H(4), the
distance from x to L is not 3, hence it is 5 and we can consider a point
y on L opposite x in H(4). Since there are exactly 5 lines through each
of x and y in H(4), and exactly 3 > 5

2 of each of them belong to Γ, there
are lines Lx and Ly through x and y, respectively, belonging to Γ and
at distance 4 from each other. Again, Lemma 5.1 now implies that the
shortest path connecting x and y containing Lx and Ly belongs entirely
to Γ and so x and L are at distance 7, a contradiction.

It also clear that the diameter of the incidence graph of Γ is at least
7, as otherwise Γ would be a subhexagon of H(4), a contradiction.

Step 3 : ΓD satisfies property (NP).
We will now show that for each point P and every line l in ΓD, there
exists a unique point Q on l nearest to P . Dualizing this situation we
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consider a point p of P and a line L of L and prove that there exists a
unique line of Γ incident with p nearest to L in Γ.

First we show that every path of length 6 bounded by two lines is
contained in exactly three members of Ω. Let M0Ip0IM1Ip1IM2Ip2IM3

be such path γ. Since M0 and M3 are clearly opposite in H(4), we deduce
from the proof of Lemma 5.2 that there are at most three members of
Ω containing γ. Since there are precisely 315 · 5 · 2 · 4 · 2 · 4 · 2 = 201600
such paths, there are at most 604800 pairs (γ,H2), with γ such a path
contained in a member H2 of Ω. But since |Ω| = 100, and each member of
Ω contains 63 · 3 · 25 = 6048 such paths, we see that equality holds above
and every such path is contained in exactly three members of Ω. Note
that, due to Lemma 5.2, there are unique points x0 and x4 on M0 and
M4, respectively, such that x0 and x4 are not opposite and not contained
together with M0 and M4 in a member of Ω. We now also deduce that
the unique shortest path between x0 and x4 cannot be contained in Γ
as there would otherwise be three members of Ω containing this path
and M0,M4, a contradiction to what we just deduced from Lemma 5.2.
Using Lemma 5.2, it now follows easily that every apartment of H(4)
all of whose members are contained in Γ, is contained in precisely two
members of Ω.

Now suppose, by way of contradiction, that there are two paths

pIL0Ix0IL1Ix1IL2Ix2IL

and
pIL′0Ix

′
0IL

′
1Ix
′
1IL

′
2Ix
′
2IL,

with L0 6= L′0. If x2 = x′2, then any member of Ω containing p and x2

contains L (since there are only 3 lines of Γ incident with x2), and so L
is at distance 5 from p, a contradiction.

So x2 6= x′2. Note that the shortest path between p and p′ = projLp is
not contained in Γ, as otherwise the distance between p and L would be
5. Since x′2 is opposite p, we deduce x′2 6= p′. Hence, Lemma 5.2 implies
that the unique path between x′2 and y2 = projL0

x′2 is contained in Γ,
and so there is a member H2 of Ω containing the apartment determined
by p, x′0, x

′
3, x
′
2 and y2. But H2 contains all lines of Γ through x′2, so H2

contains both the opposite lines L0 and L, which implies it contains p
and p′, contradicting Lemma 5.2 and the definition of p′.

The theorem is proved. �

Now the proof of our Main Result is complete, noting that there is a
unique near-octagon of order (2, 4) by [1].
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