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THE SPECTRUM OF BALANCED P (3)(1, 5)-DESIGNS

PAOLA BONACINI, MARIA DI GIOVANNI, MARIO GIONFRIDDO,
LUCIA MARINO, AND ANTOINETTE TRIPODI

Abstract. Given a 3-uniform hypergraph H(3), an H(3)-decomposition

of the complete hypergraph K
(3)
v is a collection of hypergraphs, all iso-

morphic to H(3), whose edge sets partition the edge set of K
(3)
v . An

H(3)-decomposition of K
(3)
v is also called an H(3)-design and the hy-

pergraphs of the partition are said to be the blocks. An H(3)-design is
said to be balanced if the number of blocks containing any given vertex

of K
(3)
v is a constant. In this paper, we determine completely, without

exceptions, the spectrum of balanced P (3)(1, 5)-designs.

1. Introduction

Let K
(3)
v = (X, E) be the complete 3-uniform hypergraph defined on a

vertex set X = {x1, x2, . . . , xv}. This means that E = P3(X), the collection

of all the 3-subsets of X. Let H(3) be a subhypergraph of K
(3)
v . An H(3)-

decomposition of K
(3)
v is a pair Σ = (X,B), where B is a partition of the

edge set P3(X) of K
(3)
v into subsets all of which yield subhypergraphs all

isomorphic to H(3). An H(3)-decomposition Σ = (X,B) of K
(3)
v is also called

an H(3)-design of order v and the classes of the partition B of P3(X) are
said to be the blocks of Σ [16].

An H(3)-design is said to be balanced if the degree of each vertex x ∈ X,
that is the number of blocks of Σ containing x, is a constant.

The concept of H(3)-decomposition of K
(3)
v is the natural generalization

to the 3-uniform hypergraphs of the more classical G-decomposition of the
complete graph Kv or G-design [20, 21]. Much work about G-designs has
been done in these last years, with many interesting results and open prob-
lems, which can be found in the literature. In the references, some very
recent results of the authors are cited. Regarding the determination of the
spectrum for balanced G-designs, observe that many of the problems exam-
ined there can be studied for H(3)-designs [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13,
14, 15, 17, 18, 19]. In what follows, we will indicate the hypergraph having
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vertices x, y1, y2, y3, y4 and edges {x, y1, y2}, {x, y3, y4} by [y1, y2, (x), y3, y4];
if all the vertices are mutually distinct, then we will denote such a hyper-
graph by P (3)(1, 5). The spectrum of P (3)(1, 5)-designs has been determined,

along with other many results about H(3)-designs, in [18].

In this paper we consider balanced P (3)(1, 5)-designs and determine com-
pletely their spectrum, without exceptions.

2. Main Definitions

It is known from [18] that a P (3)(1, 5)-design Σ = (X,B) of order v,

briefly a P (3)(1, 5)(v)-design, exists if and only if v 6≡ 3 (mod 4), v ≥ 5.
Furthermore, |B| = v(v − 1)(v − 2)/12.

Let H(3) be a 3-uniform hypergraph on n vertices. An H(3)-design Σ =
(X,B) is said to be balanced if the degree d(x) of a vertex x ∈ X is a
constant.

Observe that if H(3) is regular, then any H(3)-design is balanced, hence the
notion of balanced H(3)-design becomes meaningful only for a non-regular
hypergraph H(3).

3. Necessary conditions for balanced P (3)(1, 5)-designs

In this section we determine the spectrum for balanced P (3)(1, 5)-designs.

Let [b, c, (a), d, e] be a hypergraph, P (3)(1, 5). If Σ = (X,B) is a P (3)(1, 5)-
design, for every vertex x ∈ X, we will indicate by Cx the number of blocks
of B in which x occurs in the central position a and by Lx the number of
blocks in which x occurs in one of the lateral positions b, c, d, e. Clearly,
d(x) = Cx + Lx, for any vertex x ∈ X.

Theorem 3.1. If Σ = (X,B) is a balanced P (3)(1, 5)-design of order v, then
for every x ∈ X :

Cx =
(v − 1)(v − 2)

12
, Lx =

(v − 1)(v − 2)

3
.

Proof. Let Σ = (X,B) be a balanced P (3)(1, 5)-design of order v. Denote
the common degree of the vertices by d. The number of positions that a
vertex can occupy in a block of Σ is five, it follows that 5|B| = dv. Since
d = Cx + Lx, for any vertex x ∈ X, we find that

Cx + Lx =
5(v − 1)(v − 2)

12
.

Furthermore, since every vertex is contained in (v − 1)(v − 2)/2 triples of
X, it follows that:

2 · Cx + Lx =
(v − 1)(v − 2)

2
.

Hence,

Cx =
(v − 1)(v − 2)

12
, Lx =

(v − 1)(v − 2)

3
,

which completes the proof. �
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Theorem 3.2. If Σ = (X,B) is a balanced P (3)(1, 5)-design of order v, then
v ≡ 1, 2, 5, 10 (mod 12) , v ≥ 5.

Proof. From the statement of Theorem 3.1, we conclude that 5(v − 1)(v −
2)/12 must be integral and so v ≡ 1, 2, 5, 10 (mod 12). �

In what follows, given a balanced P (3)(1, 5)-design Σ, we will denote the
constant degrees Cx and Lx of a vertex x of Σ by C and L, respectively.

4. The matrix M(v)

In what follows we will use the matrix M(v), for v = 3h + 1 or v =
3h + 2, h a positive integer, having elements aij = (a, b), with a, b ∈ Zv =
{0, 1, 2, . . . , v − 1}. For the use and more details about this matrix see [16].
We recall that M(v) is constructed as follows.

Let v ≡ 1, 2 (mod 3). M(v) is a matrix m×3, associated with v, such that:

M(v) =



(1, 1) (1, v − 2) (v − 2, 1)
(1, 2) (2, v − 3) (v − 3, 1)

...
...

...
(1, v − 3) (v − 3, 2) (2, 1)

(2, 2) (2, v − 4) (v − 4, 2)
...

...
...

(2, v − 5) (v − 5, 3) (3, 2)
(3, 3) (3, v − 6) (v − 6, 3)

...
...

...
(3, v − 7) (v − 7, 4) (4, 3)

...
...

...
(h, h) (h, v − 2h) (v − 2h, h)

(h, v − 2h− 1) (v − 2h− 1, h + 1) (h + 1, h)



.

Observe that:

(1) If v = 3h + 1, the last row begins with the pair (h, h).
(2) If v = 3h + 2, the last row begins with the pair (h, h + 1).

For any triple T = {x, y, z} and for any element t with x, y, z, t ∈ Zv, denote
the triple {x + t, y + t, z + t} by T + t. We can see that for any triple
T = {x, y, z} with x, y, z ∈ Zv, x < y < z, and y − x = a, z − y = b,
there exists a row of M(v) containing the pair (a, b). Furthermore, if we
fix any pair (a, b) of M(v) with y − x = a, z − y = b, (i.e., such that
its elements have differences a, b,) then T can be obtained from the triple
C = (0, a, a + b) as C + t, where t = x. Therefore, each of the pairs
(y − x, z − y), (z − y, v + x− z), (v + x− z, y − x) determines T = {x, y, z}.
For this reason, any two pairs from the same row in the matrix M are said
to be equivalent among them.
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In what follows, for fixed v = 3h+1 or v = 3h+2, we will indicate by Ri,
for every i = 1, 2, . . . , h, the set of rows of M(v) having in the first column
the pairs

(i, i), (i, i + 1), . . . , (v − 1− 2i).

If |Ri| = mi, it is possible to calculate the number m = m1 +m2 + · · ·+mh

of rows of M(v).

Theorem 4.1. Let v = 3h + 1 or v = 3h + 2 and let M(v) be the matrix
associated with v. Then

1) mi = v − 3i, for every i = 1, 2, . . . , h;
2) m = h(2v − 3h− 3)/2.

Proof. It is easy to see that

1) mi = v − (1 + 2i)− (i− 1) = v − 3i.
2) From 1), it follows that

m = m1 + m2 + · · ·+ mh = (v − 3) + (v − 6) + · · ·+ (v − 3h) =

hv − 3(1 + 2 + · · ·+ h) = hv − 3h(h + 1)

2
= h

2v − 3(h + 1)

2
.

�

5. Main results

If B=[b, c, (a), d, e] is a hypergraph on Zv, the translates of B are all the
hypergraphs Bi=[b+i, c+i, (a+i), d+i, e+i], for every i ∈ Zv; we will say that
the hypergraph B is a base-block having the hypergraphs Bi as translates.
In this section we determine the spectrum for balanced P (3)(1, 5)-designs.

Theorem 5.1. For every v ≡ 1 (mod 12) , v ≥ 13, there exist balanced

P (3)(1, 5)-designs of order v.

Proof. Observe that, for v = 12k + 1, k ≥ 1, we are in the case v = 3h + 1
with even integer h = 4k. Therefore, the elements of M ′ = {m1 = 12k −
2,m3 = 12k − 8, . . . ,mh−1 = 4} are all even integers, while those ones of
M ′′ = {m2 = 12k− 5,m4 = 12k− 11, . . . ,mh = 1} are all odd integers, and
|M ′′| = 2k. This allows us to define the following collections of hypergraphs
on X = Zv.

1) Denote by F1 the family of all base-blocks, containing pairs of dif-
ferences (i, j) ∈M(v), for odd i, i = 1, 3, . . . , h− 1, so defined

Bi,t = [0, i, (2i + 2t− 2), 3i + 2t− 2, 4i + 4t− 3],

for t = 1, 2, . . . , (v − 3i)/2, that is,
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B1,1 = [0, 1, (2), 3, 5], B1,2 = [0, 1, (4), 5, 9], . . . ,

B1,6k−1 = [0, 1, (12k − 2), 12k − 1, 12k − 4];

B3,1 = [0, 3, (6), 9, 13], B3,2 = [0, 3, (8), 11, 17], . . . ,

B3,6k−4 = [0, 3, (12k − 4), 12k − 1, 12k − 8],

...

Bh−1,1 = [0, h− 1, (2h− 2), 3h− 3, 4h− 3], . . . ,

Bh−1,2 = [0, h− 1, (2h), 3h− 1, 4h + 1].

2) Denote by F2 the family of all the base-blocks containing the pairs
of differences (2, 2), (4, 4), . . . , (h, h), where h = 4k, so defined

Cj = [0, 4j − 2, (8j − 4), 12j − 4, 16j − 4], j = 1, 2, . . . , k,

that is,

C1 = [0, 2, (4), 8, 12], C2 = [0, 6, (12), 20, 28], . . . ,

Ck = [0, h− 2, (2h− 4), 3h− 4, 4h− 4].

3) Denote by F3 the family of all the base-blocks, containing pairs of
differences (i, j) ∈ M(v), for even i, i = 2, 4, . . . , h − 2 and (i, j) 6=
(2, 2), (4, 4), . . . , (h− 2, h− 2), so defined

Di,t = [0, i, (2i + 2t− 1), 3i + 2t− 1, 4i + 4t− 1],

for t = 1, 2, . . . , (v − 3i− 1)/2, that is,

D2,1 = [0, 2, (5), 7, 11], B2,2 = [0, 2, (7), 9, 15], . . . ,

D2,6k−3 = [0, 2, (12k − 3), 12k − 1, 12k − 6];

D4,1 = [0, 4, (9), 13, 19], B4,2 = [0, 4, (11), 15, 23], . . . ,

D4,6k−6 = [0, 4, (12k − 5), 12k − 1, 12k − 10],

...

Dh−2,1 = [0, h− 2, (2h− 3), 3h− 5, 4h− 5],

Dh−2,2 = [0, h− 2, (2h− 1), 3h− 3, 4h− 1],

Dh−2,3 = [0, h− 2, (2h + 1), 3h− 1, 4h + 3].

If F = F1 ∪F2 ∪F3 and B is the collection of all the translates of the base-
blocks belonging to F , it is easy to see that Σ = (X,B) is a decomposition

of K
(3)
v , v = 12k + 1, into hypergraphs. Now, it is possible to check that all
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the base-blocks are P (3)(1, 5)s except

Bi, v+3
4
−i =

[
0, i,

(
v − 1

2

)
,
v − 1

2
+ i, 0

]
,

for odd i, 1 ≤ i ≤ (v − 1)/4, and

Di, v−3i+1
4

=

[
0, i,

(
v + i− 1

2

)
,
v + 3i− 1

2
, i

]
,

for i ≡ 2 (mod 4) , 2 ≤ i ≤ (v − 7)/3. For every odd i, 1 ≤ i ≤ (v − 1)/4,
replace the triple {0, (v − 1)/2, ((v − 1)/2) + i} from Bi,((v+3)/4)−i with{

0,
v − 1

2
,
v − 1

2
+ i

}
+ (v − i) =

{
v − i,

v − 1

2
− i,

v − 1

2

}
to obtain

B′
i, v+3

4
−i =

[
0, i,

(
v − 1

2

)
,
v − 1

2
− i, v − i

]
,

which is a P (3)(1, 5) with the unique exception of

B′v−1
4

,1
=

[
0,

v − 1

4
,

(
v − 1

2

)
,
v − 1

4
,
3v + 1

4

]
,

where again the triple {(v − 1)/4, (v − 1)/2, (3v + 1)/4} can be replaced by{
v − 1

4
,
v − 1

2
,
3v + 1

4

}
+

v − 1

2
=

{
3v − 3

4
, v − 1,

v − 1

4

}
to obtain the P (3)(1, 5),

B′′v−1
4

,1
=

[
0,

v − 1

2
,

(
v − 1

4

)
,
3v − 3

4
, v − 1

]
.

For every i ≡ 2 (mod 4) , 2 ≤ i ≤ (v − 7)/3, in base-block Di,(v−3i+1)/4,
which contains the triples {0, i, (v + i− 1)/2} and {i, (v+ i− 1)/2, (v+ 3i−
1)/2}, replace the triple {i, (v + i− 1)/2, (v + 3i− 1)/2} with{

i,
v + i− 1

2
,
v + 3i− 1

2

}
+

v − i− 1

2
=

{
v + i− 1

2
, v − 1, v + i− 1

}
to obtain the P (3)(1, 5),

D′
i, v+3i−1

4

=

[
0, i,

(
v + i− 1

2

)
, v − 1, v + i− 1

]
.

The resulting design is a P (3)(1, 5)-design of order v = 12k + 1, where every
vertex x ∈ X appears in C = k(12k − 1) blocks in central position and in
L = 4k(12k − 1) blocks in a lateral position. �

Theorem 5.2. For every v ≡ 2 (mod 12) , v ≥ 14, there exist balanced

P (3)(1, 5)-designs of order v.
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Proof. Observe that, for v = 12k+2, k ≥ 1, we are in the case v = 3h+2 with
even integer h = 4k. In this case, the elements of M ′ = {m1,m3, . . . ,mh−1 =
5} are all odd integers, the elements of M ′′ = {m2,m4, . . . ,mh = 2} are all
even integers, and |M ′′| = 2k. So we can define the following collections of
hypergraphs on X = Zv.

1) Denote by F1 the family of all the base-blocks containing pairs of
differences (i, j) ∈M(v), for even i, i = 2, 4, . . . , h, so defined

Bi,t = [0, i, (2i + 2t− 2), 3i + 2t− 2, 4i + 4t− 3],

for t = 1, 2, . . . , (v − 3i)/2.
2) Denote by F2 the family of all the base-blocks containing the pairs

of differences (1, 1), (3, 3), . . . , (h−1, h−1), where h = 4k, so defined

Cj = [0, 4j − 3, (8j − 6), 12j − 7, 16j − 8], j = 1, 2, . . . , k.

3) Denote by F3 the family of all the base-blocks, containing pairs of
differences (i, j) ∈ M(v), for odd i, i = 1, 3, . . . , h − 1 and (i, j) 6=
(1, 1), (3, 3), . . . , (h− 1, h− 1), so defined

Di,t = [0, i, (2i + 2t− 1), 3i + 2t− 1, 4i + 4t− 1],

for t = 1, 2, . . . , (v − 3i− 1)/2.

If F = F1 ∪F2 ∪F3 and B is the collection of all the translates of the base-
blocks belonging to F , it is easy to check that Σ = (X,B) is a decomposition

of K
(3)
v , v = 12k + 2, into hypergraphs. Now, it is a routine to see that all

the base-blocks, except

Di, v−3i+1
4

=

[
0, i,

(
v + i− 1

2

)
,
v + 3i− 1

2
, i

]
,

for i ≡ 1 (mod 4) and 1 ≤ i ≤ v−11
3 , are P (3)(1, 5)s. Replacing Di,(v−3i+1)/4

with D′i,(v−3i+1)/4 = [0, i, ((v + i− 1)/2) , i− 1, v − 1], for i ≡ 1 (mod 4)

and 5 ≤ i ≤ (v − 11)/3, and D1,(v−2)/4 = [0, 1, (v/2) , (v + 2)/2, 1] with

D′1,(v−2)/4 = [0, v/2, (1) , 2, (v + 4)/2], we obtain a balanced P (3)(1, 5)-design

of order v = 12k + 2. �

Theorem 5.3. For every v ≡ 5 (mod 12), there exist balanced P (3)(1, 5)-
designs of order v.

Proof. Observe that, for v = 12k + 5, k ≥ 0, we are in the case v =
3h + 2 with odd integer h = 4k + 1. As in Theorem 5.1, the elements
of M ′ = {m1,m3, . . . ,mh = 2} are all even integers, while those ones of
M ′′ = {m2,m4, . . . ,mh−1 = 5} are all odd integers, and |M ′′| = 2k. There-
fore, we can define the following collections of hypergraphs on X = Zv.

1) Denote by F1 the family of all the base-blocks, containing pairs of
differences (i, j) ∈M(v), for odd i, i = 1, 3, ..., h, so defined

Bi,t = [0, i, (2i + 2t− 2), 3i + 2t− 2, 4i + 4t− 3],
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for t = 1, 2, . . . , (v − 3i)/2.
2) Denote by F2 the following family of all the base-blocks containing

the pairs of differences (2, 2), (4, 4), . . . , (h−1, h−1), for h = 4k+ 1,
so defined

Cj = [0, 4j − 2, (8j − 4), 12j − 4, 16j − 4],

for j = 1, 2, . . . , k.
3) Denote by F3 the following family of all the base-blocks containing

pairs of differences (i, j) ∈ M(v), for even i, i = 2, 4, . . . , h − 1 and
(i, j) 6= (2, 2), (4, 4), . . . , (h− 1, h− 1), so defined

Di,t = [0, i, (2i + 2t− 1), 3i + 2t− 1, 4i + 4t− 1],

for t = 1, 2, . . . , (v − 3i− 1)/2.

If B is the collection of all the translates of the base-blocks belonging to

F = F1 ∪F2 ∪F3, then Σ = (X,B) is a decomposition of K
(3)
v , v = 12k + 5,

into hypergraphs. Using the same argument as Theorem 5.1, it is pos-
sible to replace those base-blocks of F which are not P (3)(1, 5)s, that is,
Bi,((v+3)/4)−i, for odd i, 1 ≤ i ≤ (v − 1)/4, and Di,(v−3i+1)/4, for i ≡
2 (mod 4) , 2 ≤ i ≤ (v − 5)/3, so to obtain a balanced P (3)(1, 5)-design
of order v = 12k + 5. �

Theorem 5.4. For every v ≡ 10 (mod 12), there exist balanced P (3)(1, 5)-
designs of order v.

Proof. Observe that, for v = 12k + 10, k ≥ 0, we are in the case v =
3h + 1 with odd integer h = 4k + 3. In this case, the elements of M ′ =
{m1,m3, . . . ,mh = 1} are all odd integers, those ones of M ′′ = {m2,m4, . . . ,
mh−1 = 4} are all even integers, and |M ′| = 2k + 2. Therefore, it is possible
to define the following collections of hypergraphs on X = Zv.

1) Denote by F1 the family of all the base-blocks containing pairs of
differences (i, j) ∈M(v), for even i, i = 2, 4, . . . , h− 1, so defined

Bi,t = [0, i, (2i + 2t− 2), 3i + 2t− 2, 4i + 4t− 3],

for t = 1, 2, . . . , (v − 3i)/2.
2) Denote by F2 the family of all the base-blocks containing the pairs

of differences (1, 1), (3, 3), . . . , (h, h), where h = 4k + 3, so defined

Cj = [0, 4j − 3, (8j − 6), 12j − 7, 16j − 8],

for j = 1, 2, . . . , k + 1.
3) Denote by F3 the family of all the base-blocks, containing pairs of

differences (i, j) ∈ M(v), for odd i, i = 1, 3, . . . , h − 2 and (i, j) 6=
(1, 1), (3, 3), . . . , (h− 2, h− 2), so defined

Di,t = [0, i, (2i + 2t− 1), 3i + 2t− 1, 4i + 4t− 1],

for t = 1, 2, . . . , (v − 3i− 1)/2.
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Now, using the same argument as Theorem 5.3 it is possible to construct a
balanced P (3)(1, 5)-design of order v = 12k + 10. �

By combining together all the previous Theorems in Section 5, the fol-
lowing statement immediately follows.

Theorem 5.5. There exist balanced P (3)(1, 5)-designs of order v if and only
if v ≡ 1, 2, 5, 10 (mod 12) , v ≥ 5.
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