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ON THE SPECTRUM OF OCTAGON QUADRANGLE

SYSTEMS OF ANY INDEX

PAOLA BONACINI AND LUCIA MARINO

Abstract. An octagon quadrangle is the graph consisting of a length 8
cycle (x1, x2, . . . , x8) and two chords, {x1, x4} and {x5, x8}. An octagon
quadrangle system of order v and index λ is a pair (X,B), where X is a
finite set of v vertices and B is a collection of octagon quadrangles (called
blocks) which partition the edge set of λKv, with X as the vertex set. In
this paper we completely determine the spectrum of octagon quadrangle
systems for any index λ, with the only possible exception of v = 20 for
λ = 1.

1. Introduction

Let G = (X,E) be the graph having X = {x1, x2, x3, x4, x5, x6, x7, x8}
and E = {{xi, xi+1}, {x1, x4}, {x5, x8} | i ∈ Z8}. A graph of this type will
be denoted [(x1), x2, x3, (x4), (x5), x6, x7, (x8)]. It is called octagon quadran-
gle (briefly OQ).

A G-design of order v and index λ is a couple Σ = (X,B), where X is a
finite set of v elements and B is a family of graphs all isomorphic to G such
that for any x, y ∈ X, with x 6= y, there exist λ graphs G ∈ B having {x, y}
as an edge. A G-design is also called a G-decomposition of λKv [11, 14].

An octagon quadrangle system of order v and index λ will be denoted
by OQS(v). Concepts and definitions of octagon quadrangle and octagon
quadrangle systems have been introduced in [1, 2, 4], where the authors
studied perfect OQSs, determining their spectrum. Similar questions have
been studied in all the other papers cited in the references (see, e.g., [5, 3,
6, 7]).

If a block [(x1), x2, x3, (x4), (x5), x6, x7, (x8)] is repeated k times in an
OQS, we use the notation [(x1), x2, x3, (x4), (x5), x6, x7, (x8)](k).

A technique used in the constructions in the main results of the paper
is the difference method. Given Zn, for some n ∈ N, and given any two
a, b ∈ Zn, a 6= b, there exists precisely one x ∈ {1, . . . , bn/2c} such that
either a = x + b or b = x + a. In this case we say that the edge {a, b} has
difference x.
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Let n be odd. Given an edge {a, b} of difference x ∈ {1, . . . , bn/2c}, any
edge of the same difference x is of type {a+ i, b+ i} for exactly one i ∈ Zn.
Let n even. Given an edge {a, b} of difference x ∈ {1, . . . , (n/2) − 1}, any
edge of same difference x is of type {a + i, b + i} for exactly one i ∈ Zn;
given an edge {a, b} of difference n/2, any edge of same difference x is of
type {a + i, b + i} for exactly one i ∈ {0, . . . , (n/2) − 1}. So in this paper,
often blocks in an OQS are given by the translated forms of a base block.
Other techniques used in these type of problems can also be found in [6, 7].

In this paper we will determine the spectrum of all OQS(v) for any λ,
with the exception of λ = 1 for v = 20.

2. Index λ = 1

In the following theorem we will give necessary conditions for the existence
of an OQS(v) of fixed index λ.

Theorem 2.1. Let Σ = (X,B) be an OQS(v) of index λ ≥ 1. Then:

(1) if λ ≡ 0 mod 10, then v ∈ N, with v ≥ 8,
(2) if λ ≡ 1, 3, 7, 9 mod 10, then v ≡ 0, 1, 5, 16 mod 20, with v ≥ 16,
(3) if λ ≡ 2, 4, 6, 8 mod 10, then v ≡ 0, 1 mod 5, with v ≥ 10,
(4) if λ ≡ 5 mod 10, then v ≡ 0, 1 mod 4, with v ≥ 8.

Proof. Since Σ = (X,B) is an OQS(v) of index λ, we have:

|B| = λv(v − 1)

20
.

�

In the following theorem we get the spectrum for OQS(v) of index 1 with
a possible exception.

Theorem 2.2. For λ = 1 and for every v ≡ 0, 1, 5, 16 mod 20, with v 6= 20,
there exists an OQS(v) of index 1.

Proof. Let v = 20k + 1, for some k ≥ 1. In this case we use the difference
method. Let us consider Σ = (Z20k+1,B) whose blocks are:

[(20k + 8− 10i), 0, 20k + 10− 10i, (1), (20k + 6− 10i), 3, 20k + 4− 10i, (2)]

for i = 1, . . . , k and all their translated forms. Then Σ is an OQS(v) of
index 1.

Let v = 20k+ 5, for some k ≥ 1. Let us consider Σ = (Z20k+4 ∪ {∞},D),
with ∞ /∈ Z20k+4, whose blocks are:

(1) Ai = [(2i + 1),∞, 2i, (2i + 3), (2i + 6), 2i + 8, 2i + 4, (2i + 5)] for
i ∈ {0, . . . , 10k + 1},

(2) Bi = [(2i), 2i + 10k + 1, 2i + 10k + 6, (2i + 5), (2i + 10k + 7), 2i +
4, 2i+ 20k + 3, (2i+ 10k + 2)] for i ∈ {0, . . . , 5k},

(3) Cij = [(2i+5j+8), 2i, 2i+5j+10, (2i+1), (2i+5j+11), 2i+3, 2i+
5j + 9, (2i+ 2)] for i ∈ {0, . . . , 10k + 1} and j ∈ {0, . . . , 2k − 2}.
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Then Σ is an OQS(v) of index 1. Indeed, in this case we are using the
difference method in an appropriate way, since 20k + 4 is even. So in the
blocks Ai we have the differences:

• 1, given by the edges {2i + 4, 2i + 5} and {2i + 5, 2i + 6} for i ∈
{0, . . . , 10k + 1},
• 2, given by the edges {2i + 1, 2i + 3} and {2i + 6, 2i + 8} for i ∈
{0, . . . , 10k + 1},
• 3, given by the edges {2i, 2i+ 3} and {2i+ 3, 2i+ 6} for i ∈ {0, . . . ,

10k + 1},
• 4, given by the edges {2i + 1, 2i + 5} and {2i + 4, 2i + 8} for i ∈
{0, . . . , 10k + 1}.

In the blocks Bi we have the differences:

• 5, given by the edges {2i, 2i + 5}, {2i + 10k + 2, 2i + 10k + 7},
{2i+10k+1, 2i+10k+6} and {2i+20k+3, 2i+4} for i ∈ {0, . . . , 5k},
• 10k+1, given by the edges {2i, 2i+10k+1}, {2i+10k+2, 2i+20k+3},
{2i+ 5, 2i+ 10k + 6} and {2i+ 10k + 7, 2i+ 4} for i ∈ {0, . . . , 5k},
• 10k+2, given by the edges {2i, 2i+10k+2} and {2i+5, 2i+10k+7}

for i ∈ {0, . . . , 5k}.
In the blocks Cij we have the differences:

• 5j+ 6, given by the differences {2i+ 3, 2i+ 5j+ 9} and {2i+ 2, 2i+
5j + 8} for i ∈ {0, . . . , 10k + 1},
• 5j+ 7, given by the differences {2i+ 2, 2i+ 5j+ 9} and {2i+ 1, 2i+

5j + 8} for i ∈ {0, . . . , 10k + 1},
• 5j+8, given by the differences {2i+3, 2i+5j+11} and {2i, 2i+5j+8}

for i ∈ {0, . . . , 10k + 1},
• 5j+9, given by the differences {2i+1, 2i+5j+10} and {2i+2, 2i+

5j + 11} for i ∈ {0, . . . , 10k + 1},
• 5j + 10, given by the differences {2i, 2i+ 5j + 10} and {2i+ 1, 2i+

5j + 11} for i ∈ {0, . . . , 10k + 1},
with j ∈ {0, . . . , 2k − 2}.

Let v = 16. Let us consider Σ = (Z16,B) whose blocks are:

(1) Ai = [(2i), 2i+ 4, 2i+ 11, (2i+ 5), (2i+ 13), 2i+ 3, 2i+ 12, (2i+ 8)]
for i ∈ {0, 1, 2, 3},

(2) Bi = [(2i+ 1), 2i+ 5, 2i+ 3, (2i+ 6), (2i+ 7), 2i+ 4, 2i+ 10, (2i+ 8)]
for i ∈ {0, 1, . . . , 7}.

Then Σ is an OQS(v) of index 1. Indeed, we use again the difference method
in a way similar to the previous one and we get:

• the differences 1, 2 and 3 in the blocks Bi,
• the differences 4, 5, 6 and 7 in the blocks Ai and Bi,
• the difference 8 in the blocks Ai.

Let v = 20k+16, for some k ≥ 1. Let us consider Σ = (Z20k+16,B) whose
blocks are:
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(1) Ai = [(20k+23−10i), 0, 20k+25−10i, (1), (20k+21−10i), 3, 20k+
19− 10i, (2)] for i ∈ {1, . . . , k} and all their translated forms,

(2) Bi = [(2i), 2i+10k+4, 2i+20k+11, (2i+10k+5), (2i+20k+13), 2i+
10k + 3, 2i+ 20k + 12, (2i+ 10k + 8)] for i ∈ {0, 1, . . . , 5k + 3},

(3) Ci = [(2i), 2i + 10k + 1, 2i − 3, (2i + 10k + 2), (2i + 1), 2i + 10k +
4, 2i+ 20k + 10, (2i+ 10k + 3)] for i ∈ {0, 1, . . . , 10k + 7}.

Then Σ is an OQS(v) of index 1. In fact, using the previous method we get:

• the differences 1, 2, . . . , 10k in the blocks Ai and their translated
forms,
• the differences 10k + 1, 10k + 2 and 10k + 3 in the blocks Ci,
• the differences 10k + 4, 10k + 5, 10k + 6 and 10k + 7 in the blocks
Bi and Ci,
• the difference 10k + 8 in the blocks Bi.

Let v = 40. Let us consider Σ = (Z13×Z3∪{∞},B), where∞ /∈ Z13×Z3

and whose blocks are:

(1) [((i, 1)), (i + 1, 2), (i, 0), (∞), ((i, 2)), (i + 1, 0), (i − 1, 2), ((i + 1, 1))]
for any i ∈ Z13,

(2) [((i+2, 0)), (i, 0), (i+1, 0), ((i+5, 0)), ((i+1, 2)), (i, 2), (i+2, 2), ((i+
5, 2))] for any i ∈ Z13,

(3) [((i+ 5, 1)), (i+ 2, 1), (i, 1), ((i, 0)), ((i, 2)), (i+ 11, 1), (i+ 4, 1), ((i+
9, 1))] for any i ∈ Z13,

(4) [((i+6, 0)), (i, 0), (i+5, 0), ((i+12, 1)), ((i+5, 2)), (i, 2), (i+6, 2), ((i+
10, 1))] for any i ∈ Z13,

(5) [((i + 12, 1)), (i + 6, 2), (i + 9, 1), ((i, 0)), ((i + 2, 1)), (i + 7, 0), (i +
4, 1), ((i+ 1, 0))] for any i ∈ Z13,

(6) [((i, 2)), (i+11, 0), (i+5, 2), ((i, 1)), ((i+3, 2)), (i+6, 0), (i+12, 2), ((i+
8, 0))] for any i ∈ Z13.

Then Σ is an OQS(v) of index 1.
Let v = 60. Let us consider Σ′ = (X,B′), an OQS(45) of index 1, with

X = {ai | i = 0, . . . , 44}. Given Z15, consider:

(1) C1 = {[(i+5), i+1, i, (a42), (i+10), i+4, i+12, (i+7)] | i = 0, . . . , 4},
(2) C2 = {[(i+5), i+1, i, (a43), (i+10), i+4, i+12, (i+7)] | i = 5, . . . , 9},
(3) C3 = {[(i+5), i+1, i, (a44), (i+10), i+4, i+12, (i+7)] | i = 10, . . . , 14},
(4) C4 = {[(i + 1), a2i, i, (a2i−1), (i + 2), a2i−3, i + 3, (a2i−2)] | i = 0, . . . ,

20}, where i, i + 1, i + 2, i + 3 are taken modulo 15 and the indices
of the aj are taken modulo 42,

(5) C5 = {[(i + 6), a2i, i + 5, (a2i−1), (i + 7), a2i−3, i + 8, (a2i−2)] | i =
0, . . . , 20}, where i+ 5, i+ 6, i+ 7, i+ 8 are taken modulo 15 and the
indices of the aj are taken modulo 42,

(6) C6 = {[(i+ 11), a2i, i+ 10, (a2i−1), (i+ 12), a2i−3, i+ 13, (a2i−2)] | i =
0, . . . , 20}, where i+10, i+11, i+12, i+13 are taken modulo 15 and
the indices of the aj are taken modulo 42.

Then Σ = (X ∪ Z15,B′ ∪
⋃6

i=1 Ci) is an OQS(v) of index 1.
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Let Σ′ = (X ′,B′) be an OQS(v) of index 1, for some v ≡ 0 mod 20,
v 6= 20, with X ′ = {ai | i = 0, . . . , v − 1}, and let Σ′′ = (X ′′,B′′) be an
OQS(40), with X ′′ = {bi | i = 0, . . . , 39}. Let us consider:

C = {[(bi+1+10j), ai, bi+10j , (ai−2), (bi+2+10j), ai−6, bi+3+10j , (ai−4)]

| i = 0, . . . , v − 1, j = 0, 1, 2, 3},

where the indices are taken modulo v and modulo 40. Then, given X =
X ′ ∪ X ′′ and B = B′ ∪ B′′ ∪ C, Σ = (X,B) is an OQS(v + 40) of index 1.
This proves that for any v ≡ 0 mod 20, v ≥ 40, there exists an OQS(v) of
index 1. �

3. Index λ = 2

Theorem 3.1. For λ = 2 and for every v ≡ 0, 1 mod 5 there exists an
OQS(v) of index 2.

Proof. Let v = 10k, for some k ≥ 1. Let us consider Σ = (Z10k−1∪{∞},B),
with ∞ /∈ Z10k, whose blocks are:

(1) [(0), 5i+ 1, 10i+ 6, (5i+ 2), (10i+ 5), 5i+ 4, 10i+ 8, (5i+ 3)] for any
i ∈ {0, . . . , k − 2} and all their translated forms (in the case k ≥ 2),

(2) [(i), i+5k−4,∞, (i+5k−3), (i+10k−5), i+5k−2, i+10k−3, (i+
5k − 1)] for any i ∈ Z10k−1.

Then Σ is an OQS(v) of index 2.
Let v = 10k + 1, for some k ≥ 1. Let us consider Σ = (Z10k+1,B) whose

blocks are:

[(0), 5i+1, 10i+6, (5i+2), (10i+5), 5i+4, 10i+8, (5i+3)] for i = 0, . . . , k−1

and all their translated forms. Then Σ is an OQS(v) of index 2.
Let v = 10k + 5, for some k ≥ 1. Let us consider Σ = (Z10k+4 ∪ {∞},B),

with ∞ /∈ Z10k+4, whose blocks are:

(1) Ai = [(0), 5i + 1, 10i + 6, (5i + 2), (10i + 5), 5i + 4, 10i + 8, (5i + 3)]
for any i ∈ {0, . . . , k − 2} and all their translated forms (in the case
k ≥ 2),

(2) Bi = [(i+10k−2), i+5k−2, i+10k−5, (i+5k−1), (i+10k),∞, i+
10k − 1, (i+ 5k + 2)] for any i ∈ Z10k+4,

(3) Cj = [(2j + 3), 2j + 5k + 3, 2j + 1, (2j + 5k + 2), (2j), 2j + 5k, 2j +
2, (2j + 5k + 1)] for any j ∈ {0, . . . , 5k + 1}.

Then Σ is an OQS(v) of index 2. In fact, in this case we use again the
difference method and we get:

• the differences 1, 2, . . . , 5k− 5, each repeated twice, in the blocks Ai

and their translated forms,
• the differences 5k − 4 and 5k − 3 twice in the blocks Bi,
• the differences 5k− 2, 5k− 1, 5k and 5k+ 1, each once in the blocks
Bi and once in the blocks Cj ,
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• the difference 5k + 2 in the blocks Cj , given by the edges {2j, 2j +
5k+ 2} and {2j+ 1, 2j+ 5k+ 3} for j ∈ {0, . . . , 5k+ 1}, so that each
edge of difference 5k + 2 appears twice.

Let v = 10k + 6, for some k ≥ 1. Let us consider Σ = (Z10k+6,B), whose
blocks are:

(1) Aij = [(2j), 2j + 5i + 3, 2j − 1, (2j + 5i + 4), (2j + 3), 2j + 5i +
6, 2j + 4, (2j + 5i + 5)](2) for any i ∈ {1, . . . , k − 1} and for any
j ∈ {0, . . . , 5k + 2} (in the case k ≥ 2),

(2) Bj = [(2j), 2j + 1, 2j + 6, (2j + 2), (2j + 7), 2j + 8, 2j + 5, (2j + 3)]
for any j ∈ {0, . . . , 5k + 2},

(3) Cj = [(2j−1), 2j+5k, 2j−2, (2j+5k+1), (2j), 2j+1, 2j−3, (2j+2)]
for any j ∈ {0, . . . , 5k + 2},

(4) Dj = [(2j), 2j + 5k + 1, 2j − 1, (2j + 5k + 2), (2j + 1), 2j + 2, 2j −
2, (2j + 3)] for any j ∈ {0, . . . , 5k + 2}.

Then Σ is an OQS(v) of index 2. Indeed, also in this case we use the
difference method and get:

• the differences 1, 2, 3, 4 and 5 once in the blocks Bj and once among
the blocks Cj and Dj ,
• the differences 6, 7, . . . , 5k in the blocks Aij , each of them repeated

twice, because the blocks are repeated twice,
• the differences 5k + 1 and 5k + 2 once in the blocks Cj and once in

the blocks Dj ,
• the difference 5k+3, in the blocks Cj given by the edges {2j−2, 2j+

5k+1} and in the blocks Dj given by the edges {2j−1, 2j+5k+2},
so that each edge of difference 5k + 3 appears twice.

�

4. Index λ = 5

Theorem 4.1. For λ = 5 and for every v ≡ 0, 1 mod 4, there exists an
OQS(v) of index 5.

Proof. Let v = 9. Let us consider Σ = (Z9,B) whose blocks are:

[(6), 0, 1, (2), (3), 4, 5, (8)] and [(6), 0, 2, (4), (7), 3, 5, (1)]

and all their translated forms. Then Σ is an OQS(9) of index 5.
Let v = 4k + 1, for some k ≥ 3. Let us consider Σ = (Z4k+1,B) whose

blocks are:

(1) [(2i−1), 0, 2i, (4i+ 1), (2i+ 1), 4i+ 3, 6i+ 2, (4i)] for i = 1, . . . , k−1,
(2) [(2k − 1), 4k − 2, 2k − 2, (4k), (1), 3, 2, (0)]

and all their translated forms. Then Σ is an OQS(v) of index 5.
Let v = 8. Let us consider Σ = (Z7 ∪ {∞},B) whose blocks are:

(1) [(j + 6),∞, j + 5, (j + 4), (j + 1), j, j + 2, (j + 3)] for j ∈ Z7,
(2) [(∞), j + 3, j + 6, (j + 5), (j + 2), j, j + 1, (j + 4)] for j ∈ Z7.
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Then Σ is an OQS(8) of index 5.
Let v = 4k, for some k ≥ 3. Let us consider Σ = (Z4k−1 ∪ {∞},B) whose

blocks are:

(1) [(2i− 1), 0, 2i, (4i+ 1), (2i+ 1), 4i+ 3, 6i+ 2, (4i)] for i = 1, . . . , k− 2
and all their translated forms,

(2) [(∞), j, j+2k−1, (j+1), (j+2k−2), j+4k−3, j+2k, (j+4k−2)],
for j ∈ Z4k−1,

(3) [(j+2), j, j+1, (j+3), (j+2k+2),∞, j+5, (j+2k+4)] for j ∈ Z4k−1.

Then Σ is an OQS(v) of index 5. �

5. Index λ = 10

Theorem 5.1. For λ = 10 and for every v ∈ N, v ≥ 8, there exists an
OQS(v) of index 10.

Proof. Let v ≡ 0, 1 mod 4. Then, in this case, the proof follows by Theorem
4.1, because, given Σ = (X,B) an OQS(v) of index 5, Σ′ = (X,B′), whose
blocks are those of B, each repeated twice, is an OQS(v) of index 10.

Let v = 10. Let Σ = (X,B) an OQS(10) of index 2, as given in Theorem
3.1. Then Σ′ = (X,B′), whose blocks are those of B, each repeated 5 times,
is an OQS(10) of index 10.

Let v = 14. Let us consider Σ = (Z13 ∪ {∞},B), with ∞ /∈ Z13, whose
blocks are:

(1) [(1), 0, 5, (6), (7), 8, 3, (2)] and all its translated forms,
(2) [(5), 0, 1, (6), (11), 3, 2, (10)] and all its translated forms,
(3) [(j + 11),∞, j + 1, (j + 7), (j + 3), j, j + 2, (j + 5)](5) for j ∈ Z13.

Then Σ is an OQS(14) of index 10.
Let v = 18. Let us consider Σ = (Z17 ∪ {∞},B), with ∞ /∈ Z17, whose

blocks are:

(1) [(1), 0, 4, (5), (6), 7, 3, (2)] and all its translated forms,
(2) [(4), 0, 1, (5), (9), 13, 12, (8)] and all its translated forms,
(3) [(2), 0, 3, (5), (7), 9, 6, (4)] and all its translated forms,
(4) [(3), 0, 2, (5), (8), 11, 9, (6)] and all its translated forms,
(5) [(j + 10),∞, j + 9, (j + 3), (j + 8), j, j + 7, (j + 2)](5) for j ∈ Z17.

Then Σ is an OQS(18) of index 10.
Let v = 4k + 2, for some k ≥ 5. Let us consider Σ = (Z4k+1 ∪ {∞},B),

with ∞ /∈ Z4k+1, whose blocks are:

(1) [(2i−1), 0, 2i, (4i+1), (2i+1), 4i+3, 6i+2, (4i)](2) for i = 1, . . . , k−3
and all their translated forms,

(2) [(2k − 5), 4k − 10, 2k − 6, (4k), (1), 3, 2, (0)](2) and all its translated
forms,

(3) [(j + 2k + 2),∞, j + 2k + 1, (j + 3), (j + 2k), j, j + 2k − 1, (j + 2)](5)
for j ∈ Z4k+1.

Then Σ is an OQS(v) of index 10.
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Let v = 11. Let us consider Σ = (Z11,B) having [(0), 1, 8, (2), (4),
10, 6, (3)] and all its translated forms as blocks, each repeated 5 times. Then
Σ is an OQS(11) of index 10.

Let v = 15. Consider Σ = (Z15,B) with blocks [(0), 1, 6, (2), (7), 4, 5, (3)]
and all its translates, each repeated 5 times, and [(8), 0, 7, (1), (10), 4, 11, (2)]
and all its translates, each repeated twice. Then Σ is an OQS(15) of index
10.

Let v = 4k + 3, for some k ≥ 4. Let us consider Σ = (Z4k+3,B) whose
blocks are:

(1) [(2i−1), 0, 2i, (4i+1), (2i+1), 4i+3, 6i+2, (4i)](2) for i = 1, . . . , k−1,
(2) [(2k + 4), 0, 1, (2k + 5), (6), 2k + 10, 2k + 9, (5)],
(3) [(2), 0, 2k + 1, (2k + 3), (2k + 5), 2k + 7, 6, (4)],
(4) [(2k), 0, 2k + 1, (4k + 2), (2k − 1), 4k − 1, 2k − 2, (4k + 1)]

and all their translated forms. Then Σ is an OQS(v) of index 10. �

6. Any index λ

Theorem 6.1. For any λ ∈ N, with λ ≥ 2, there exists an OQS(20) of
index λ.

Proof. Let us consider Σ = (Z19∪{∞},B), with∞ /∈ Z19, whose blocks are:

(1) [(i+ 1), i+ 3, i, (∞), (i+ 2), i+ 13, i+ 7, (i+ 6)], for any i ∈ Z19,
(2) [(2), 0, 1, (5), (14), 7, 15, (9)] and all its translated forms,
(3) [(2), 0, 1, (5), (13), 6, 16, (7)] and all its translated forms.

Then Σ is an OQS(20) of index 3.
By this construction and by Theorem 3.1 we know that the statement

holds for λ = 2, 3. Taking any λ ∈ N, with λ ≥ 2, we know that λ = 2a+3b,
for some a, b ∈ N. Let us now consider two OQS(20), Σ1 = (X,B1) and
Σ2 = (X,B2) on the same vertex set X, of indices 2 and 3, respectively.
Then Σ = (X,B), whose blocks are those of B1, each repeated a times, and
those of B2, each repeated b times, is an OQS(20) of index λ. �

As a consequence of all the previous results, the following statement fol-
lows easily:

Theorem 6.2. Let us consider λ, v ∈ N, with v ≥ 8, such that:

(1) if λ = 1, then v ≡ 0, 1, 5, 16 mod 20, with v 6= 20,
(2) if λ ≡ 1, 3, 7, 9 mod 10, λ 6= 1, then v ≡ 0, 1, 5, 16 mod 20,
(3) if λ ≡ 2, 4, 6, 8 mod 10, then v ≡ 0, 1 mod 5,
(4) if λ ≡ 5 mod 10, then v ≡ 0, 1 mod 4.

Then there exists an OQS(v) of order λ.

Proof. The statement has been proved in the case that λ = 1, 2, 5, 10.
Let λ ≡ 1, 3, 7, 9 mod 20, with λ 6= 1. If v = 20, the proof follows

by Theorem 6.1. Let v 6= 20. Given Σ = (X,B) an OQS(v) of index 1,
Σ′ = (X,B′), where the blocks of B′ are those of B, each repeated λ times,
is an OQS(v) of index λ.
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Let λ ≡ 2, 4, 6, 8 mod 10. Given Σ = (X,B) an OQS(v) of index 2,
Σ′ = (X,B′), where the blocks of B′ are those of B, each repeated λ/2
times, is an OQS(v) of index λ.

Let λ ≡ 5 mod 10. Given Σ = (X,B) an OQS(v) of index 5, Σ′ =
(X,B′), where the blocks of B′ are those of B, each repeated λ/5 times, is
an OQS(v) of index λ.

Let λ ≡ 0 mod 10. Given Σ = (X,B) an OQS(v) of index 10, Σ′ =
(X,B′), where the blocks of B′ are those of B, each repeated λ/10 times, is
an OQS(v) of index λ. �
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